/*************************************************************************/ /* broad_phase_2d_hash_grid.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "broad_phase_2d_hash_grid.h" #include "collision_object_2d_sw.h" #include "core/project_settings.h" #define LARGE_ELEMENT_FI 1.01239812 void BroadPhase2DHashGrid::_pair_attempt(Element *p_elem, Element *p_with) { Map::Element *E = p_elem->paired.find(p_with); ERR_FAIL_COND(p_elem->_static && p_with->_static); if (!E) { PairData *pd = memnew(PairData); p_elem->paired[p_with] = pd; p_with->paired[p_elem] = pd; } else { E->get()->rc++; } } void BroadPhase2DHashGrid::_unpair_attempt(Element *p_elem, Element *p_with) { Map::Element *E = p_elem->paired.find(p_with); ERR_FAIL_COND(!E); //this should really be paired.. E->get()->rc--; if (E->get()->rc == 0) { if (E->get()->colliding) { //uncollide if (unpair_callback) { unpair_callback(p_elem->owner, p_elem->subindex, p_with->owner, p_with->subindex, E->get()->ud, unpair_userdata); } } memdelete(E->get()); p_elem->paired.erase(E); p_with->paired.erase(p_elem); } } void BroadPhase2DHashGrid::_check_motion(Element *p_elem) { for (Map::Element *E = p_elem->paired.front(); E; E = E->next()) { bool physical_collision = p_elem->aabb.intersects(E->key()->aabb); bool logical_collision = p_elem->owner->test_collision_mask(E->key()->owner); if (physical_collision) { if (!E->get()->colliding || (logical_collision && !E->get()->ud && pair_callback)) { E->get()->ud = pair_callback(p_elem->owner, p_elem->subindex, E->key()->owner, E->key()->subindex, pair_userdata); } else if (E->get()->colliding && !logical_collision && E->get()->ud && unpair_callback) { unpair_callback(p_elem->owner, p_elem->subindex, E->key()->owner, E->key()->subindex, E->get()->ud, unpair_userdata); E->get()->ud = nullptr; } E->get()->colliding = true; } else { // No physcial_collision if (E->get()->colliding && unpair_callback) { unpair_callback(p_elem->owner, p_elem->subindex, E->key()->owner, E->key()->subindex, E->get()->ud, unpair_userdata); } E->get()->colliding = false; } } } void BroadPhase2DHashGrid::_enter_grid(Element *p_elem, const Rect2 &p_rect, bool p_static) { Vector2 sz = (p_rect.size / cell_size * LARGE_ELEMENT_FI); //use magic number to avoid floating point issues if (sz.width * sz.height > large_object_min_surface) { //large object, do not use grid, must check against all elements for (Map::Element *E = element_map.front(); E; E = E->next()) { if (E->key() == p_elem->self) continue; // do not pair against itself if (E->get().owner == p_elem->owner) continue; if (E->get()._static && p_static) continue; _pair_attempt(p_elem, &E->get()); } large_elements[p_elem].inc(); return; } Point2i from = (p_rect.position / cell_size).floor(); Point2i to = ((p_rect.position + p_rect.size) / cell_size).floor(); for (int i = from.x; i <= to.x; i++) { for (int j = from.y; j <= to.y; j++) { PosKey pk; pk.x = i; pk.y = j; uint32_t idx = pk.hash() % hash_table_size; PosBin *pb = hash_table[idx]; while (pb) { if (pb->key == pk) { break; } pb = pb->next; } bool entered = false; if (!pb) { //does not exist, create! pb = memnew(PosBin); pb->key = pk; pb->next = hash_table[idx]; hash_table[idx] = pb; } if (p_static) { if (pb->static_object_set[p_elem].inc() == 1) { entered = true; } } else { if (pb->object_set[p_elem].inc() == 1) { entered = true; } } if (entered) { for (Map::Element *E = pb->object_set.front(); E; E = E->next()) { if (E->key()->owner == p_elem->owner) continue; _pair_attempt(p_elem, E->key()); } if (!p_static) { for (Map::Element *E = pb->static_object_set.front(); E; E = E->next()) { if (E->key()->owner == p_elem->owner) continue; _pair_attempt(p_elem, E->key()); } } } } } //pair separatedly with large elements for (Map::Element *E = large_elements.front(); E; E = E->next()) { if (E->key() == p_elem) continue; // do not pair against itself if (E->key()->owner == p_elem->owner) continue; if (E->key()->_static && p_static) continue; _pair_attempt(E->key(), p_elem); } } void BroadPhase2DHashGrid::_exit_grid(Element *p_elem, const Rect2 &p_rect, bool p_static) { Vector2 sz = (p_rect.size / cell_size * LARGE_ELEMENT_FI); if (sz.width * sz.height > large_object_min_surface) { //unpair all elements, instead of checking all, just check what is already paired, so we at least save from checking static vs static Map::Element *E = p_elem->paired.front(); while (E) { Map::Element *next = E->next(); _unpair_attempt(p_elem, E->key()); E = next; } if (large_elements[p_elem].dec() == 0) { large_elements.erase(p_elem); } return; } Point2i from = (p_rect.position / cell_size).floor(); Point2i to = ((p_rect.position + p_rect.size) / cell_size).floor(); for (int i = from.x; i <= to.x; i++) { for (int j = from.y; j <= to.y; j++) { PosKey pk; pk.x = i; pk.y = j; uint32_t idx = pk.hash() % hash_table_size; PosBin *pb = hash_table[idx]; while (pb) { if (pb->key == pk) { break; } pb = pb->next; } ERR_CONTINUE(!pb); //should exist!! bool exited = false; if (p_static) { if (pb->static_object_set[p_elem].dec() == 0) { pb->static_object_set.erase(p_elem); exited = true; } } else { if (pb->object_set[p_elem].dec() == 0) { pb->object_set.erase(p_elem); exited = true; } } if (exited) { for (Map::Element *E = pb->object_set.front(); E; E = E->next()) { if (E->key()->owner == p_elem->owner) continue; _unpair_attempt(p_elem, E->key()); } if (!p_static) { for (Map::Element *E = pb->static_object_set.front(); E; E = E->next()) { if (E->key()->owner == p_elem->owner) continue; _unpair_attempt(p_elem, E->key()); } } } if (pb->object_set.empty() && pb->static_object_set.empty()) { if (hash_table[idx] == pb) { hash_table[idx] = pb->next; } else { PosBin *px = hash_table[idx]; while (px) { if (px->next == pb) { px->next = pb->next; break; } px = px->next; } ERR_CONTINUE(!px); } memdelete(pb); } } } for (Map::Element *E = large_elements.front(); E; E = E->next()) { if (E->key() == p_elem) continue; // do not pair against itself if (E->key()->owner == p_elem->owner) continue; if (E->key()->_static && p_static) continue; //unpair from large elements _unpair_attempt(p_elem, E->key()); } } BroadPhase2DHashGrid::ID BroadPhase2DHashGrid::create(CollisionObject2DSW *p_object, int p_subindex) { current++; Element e; e.owner = p_object; e._static = false; e.subindex = p_subindex; e.self = current; e.pass = 0; element_map[current] = e; return current; } void BroadPhase2DHashGrid::move(ID p_id, const Rect2 &p_aabb) { Map::Element *E = element_map.find(p_id); ERR_FAIL_COND(!E); Element &e = E->get(); if (p_aabb != e.aabb) { if (p_aabb != Rect2()) { _enter_grid(&e, p_aabb, e._static); } if (e.aabb != Rect2()) { _exit_grid(&e, e.aabb, e._static); } e.aabb = p_aabb; } _check_motion(&e); } void BroadPhase2DHashGrid::set_static(ID p_id, bool p_static) { Map::Element *E = element_map.find(p_id); ERR_FAIL_COND(!E); Element &e = E->get(); if (e._static == p_static) return; if (e.aabb != Rect2()) _exit_grid(&e, e.aabb, e._static); e._static = p_static; if (e.aabb != Rect2()) { _enter_grid(&e, e.aabb, e._static); _check_motion(&e); } } void BroadPhase2DHashGrid::remove(ID p_id) { Map::Element *E = element_map.find(p_id); ERR_FAIL_COND(!E); Element &e = E->get(); if (e.aabb != Rect2()) _exit_grid(&e, e.aabb, e._static); element_map.erase(p_id); } CollisionObject2DSW *BroadPhase2DHashGrid::get_object(ID p_id) const { const Map::Element *E = element_map.find(p_id); ERR_FAIL_COND_V(!E, NULL); return E->get().owner; } bool BroadPhase2DHashGrid::is_static(ID p_id) const { const Map::Element *E = element_map.find(p_id); ERR_FAIL_COND_V(!E, false); return E->get()._static; } int BroadPhase2DHashGrid::get_subindex(ID p_id) const { const Map::Element *E = element_map.find(p_id); ERR_FAIL_COND_V(!E, -1); return E->get().subindex; } template void BroadPhase2DHashGrid::_cull(const Point2i p_cell, const Rect2 &p_aabb, const Point2 &p_from, const Point2 &p_to, CollisionObject2DSW **p_results, int p_max_results, int *p_result_indices, int &index) { PosKey pk; pk.x = p_cell.x; pk.y = p_cell.y; uint32_t idx = pk.hash() % hash_table_size; PosBin *pb = hash_table[idx]; while (pb) { if (pb->key == pk) { break; } pb = pb->next; } if (!pb) return; for (Map::Element *E = pb->object_set.front(); E; E = E->next()) { if (index >= p_max_results) break; if (E->key()->pass == pass) continue; E->key()->pass = pass; if (use_aabb && !p_aabb.intersects(E->key()->aabb)) continue; if (use_segment && !E->key()->aabb.intersects_segment(p_from, p_to)) continue; p_results[index] = E->key()->owner; p_result_indices[index] = E->key()->subindex; index++; } for (Map::Element *E = pb->static_object_set.front(); E; E = E->next()) { if (index >= p_max_results) break; if (E->key()->pass == pass) continue; if (use_aabb && !p_aabb.intersects(E->key()->aabb)) { continue; } if (use_segment && !E->key()->aabb.intersects_segment(p_from, p_to)) continue; E->key()->pass = pass; p_results[index] = E->key()->owner; p_result_indices[index] = E->key()->subindex; index++; } } int BroadPhase2DHashGrid::cull_segment(const Vector2 &p_from, const Vector2 &p_to, CollisionObject2DSW **p_results, int p_max_results, int *p_result_indices) { pass++; Vector2 dir = (p_to - p_from); if (dir == Vector2()) return 0; //avoid divisions by zero dir.normalize(); if (dir.x == 0.0) dir.x = 0.000001; if (dir.y == 0.0) dir.y = 0.000001; Vector2 delta = dir.abs(); delta.x = cell_size / delta.x; delta.y = cell_size / delta.y; Point2i pos = (p_from / cell_size).floor(); Point2i end = (p_to / cell_size).floor(); Point2i step = Vector2(SGN(dir.x), SGN(dir.y)); Vector2 max; if (dir.x < 0) max.x = (Math::floor((double)pos.x) * cell_size - p_from.x) / dir.x; else max.x = (Math::floor((double)pos.x + 1) * cell_size - p_from.x) / dir.x; if (dir.y < 0) max.y = (Math::floor((double)pos.y) * cell_size - p_from.y) / dir.y; else max.y = (Math::floor((double)pos.y + 1) * cell_size - p_from.y) / dir.y; int cullcount = 0; _cull(pos, Rect2(), p_from, p_to, p_results, p_max_results, p_result_indices, cullcount); bool reached_x = false; bool reached_y = false; while (true) { if (max.x < max.y) { max.x += delta.x; pos.x += step.x; } else { max.y += delta.y; pos.y += step.y; } if (step.x > 0) { if (pos.x >= end.x) reached_x = true; } else if (pos.x <= end.x) { reached_x = true; } if (step.y > 0) { if (pos.y >= end.y) reached_y = true; } else if (pos.y <= end.y) { reached_y = true; } _cull(pos, Rect2(), p_from, p_to, p_results, p_max_results, p_result_indices, cullcount); if (reached_x && reached_y) break; } for (Map::Element *E = large_elements.front(); E; E = E->next()) { if (cullcount >= p_max_results) break; if (E->key()->pass == pass) continue; E->key()->pass = pass; /* if (use_aabb && !p_aabb.intersects(E->key()->aabb)) continue; */ if (!E->key()->aabb.intersects_segment(p_from, p_to)) continue; p_results[cullcount] = E->key()->owner; p_result_indices[cullcount] = E->key()->subindex; cullcount++; } return cullcount; } int BroadPhase2DHashGrid::cull_aabb(const Rect2 &p_aabb, CollisionObject2DSW **p_results, int p_max_results, int *p_result_indices) { pass++; Point2i from = (p_aabb.position / cell_size).floor(); Point2i to = ((p_aabb.position + p_aabb.size) / cell_size).floor(); int cullcount = 0; for (int i = from.x; i <= to.x; i++) { for (int j = from.y; j <= to.y; j++) { _cull(Point2i(i, j), p_aabb, Point2(), Point2(), p_results, p_max_results, p_result_indices, cullcount); } } for (Map::Element *E = large_elements.front(); E; E = E->next()) { if (cullcount >= p_max_results) break; if (E->key()->pass == pass) continue; E->key()->pass = pass; if (!p_aabb.intersects(E->key()->aabb)) continue; /* if (!E->key()->aabb.intersects_segment(p_from,p_to)) continue; */ p_results[cullcount] = E->key()->owner; p_result_indices[cullcount] = E->key()->subindex; cullcount++; } return cullcount; } void BroadPhase2DHashGrid::set_pair_callback(PairCallback p_pair_callback, void *p_userdata) { pair_callback = p_pair_callback; pair_userdata = p_userdata; } void BroadPhase2DHashGrid::set_unpair_callback(UnpairCallback p_unpair_callback, void *p_userdata) { unpair_callback = p_unpair_callback; unpair_userdata = p_userdata; } void BroadPhase2DHashGrid::update() { } BroadPhase2DSW *BroadPhase2DHashGrid::_create() { return memnew(BroadPhase2DHashGrid); } BroadPhase2DHashGrid::BroadPhase2DHashGrid() { hash_table_size = GLOBAL_DEF("physics/2d/bp_hash_table_size", 4096); ProjectSettings::get_singleton()->set_custom_property_info("physics/2d/bp_hash_table_size", PropertyInfo(Variant::INT, "physics/2d/bp_hash_table_size", PROPERTY_HINT_RANGE, "0,8192,1,or_greater")); hash_table_size = Math::larger_prime(hash_table_size); hash_table = memnew_arr(PosBin *, hash_table_size); cell_size = GLOBAL_DEF("physics/2d/cell_size", 128); ProjectSettings::get_singleton()->set_custom_property_info("physics/2d/cell_size", PropertyInfo(Variant::INT, "physics/2d/cell_size", PROPERTY_HINT_RANGE, "0,512,1,or_greater")); large_object_min_surface = GLOBAL_DEF("physics/2d/large_object_surface_threshold_in_cells", 512); ProjectSettings::get_singleton()->set_custom_property_info("physics/2d/large_object_surface_threshold_in_cells", PropertyInfo(Variant::INT, "physics/2d/large_object_surface_threshold_in_cells", PROPERTY_HINT_RANGE, "0,1024,1,or_greater")); for (uint32_t i = 0; i < hash_table_size; i++) hash_table[i] = NULL; pass = 1; current = 0; } BroadPhase2DHashGrid::~BroadPhase2DHashGrid() { for (uint32_t i = 0; i < hash_table_size; i++) { while (hash_table[i]) { PosBin *pb = hash_table[i]; hash_table[i] = pb->next; memdelete(pb); } } memdelete_arr(hash_table); } /* 3D version of voxel traversal: public IEnumerable GetCellsOnRay(Ray ray, int maxDepth) { // Implementation is based on: // "A Fast Voxel Traversal Algorithm for