/*************************************************************************/
/*  audio_stream_player_3d.cpp                                           */
/*************************************************************************/
/*                       This file is part of:                           */
/*                           GODOT ENGINE                                */
/*                      https://godotengine.org                          */
/*************************************************************************/
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
/*                                                                       */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the       */
/* "Software"), to deal in the Software without restriction, including   */
/* without limitation the rights to use, copy, modify, merge, publish,   */
/* distribute, sublicense, and/or sell copies of the Software, and to    */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions:                                             */
/*                                                                       */
/* The above copyright notice and this permission notice shall be        */
/* included in all copies or substantial portions of the Software.       */
/*                                                                       */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
/*************************************************************************/

#include "audio_stream_player_3d.h"
#include "core/engine.h"
#include "scene/3d/area.h"
#include "scene/3d/camera.h"
#include "scene/3d/listener.h"
#include "scene/main/viewport.h"

// Based on "A Novel Multichannel Panning Method for Standard and Arbitrary Loudspeaker Configurations" by Ramy Sadek and Chris Kyriakakis (2004)
// Speaker-Placement Correction Amplitude Panning (SPCAP)
class Spcap {
private:
	struct Speaker {
		Vector3 direction;
		real_t effective_number_of_speakers; // precalculated
		mutable real_t squared_gain; // temporary
	};

	PoolVector<Speaker> speakers;

public:
	Spcap(unsigned int speaker_count, const Vector3 *speaker_directions) {
		this->speakers.resize(speaker_count);
		PoolVector<Speaker>::Write w = this->speakers.write();
		for (unsigned int speaker_num = 0; speaker_num < speaker_count; speaker_num++) {
			w[speaker_num].direction = speaker_directions[speaker_num];
			w[speaker_num].squared_gain = 0.0;
			w[speaker_num].effective_number_of_speakers = 0.0;
			for (unsigned int other_speaker_num = 0; other_speaker_num < speaker_count; other_speaker_num++) {
				w[speaker_num].effective_number_of_speakers += 0.5 * (1.0 + w[speaker_num].direction.dot(w[other_speaker_num].direction));
			}
		}
	}

	unsigned int get_speaker_count() const {
		return (unsigned int)this->speakers.size();
	}

	Vector3 get_speaker_direction(unsigned int index) const {
		return this->speakers.read()[index].direction;
	}

	void calculate(const Vector3 &source_direction, real_t tightness, unsigned int volume_count, real_t *volumes) const {
		PoolVector<Speaker>::Read r = this->speakers.read();
		real_t sum_squared_gains = 0.0;
		for (unsigned int speaker_num = 0; speaker_num < (unsigned int)this->speakers.size(); speaker_num++) {
			real_t initial_gain = 0.5 * powf(1.0 + r[speaker_num].direction.dot(source_direction), tightness) / r[speaker_num].effective_number_of_speakers;
			r[speaker_num].squared_gain = initial_gain * initial_gain;
			sum_squared_gains += r[speaker_num].squared_gain;
		}

		for (unsigned int speaker_num = 0; speaker_num < MIN(volume_count, (unsigned int)this->speakers.size()); speaker_num++) {
			volumes[speaker_num] = sqrtf(r[speaker_num].squared_gain / sum_squared_gains);
		}
	}
};

//TODO: hardcoded main speaker directions for 2, 3.1, 5.1 and 7.1 setups - these are simplified and could also be made configurable
static const Vector3 speaker_directions[7] = {
	Vector3(-1.0, 0.0, -1.0).normalized(), // front-left
	Vector3(1.0, 0.0, -1.0).normalized(), // front-right
	Vector3(0.0, 0.0, -1.0).normalized(), // center
	Vector3(-1.0, 0.0, 1.0).normalized(), // rear-left
	Vector3(1.0, 0.0, 1.0).normalized(), // rear-right
	Vector3(-1.0, 0.0, 0.0).normalized(), // side-left
	Vector3(1.0, 0.0, 0.0).normalized(), // side-right
};

