/*************************************************************************/ /* ray_cast.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "ray_cast.h" #include "collision_object.h" #include "core/engine.h" #include "mesh_instance.h" #include "servers/physics_server.h" void RayCast::set_cast_to(const Vector3 &p_point) { cast_to = p_point; update_gizmo(); if (Engine::get_singleton()->is_editor_hint()) { if (is_inside_tree()) { _update_debug_shape_vertices(); } } else if (debug_shape) { _update_debug_shape(); } } Vector3 RayCast::get_cast_to() const { return cast_to; } void RayCast::set_collision_mask(uint32_t p_mask) { collision_mask = p_mask; } uint32_t RayCast::get_collision_mask() const { return collision_mask; } void RayCast::set_collision_mask_bit(int p_bit, bool p_value) { ERR_FAIL_INDEX_MSG(p_bit, 32, "Collision mask bit must be between 0 and 31 inclusive."); uint32_t mask = get_collision_mask(); if (p_value) { mask |= 1 << p_bit; } else { mask &= ~(1 << p_bit); } set_collision_mask(mask); } bool RayCast::get_collision_mask_bit(int p_bit) const { ERR_FAIL_INDEX_V_MSG(p_bit, 32, false, "Collision mask bit must be between 0 and 31 inclusive."); return get_collision_mask() & (1 << p_bit); } bool RayCast::is_colliding() const { return collided; } Object *RayCast::get_collider() const { if (against == 0) { return nullptr; } return ObjectDB::get_instance(against); } int RayCast::get_collider_shape() const { return against_shape; } Vector3 RayCast::get_collision_point() const { return collision_point; } Vector3 RayCast::get_collision_normal() const { return collision_normal; } void RayCast::set_enabled(bool p_enabled) { enabled = p_enabled; update_gizmo(); if (is_inside_tree() && !Engine::get_singleton()->is_editor_hint()) { set_physics_process_internal(p_enabled); } if (!p_enabled) { collided = false; } if (is_inside_tree() && get_tree()->is_debugging_collisions_hint()) { if (p_enabled) { _update_debug_shape(); } else { _clear_debug_shape(); } } } bool RayCast::is_enabled() const { return enabled; } void RayCast::set_exclude_parent_body(bool p_exclude_parent_body) { if (exclude_parent_body == p_exclude_parent_body) { return; } exclude_parent_body = p_exclude_parent_body; if (!is_inside_tree()) { return; } if (Object::cast_to<CollisionObject>(get_parent())) { if (exclude_parent_body) { exclude.insert(Object::cast_to<CollisionObject>(get_parent())->get_rid()); } else { exclude.erase(Object::cast_to<CollisionObject>(get_parent())->get_rid()); } } } bool RayCast::get_exclude_parent_body() const { return exclude_parent_body; } void RayCast::_notification(int p_what) { switch (p_what) { case NOTIFICATION_ENTER_TREE: { if (Engine::get_singleton()->is_editor_hint()) { _update_debug_shape_vertices(); } if (enabled && !Engine::get_singleton()->is_editor_hint()) { set_physics_process_internal(true); } else { set_physics_process_internal(false); } if (get_tree()->is_debugging_collisions_hint()) { _update_debug_shape(); } if (Object::cast_to<CollisionObject>(get_parent())) { if (exclude_parent_body) { exclude.insert(Object::cast_to<CollisionObject>(get_parent())->get_rid()); } else { exclude.erase(Object::cast_to<CollisionObject>(get_parent())->get_rid()); } } } break; case NOTIFICATION_EXIT_TREE: { if (enabled) { set_physics_process_internal(false); } if (debug_shape) { _clear_debug_shape(); } } break; case NOTIFICATION_INTERNAL_PHYSICS_PROCESS: { if (!enabled) { break; } bool prev_collision_state = collided; _update_raycast_state(); if (prev_collision_state != collided && get_tree()->is_debugging_collisions_hint()) { _update_debug_shape_material(true); } } break; } } void RayCast::_update_raycast_state() { Ref<World> w3d = get_world(); ERR_FAIL_COND(w3d.is_null()); PhysicsDirectSpaceState *dss = PhysicsServer::get_singleton()->space_get_direct_state(w3d->get_space()); ERR_FAIL_COND(!dss); Transform gt = get_global_transform(); Vector3 to = cast_to; if (to == Vector3()) { to = Vector3(0, 0.01, 0); } PhysicsDirectSpaceState::RayResult rr; if (dss->intersect_ray(gt.get_origin(), gt.xform(to), rr, exclude, collision_mask, collide_with_bodies, collide_with_areas)) { collided = true; against = rr.collider_id; collision_point = rr.position; collision_normal = rr.normal; against_shape = rr.shape; } else { collided = false; against = 0; against_shape = 0; } } void RayCast::force_raycast_update() { _update_raycast_state(); } void RayCast::add_exception_rid(const RID &p_rid) { exclude.insert(p_rid); } void RayCast::add_exception(const Object *p_object) { ERR_FAIL_NULL(p_object); const CollisionObject *co = Object::cast_to<CollisionObject>(p_object); if (!co) { return; } add_exception_rid(co->get_rid()); } void RayCast::remove_exception_rid(const RID &p_rid) { exclude.erase(p_rid); } void RayCast::remove_exception(const Object *p_object) { ERR_FAIL_NULL(p_object); const CollisionObject *co = Object::cast_to<CollisionObject>(p_object); if (!co) { return; } remove_exception_rid(co->get_rid()); } void RayCast::clear_exceptions() { exclude.clear(); if (exclude_parent_body && is_inside_tree()) { CollisionObject *parent = Object::cast_to<CollisionObject>(get_parent()); if (parent) { exclude.insert(parent->get_rid()); } } } void RayCast::set_collide_with_areas(bool p_clip) { collide_with_areas = p_clip; } bool RayCast::is_collide_with_areas_enabled() const { return collide_with_areas; } void RayCast::set_collide_with_bodies(bool p_clip) { collide_with_bodies = p_clip; } bool RayCast::is_collide_with_bodies_enabled() const { return collide_with_bodies; } void RayCast::_bind_methods() { ClassDB::bind_method(D_METHOD("set_enabled", "enabled"), &RayCast::set_enabled); ClassDB::bind_method(D_METHOD("is_enabled"), &RayCast::is_enabled); ClassDB::bind_method(D_METHOD("set_cast_to", "local_point"), &RayCast::set_cast_to); ClassDB::bind_method(D_METHOD("get_cast_to"), &RayCast::get_cast_to); ClassDB::bind_method(D_METHOD("is_colliding"), &RayCast::is_colliding); ClassDB::bind_method(D_METHOD("force_raycast_update"), &RayCast::force_raycast_update); ClassDB::bind_method(D_METHOD("get_collider"), &RayCast::get_collider); ClassDB::bind_method(D_METHOD("get_collider_shape"), &RayCast::get_collider_shape); ClassDB::bind_method(D_METHOD("get_collision_point"), &RayCast::get_collision_point); ClassDB::bind_method(D_METHOD("get_collision_normal"), &RayCast::get_collision_normal); ClassDB::bind_method(D_METHOD("add_exception_rid", "rid"), &RayCast::add_exception_rid); ClassDB::bind_method(D_METHOD("add_exception", "node"), &RayCast::add_exception); ClassDB::bind_method(D_METHOD("remove_exception_rid", "rid"), &RayCast::remove_exception_rid); ClassDB::bind_method(D_METHOD("remove_exception", "node"), &RayCast::remove_exception); ClassDB::bind_method(D_METHOD("clear_exceptions"), &RayCast::clear_exceptions); ClassDB::bind_method(D_METHOD("set_collision_mask", "mask"), &RayCast::set_collision_mask); ClassDB::bind_method(D_METHOD("get_collision_mask"), &RayCast::