Ray Tracing" // John Amanatides, Andrew Woo // http://www.cse.yorku.ca/~amana/research/grid.pdf // https://web.archive.org/web/20100616193049/http://www.devmaster.net/articles/raytracing_series/A%20faster%20voxel%20traversal%20algorithm%20for%20ray%20tracing.pdf // NOTES: // * This code assumes that the ray's position and direction are in 'cell coordinates', which means // that one unit equals one cell in all directions. // * When the ray doesn't start within the voxel grid, calculate the first position at which the // ray could enter the grid. If it never enters the grid, there is nothing more to do here. // * Also, it is important to test when the ray exits the voxel grid when the grid isn't infinite. // * The Point3D structure is a simple structure having three integer fields (X, Y and Z). // The cell in which the ray starts. Point3D start = GetCellAt(ray.Position); // Rounds the position's X, Y and Z down to the nearest integer values. int x = start.X; int y = start.Y; int z = start.Z; // Determine which way we go. int stepX = Math.Sign(ray.Direction.X); int stepY = Math.Sign(ray.Direction.Y); int stepZ = Math.Sign(ray.Direction.Z); // Calculate cell boundaries. When the step (i.e. direction sign) is positive, // the next boundary is AFTER our current position, meaning that we have to add 1. // Otherwise, it is BEFORE our current position, in which case we add nothing. Point3D cellBoundary = new Point3D( x + (stepX > 0 ? 1 : 0), y + (stepY > 0 ? 1 : 0), z + (stepZ > 0 ? 1 : 0)); // NOTE: For the following calculations, the result will be Single.PositiveInfinity // when ray.Direction.X, Y or Z equals zero, which is OK. However, when the left-hand // value of the division also equals zero, the result is Single.NaN, which is not OK. // Determine how far we can travel along the ray before we hit a voxel boundary. Vector3 tMax = new Vector3( (cellBoundary.X - ray.Position.X) / ray.Direction.X, // Boundary is a plane on the YZ axis. (cellBoundary.Y - ray.Position.Y) / ray.Direction.Y, // Boundary is a plane on the XZ axis. (cellBoundary.Z - ray.Position.Z) / ray.Direction.Z); // Boundary is a plane on the XY axis. if (Single.IsNaN(tMax.X)) tMax.X = Single.PositiveInfinity; if (Single.IsNaN(tMax.Y)) tMax.Y = Single.PositiveInfinity; if (Single.IsNaN(tMax.Z)) tMax.Z = Single.PositiveInfinity; // Determine how far we must travel along the ray before we have crossed a gridcell. Vector3 tDelta = new Vector3( stepX / ray.Direction.X, // Crossing the width of a cell. stepY / ray.Direction.Y, // Crossing the height of a cell. stepZ / ray.Direction.Z); // Crossing the depth of a cell. if (Single.IsNaN(tDelta.X)) tDelta.X = Single.PositiveInfinity; if (Single.IsNaN(tDelta.Y)) tDelta.Y = Single.PositiveInfinity; if (Single.IsNaN(tDelta.Z)) tDelta.Z = Single.PositiveInfinity; // For each step, determine which distance to the next voxel boundary is lowest (i.e. // which voxel boundary is nearest) and walk that way. for (int i = 0; i < maxDepth; i++) { // Return it. yield return new Point3D(x, y, z); // Do the next step. if (tMax.X < tMax.Y && tMax.X < tMax.Z) { // tMax.X is the lowest, an YZ cell boundary plane is nearest. x += stepX; tMax.X += tDelta.X; } else if (tMax.Y < tMax.Z) { // tMax.Y is the lowest, an XZ cell boundary plane is nearest. y += stepY; tMax.Y += tDelta.Y; } else { // tMax.Z is the lowest, an XY cell boundary plane is nearest. z += stepZ; tMax.Z += tDelta.Z; } } */