void AudioStreamPlayer3D::_calc_output_vol(const Vector3 &source_dir, real_t tightness, AudioStreamPlayer3D::Output &output) {
	unsigned int speaker_count; // only main speakers (no LFE)
	switch (AudioServer::get_singleton()->get_speaker_mode()) {
		default: //fallthrough
		case AudioServer::SPEAKER_MODE_STEREO:
			speaker_count = 2;
			break;
		case AudioServer::SPEAKER_SURROUND_31:
			speaker_count = 3;
			break;
		case AudioServer::SPEAKER_SURROUND_51:
			speaker_count = 5;
			break;
		case AudioServer::SPEAKER_SURROUND_71:
			speaker_count = 7;
			break;
	}

	Spcap spcap(speaker_count, speaker_directions); //TODO: should only be created/recreated once the speaker mode / speaker positions changes
	real_t volumes[7];
	spcap.calculate(source_dir, tightness, speaker_count, volumes);

	switch (AudioServer::get_singleton()->get_speaker_mode()) {
		case AudioServer::SPEAKER_SURROUND_71:
			output.vol[3].l = volumes[5]; // side-left
			output.vol[3].r = volumes[6]; // side-right
			//fallthrough
		case AudioServer::SPEAKER_SURROUND_51:
			output.vol[2].l = volumes[3]; // rear-left
			output.vol[2].r = volumes[4]; // rear-right
			//fallthrough
		case AudioServer::SPEAKER_SURROUND_31:
			output.vol[1].r = 1.0; // LFE - always full power
			output.vol[1].l = volumes[2]; // center
			//fallthrough
		case AudioServer::SPEAKER_MODE_STEREO:
			output.vol[0].r = volumes[1]; // front-right
			output.vol[0].l = volumes[0]; // front-left
	}
}

void AudioStreamPlayer3D::_mix_audio() {
	if (!stream_playback.is_valid() || !active.is_set() ||
			(stream_paused && !stream_paused_fade_out)) {
		return;
	}

	bool started = false;
	if (setseek.get() >= 0.0) {
		stream_playback->start(setseek.get());
		setseek.set(-1.0); //reset seek
		started = true;
	}

	//get data
	AudioFrame *buffer = mix_buffer.ptrw();
	int buffer_size = mix_buffer.size();

	if (stream_paused_fade_out) {
		// Short fadeout ramp
		buffer_size = MIN(buffer_size, 128);
	}

	// Mix if we're not paused or we're fading out
	if ((output_count.get() > 0 || out_of_range_mode == OUT_OF_RANGE_MIX)) {
		float output_pitch_scale = 0.0;
		if (output_count.get()) {
			//used for doppler, not realistic but good enough
			for (int i = 0; i < output_count.get(); i++) {
				output_pitch_scale += outputs[i].pitch_scale;
			}
			output_pitch_scale /= float(output_count.get());
		} else {
			output_pitch_scale = 1.0;
		}

		stream_playback->mix(buffer, pitch_scale * output_pitch_scale, buffer_size);
	}

	//write all outputs
	for (int i = 0; i < output_count.get(); i++) {
		Output current = outputs[i];

		//see if current output exists, to keep volume ramp
		bool found = false;
		for (int j = i; j < prev_output_count; j++) {
			if (prev_outputs[j].viewport == current.viewport) {
				if (j != i) {
					SWAP(prev_outputs[j], prev_outputs[i]);
				}
				found = true;
				break;
			}
		}

		bool interpolate_filter = !started;

		if (!found) {
			//create new if was not used before
			if (prev_output_count < MAX_OUTPUTS) {
				prev_outputs[prev_output_count] = prev_outputs[i]; //may be owned by another viewport
				prev_output_count++;
			}
			prev_outputs[i] = current;
			interpolate_filter = false;
		}

		//mix!