get_collision_mask); ClassDB::bind_method(D_METHOD("set_collision_mask_bit", "bit", "value"), &RayCast::set_collision_mask_bit); ClassDB::bind_method(D_METHOD("get_collision_mask_bit", "bit"), &RayCast::get_collision_mask_bit); ClassDB::bind_method(D_METHOD("set_exclude_parent_body", "mask"), &RayCast::set_exclude_parent_body); ClassDB::bind_method(D_METHOD("get_exclude_parent_body"), &RayCast::get_exclude_parent_body); ClassDB::bind_method(D_METHOD("set_collide_with_areas", "enable"), &RayCast::set_collide_with_areas); ClassDB::bind_method(D_METHOD("is_collide_with_areas_enabled"), &RayCast::is_collide_with_areas_enabled); ClassDB::bind_method(D_METHOD("set_collide_with_bodies", "enable"), &RayCast::set_collide_with_bodies); ClassDB::bind_method(D_METHOD("is_collide_with_bodies_enabled"), &RayCast::is_collide_with_bodies_enabled); ClassDB::bind_method(D_METHOD("set_debug_shape_custom_color", "debug_shape_custom_color"), &RayCast::set_debug_shape_custom_color); ClassDB::bind_method(D_METHOD("get_debug_shape_custom_color"), &RayCast::get_debug_shape_custom_color); ClassDB::bind_method(D_METHOD("set_debug_shape_thickness", "debug_shape_thickness"), &RayCast::set_debug_shape_thickness); ClassDB::bind_method(D_METHOD("get_debug_shape_thickness"), &RayCast::get_debug_shape_thickness); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "enabled"), "set_enabled", "is_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "exclude_parent"), "set_exclude_parent_body", "get_exclude_parent_body"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "cast_to"), "set_cast_to", "get_cast_to"); ADD_PROPERTY(PropertyInfo(Variant::INT, "collision_mask", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collision_mask", "get_collision_mask"); ADD_GROUP("Collide With", "collide_with"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collide_with_areas", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collide_with_areas", "is_collide_with_areas_enabled"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "collide_with_bodies", PROPERTY_HINT_LAYERS_3D_PHYSICS), "set_collide_with_bodies", "is_collide_with_bodies_enabled"); ADD_GROUP("Debug Shape", "debug_shape"); ADD_PROPERTY(PropertyInfo(Variant::COLOR, "debug_shape_custom_color"), "set_debug_shape_custom_color", "get_debug_shape_custom_color"); ADD_PROPERTY(PropertyInfo(Variant::INT, "debug_shape_thickness", PROPERTY_HINT_RANGE, "1,5"), "set_debug_shape_thickness", "get_debug_shape_thickness"); } int RayCast::get_debug_shape_thickness() const { return debug_shape_thickness; } void RayCast::_update_debug_shape_vertices() { debug_shape_vertices.clear(); debug_line_vertices.clear(); if (cast_to == Vector3()) { return; } debug_line_vertices.push_back(Vector3()); debug_line_vertices.push_back(cast_to); if (debug_shape_thickness > 1) { float scale_factor = 100.0; Vector3 dir = Vector3(cast_to).normalized(); // Draw truncated pyramid Vector3 normal = (fabs(dir.x) + fabs(dir.y) > CMP_EPSILON) ? Vector3(-dir.y, dir.x, 0).normalized() : Vector3(0, -dir.z, dir.y).normalized(); normal *= debug_shape_thickness / scale_factor; int vertices_strip_order[14] = { 4, 5, 0, 1, 2, 5, 6, 4, 7, 0, 3, 2, 7, 6 }; for (int v = 0; v < 14; v++) { Vector3 vertex = vertices_strip_order[v] < 4 ? normal : normal / 3.0 + cast_to; debug_shape_vertices.push_back(vertex.rotated(dir, Math_PI * (0.5 * (vertices_strip_order[v] % 4) + 0.25))); } } } void RayCast::set_debug_shape_thickness(const int