		int buffers = AudioServer::get_singleton()->get_channel_count();

		for (int k = 0; k < buffers; k++) {
			AudioFrame target_volume = stream_paused_fade_out ? AudioFrame(0.f, 0.f) : current.vol[k];
			AudioFrame vol_prev = stream_paused_fade_in ? AudioFrame(0.f, 0.f) : prev_outputs[i].vol[k];
			AudioFrame vol_inc = (target_volume - vol_prev) / float(buffer_size);
			AudioFrame vol = vol_prev;

			if (!AudioServer::get_singleton()->thread_has_channel_mix_buffer(current.bus_index, k)) {
				continue; //may have been deleted, will be updated on process
			}

			AudioFrame *target = AudioServer::get_singleton()->thread_get_channel_mix_buffer(current.bus_index, k);
			current.filter.set_mode(AudioFilterSW::HIGHSHELF);
			current.filter.set_sampling_rate(AudioServer::get_singleton()->get_mix_rate());
			current.filter.set_cutoff(attenuation_filter_cutoff_hz);
			current.filter.set_resonance(1);
			current.filter.set_stages(1);
			current.filter.set_gain(current.filter_gain);

			if (interpolate_filter) {
				current.filter_process[k * 2 + 0] = prev_outputs[i].filter_process[k * 2 + 0];
				current.filter_process[k * 2 + 1] = prev_outputs[i].filter_process[k * 2 + 1];

				current.filter_process[k * 2 + 0].set_filter(&current.filter, false);
				current.filter_process[k * 2 + 1].set_filter(&current.filter, false);

				current.filter_process[k * 2 + 0].update_coeffs(buffer_size);
				current.filter_process[k * 2 + 1].update_coeffs(buffer_size);
				for (int j = 0; j < buffer_size; j++) {
					AudioFrame f = buffer[j] * vol;
					current.filter_process[k * 2 + 0].process_one_interp(f.l);
					current.filter_process[k * 2 + 1].process_one_interp(f.r);

					target[j] += f;
					vol += vol_inc;
				}
			} else {
				current.filter_process[k * 2 + 0].set_filter(&current.filter);
				current.filter_process[k * 2 + 1].set_filter(&current.filter);

				current.filter_process[k * 2 + 0].update_coeffs();
				current.filter_process[k * 2 + 1].update_coeffs();
				for (int j = 0; j < buffer_size; j++) {
					AudioFrame f = buffer[j] * vol;
					current.filter_process[k * 2 + 0].process_one(f.l);
					current.filter_process[k * 2 + 1].process_one(f.r);

					target[j] += f;
					vol += vol_inc;
				}
			}

			if (current.reverb_bus_index >= 0) {
				if (!AudioServer::get_singleton()->thread_has_channel_mix_buffer(current.reverb_bus_index, k)) {
					continue; //may have been deleted, will be updated on process
				}

				AudioFrame *rtarget = AudioServer::get_singleton()->thread_get_channel_mix_buffer(current.reverb_bus_index, k);

				if (current.reverb_bus_index == prev_outputs[i].reverb_bus_index) {
					AudioFrame rvol_inc = (current.reverb_vol[k] - prev_outputs[i].reverb_vol[k]) / float(buffer_size);
					AudioFrame rvol = prev_outputs[i].reverb_vol[k];

					for (int j = 0; j < buffer_size; j++) {
						rtarget[j] += buffer[j] * rvol;
						rvol += rvol_inc;
					}
				} else {
					AudioFrame rvol = current.reverb_vol[k];
					for (int j = 0; j < buffer_size; j++) {
						rtarget[j] += buffer[j] * rvol;
					}
				}
			}
		}

		prev_outputs[i] = current;
	}

	prev_output_count = output_count.get();

	//stream is no longer active, disable this.
	if (!stream_playback->is_playing()) {
		active.clear();
	}

	output_ready.clear();
	stream_paused_fade_in = false;
	stream_paused_fade_out = false;
}

float AudioStreamPlayer3D::_get_attenuation_db(float p_distance) const {
	float att = 0;
	switch (attenuation_model) {
		case ATTENUATION_INVERSE_DISTANCE: {
			att = Math::linear2db(1.0 / ((p_distance / unit_size) + CMP_EPSILON));
		} break;
		case ATTENUATION_INVERSE_SQUARE_DISTANCE: {
			float d = (p_distance / unit_size);
			d *= d;
			att = Math::linear2db(1.0 / (d + CMP_EPSILON));
		} break;
		case ATTENUATION_LOGARITHMIC: {
			att = -20 * Math::log(p_distance / unit_size + CMP_EPSILON);
		} break;
		case ATTENUATION_DISABLED:
			break;
		default: {
			ERR_PRINT("Unknown attenuation type");
			break;
		}
	}

	att += unit_db;
	if (att > max_db) {
		att = max_db;
	}

	return att;
}

void _update_sound() {
}

void AudioStreamPlayer3D::_notification(int p_what) {
	if (p_what == NOTIFICATION_ENTER_TREE) {
		velocity_tracker->reset(get_global_transform().origin);
		AudioServer::get_singleton()->add_callback(_mix_audios, this);
		if (autoplay && !Engine::get_singleton()->is_editor_hint()) {
			play();
		}
	}

	if (p_what == NOTIFICATION_EXIT_TREE) {
		AudioServer::get_singleton()->remove_callback(_mix_audios, this);
	}

	if (p_what == NOTIFICATION_PAUSED) {
		if (!can_process()) {
			// Node can't process so we start fading out to silence
			set_stream_paused(true);
		}
	}

	if (p_what == NOTIFICATION_UNPAUSED) {
		set_stream_paused(false);
	}

	if (p_what == NOTIFICATION_TRANSFORM_CHANGED) {
		if (doppler_tracking != DOPPLER_TRACKING_DISABLED) {
			velocity_tracker->update_position(get_global_transform().origin);
		}
	}

	if (p_what == NOTIFICATION_INTERNAL_PHYSICS_PROCESS) {
		//update anything related to position first, if possible of course

		if (!output_ready.is_set()) {
			Vector3 linear_velocity;

			//compute linear velocity for doppler
			if (doppler_tracking != DOPPLER_TRACKING_DISABLED) {
				linear_velocity = velocity_tracker->get_tracked_linear_velocity();
			}

			Ref<World> world = get_world();
			ERR_FAIL_COND(world.is_null());

			int new_output_count = 0;

			Vector3 global_pos = get_global_transform().origin;

			int bus_index = AudioServer::get_singleton()->thread_find_bus_index(bus);

			//check if any area is diverting sound into a bus

			PhysicsDirectSpaceState *space_state = PhysicsServer::get_singleton()->space_get_direct_state(world->get_space());

			PhysicsDirectSpaceState::ShapeResult sr[MAX_INTERSECT_AREAS];

			int areas = space_state->intersect_point(global_pos, sr, MAX_INTERSECT_AREAS, Set<RID>(), area_mask, false, true);
			Area *area = nullptr;

			for (int i = 0; i < areas; i++) {
				if (!sr[i].collider) {
					continue;
				}

				Area *tarea = Object::cast_to<Area>(sr[i].collider);
				if (!tarea) {
					continue;
				}

				if (!tarea->is_overriding_audio_bus() && !tarea->is_using_reverb_bus()) {
					continue;
				}

				area = tarea;
				break;
			}

			List<Camera *> cameras;
			world->get_camera_list(&cameras);

			for (List<Camera *>::Element *E = cameras.front(); E; E = E->next()) {
				Camera *camera = E->get();
				Viewport *vp = camera->get_viewport();
				if (!vp->is_audio_listener()) {
					continue;
				}

				bool listener_is_camera = true;
				Spatial *listener_node = camera;

				Listener *listener = vp->get_listener();
				if (listener) {
					listener_node = listener;
					listener_is_camera = false;
				}

				Vector3 local_pos = listener_node->get_global_transform().orthonormalized().affine_inverse().xform(global_pos);

				float dist = local_pos.length();