p_debug_shape_thickness) { debug_shape_thickness = p_debug_shape_thickness; update_gizmo(); if (Engine::get_singleton()->is_editor_hint()) { if (is_inside_tree()) { _update_debug_shape_vertices(); } } else if (debug_shape) { _update_debug_shape(); } } const Vector<Vector3> &RayCast::get_debug_shape_vertices() const { return debug_shape_vertices; } const Vector<Vector3> &RayCast::get_debug_line_vertices() const { return debug_line_vertices; } void RayCast::set_debug_shape_custom_color(const Color &p_color) { debug_shape_custom_color = p_color; if (debug_material.is_valid()) { _update_debug_shape_material(); } } Ref<SpatialMaterial> RayCast::get_debug_material() { _update_debug_shape_material(); return debug_material; } const Color &RayCast::get_debug_shape_custom_color() const { return debug_shape_custom_color; } void RayCast::_create_debug_shape() { _update_debug_shape_material(); Ref<ArrayMesh> mesh = memnew(ArrayMesh); MeshInstance *mi = memnew(MeshInstance); mi->set_mesh(mesh); add_child(mi); debug_shape = mi; } void RayCast::_update_debug_shape_material(bool p_check_collision) { if (!debug_material.is_valid()) { Ref<SpatialMaterial> material = memnew(SpatialMaterial); debug_material = material; material->set_flag(SpatialMaterial::FLAG_UNSHADED, true); material->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); // Use double-sided rendering so that the RayCast can be seen if the camera is inside. material->set_cull_mode(SpatialMaterial::CULL_DISABLED); } Color color = debug_shape_custom_color; if (color == Color(0.0, 0.0, 0.0)) { // Use the default debug shape color defined in the Project Settings. color = get_tree()->get_debug_collisions_color(); } if (p_check_collision && collided) { if ((color.get_h() < 0.055 || color.get_h() > 0.945) && color.get_s() > 0.5 && color.get_v() > 0.5) { // If base color is already quite reddish, highlight collision with green color color = Color(0.0, 1.0, 0.0, color.a); } else { // Else, highlight collision with red color color = Color(1.0, 0, 0, color.a); } } Ref<SpatialMaterial> material = static_cast<Ref<SpatialMaterial>>(debug_material); material->set_albedo(color); } void RayCast::_update_debug_shape() { if (!enabled) { return; } if (!debug_shape) { _create_debug_shape(); } MeshInstance *mi = static_cast<MeshInstance *>(debug_shape); Ref<ArrayMesh> mesh = mi->get_mesh(); if (!mesh.is_valid()) { return; } _update_debug_shape_vertices(); mesh->clear_surfaces(); Array a; a.resize(Mesh::ARRAY_MAX); uint32_t flags = 0; int surface_count = 0; if (!debug_line_vertices.empty()) { a[Mesh::ARRAY_VERTEX] = debug_line_vertices; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_LINES, a, Array(), flags); mesh->surface_set_material(surface_count, debug_material); ++surface_count; } if (!debug_shape_vertices.empty()) { a[Mesh::ARRAY_VERTEX] = debug_shape_vertices; mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLE_STRIP, a, Array(), flags); mesh->surface_set_material(surface_count, debug_material); ++surface_count; } } void RayCast::_clear_debug_shape() { if (!debug_shape) { return; } MeshInstance *mi = static_cast<MeshInstance *>(debug_shape); if (mi->is_inside_tree()) { mi->queue_delete(); } else { memdelete(mi); } debug_shape = nullptr; } RayCast::RayCast() { enabled = false; against = 0; collided = false; against_shape = 0; collision_mask = 1; cast_to = Vector3(0, -1, 0); debug_shape = nullptr; exclude_parent_body = true; collide_with_areas = false; collide_with_bodies = true; }