				Vector3 area_sound_pos;
				Vector3 listener_area_pos;

				if (area && area->is_using_reverb_bus() && area->get_reverb_uniformity() > 0) {
					area_sound_pos = space_state->get_closest_point_to_object_volume(area->get_rid(), listener_node->get_global_transform().origin);
					listener_area_pos = listener_node->get_global_transform().affine_inverse().xform(area_sound_pos);
				}

				if (max_distance > 0) {
					float total_max = max_distance;

					if (area && area->is_using_reverb_bus() && area->get_reverb_uniformity() > 0) {
						total_max = MAX(total_max, listener_area_pos.length());
					}
					if (total_max > max_distance) {
						continue; //can't hear this sound in this listener
					}
				}

				float multiplier = Math::db2linear(_get_attenuation_db(dist));
				if (max_distance > 0) {
					multiplier *= MAX(0, 1.0 - (dist / max_distance));
				}

				Output output;
				output.bus_index = bus_index;
				output.reverb_bus_index = -1; //no reverb by default
				output.viewport = vp;

				float db_att = (1.0 - MIN(1.0, multiplier)) * attenuation_filter_db;

				if (emission_angle_enabled) {
					Vector3 listenertopos = global_pos - listener_node->get_global_transform().origin;
					float c = listenertopos.normalized().dot(get_global_transform().basis.get_axis(2).normalized()); //it's z negative
					float angle = Math::rad2deg(Math::acos(c));
					if (angle > emission_angle) {
						db_att -= -emission_angle_filter_attenuation_db;
					}
				}

				output.filter_gain = Math::db2linear(db_att);

				//TODO: The lower the second parameter (tightness) the more the sound will "enclose" the listener (more undirected / playing from
				//      speakers not facing the source) - this could be made distance dependent.
				_calc_output_vol(local_pos.normalized(), 4.0, output);

				unsigned int cc = AudioServer::get_singleton()->get_channel_count();
				for (unsigned int k = 0; k < cc; k++) {
					output.vol[k] *= multiplier;
				}

				bool filled_reverb = false;
				int vol_index_max = AudioServer::get_singleton()->get_speaker_mode() + 1;

				if (area) {
					if (area->is_overriding_audio_bus()) {
						//override audio bus
						StringName bus_name = area->get_audio_bus();
						output.bus_index = AudioServer::get_singleton()->thread_find_bus_index(bus_name);
					}

					if (area->is_using_reverb_bus()) {
						filled_reverb = true;
						StringName bus_name = area->get_reverb_bus();
						output.reverb_bus_index = AudioServer::get_singleton()->thread_find_bus_index(bus_name);

						float uniformity = area->get_reverb_uniformity();
						float area_send = area->get_reverb_amount();

						if (uniformity > 0.0) {
							float distance = listener_area_pos.length();
							float attenuation = Math::db2linear(_get_attenuation_db(distance));

							//float dist_att_db = -20 * Math::log(dist + 0.00001); //logarithmic attenuation, like in real life

							float center_val[3] = { 0.5f, 0.25f, 0.16666f };
							AudioFrame center_frame(center_val[vol_index_max - 1], center_val[vol_index_max - 1]);

							if (attenuation < 1.0) {
								//pan the uniform sound
								Vector3 rev_pos = listener_area_pos;
								rev_pos.y = 0;
								rev_pos.normalize();

								if (cc >= 1) {
									// Stereo pair
									float c = rev_pos.x * 0.5 + 0.5;
									output.reverb_vol[0].l = 1.0 - c;
									output.reverb_vol[0].r = c;
								}

								if (cc >= 3) {
									// Center pair + Side pair
									float xl = Vector3(-1, 0, -1).normalized().dot(rev_pos) * 0.5 + 0.5;
									float xr = Vector3(1, 0, -1).normalized().dot(rev_pos) * 0.5 + 0.5;

									output.reverb_vol[1].l = xl;
									output.reverb_vol[1].r = xr;
									output.reverb_vol[2].l = 1.0 - xr;
									output.reverb_vol[2].r = 1.0 - xl;
								}

								if (cc >= 4) {
									// Rear pair
									// FIXME: Not sure what math should be done here
									float c = rev_pos.x * 0.5 + 0.5;
									output.reverb_vol[3].l = 1.0 - c;
									output.reverb_vol[3].r = c;
								}

								for (int i = 0; i < vol_index_max; i++) {
									output.reverb_vol[i] = output.reverb_vol[i].linear_interpolate(center_frame, attenuation);
								}
							} else {
								for (int i = 0; i < vol_index_max; i++) {
									output.reverb_vol[i] = center_frame;
								}
							}

							for (int i = 0; i < vol_index_max; i++) {
								output.reverb_vol[i] = output.vol[i].linear_interpolate(output.reverb_vol[i] * attenuation, uniformity);
								output.reverb_vol[i] *= area_send;
							}

						} else {
							for (int i = 0; i < vol_index_max; i++) {
								output.reverb_vol[i] = output.vol[i] * area_send;
							}
						}
					}
				}

				if (doppler_tracking != DOPPLER_TRACKING_DISABLED) {
					Vector3 listener_velocity;

					if (listener_is_camera) {
						listener_velocity = camera->get_doppler_tracked_velocity();
					}

					Vector3 local_velocity = listener_node->get_global_transform().orthonormalized().basis.xform_inv(linear_velocity - listener_velocity);

					if (local_velocity == Vector3()) {
						output.pitch_scale = 1.0;
					} else {
						float approaching = local_pos.normalized().dot(local_velocity.normalized());
						float velocity = local_velocity.length();
						float speed_of_sound = 343.0;

						output.pitch_scale = speed_of_sound / (speed_of_sound + velocity * approaching);
						output.pitch_scale = CLAMP(output.pitch_scale, (1 / 8.0), 8.0); //avoid crazy stuff
					}

				} else {
					output.pitch_scale = 1.0;
				}

				if (!filled_reverb) {
					for (int i = 0; i < vol_index_max; i++) {
						output.reverb_vol[i] = AudioFrame(0, 0);
					}
				}

				outputs[new_output_count] = output;
				new_output_count++;
				if (new_output_count == MAX_OUTPUTS) {
					break;
				}
			}

			output_count.set(new_output_count);
			output_ready.set();
		}

		//start playing if requested
		if (setplay.get() >= 0.0) {
			setseek.set(setplay.get());
			active.set();
			setplay.set(-1);
			//do not update, this makes it easier to animate (will shut off otherwise)
			///_change_notify("playing"); //update property in editor
		}

		//stop playing if no longer active
		if (!active.is_set()) {
			set_physics_process_internal(false);
			//do not update, this makes it easier to animate (will shut off otherwise)
			//_change_notify("playing"); //update property in editor
			emit_signal("finished");
		}
	}
}

void AudioStreamPlayer3D::set_stream(Ref<AudioStream> p_stream) {
	AudioServer::get_singleton()->lock();

	mix_buffer.resize(AudioServer::get_singleton()->thread_get_mix_buffer_size());

	if (stream_playback.is_valid()) {
		stream_playback.unref();
		stream.unref();
		active.clear();
		setseek.set(-1);
	}

	if (p_stream.is_valid()) {
		stream = p_stream;
		stream_playback = p_stream->instance_playback();
	}

	AudioServer::get_singleton()->unlock();

	if (p_stream.is_valid() && stream_playback.is_null()) {
		stream.unref();
	}
}

Ref<AudioStream> AudioStreamPlayer3D::get_stream() const {
	return stream;
}

void AudioStreamPlayer3D::set_unit_db(float p_volume) {
	unit_db = p_volume;
}
float AudioStreamPlayer3D::get_unit_db() const {
	return unit_db;
}

void AudioStreamPlayer3D::set_unit_size(float p_volume) {
	unit_size = p_volume;
}
float AudioStreamPlayer3D::get_unit_size() const {
	return unit_size;
}

void AudioStreamPlayer3D::set_max_db(float p_boost) {
	max_db = p_boost;
}
float AudioStreamPlayer3D::get_max_db() const {
	return max_db;
}

void AudioStreamPlayer3D::set_pitch_scale(float p_pitch_scale) {
	ERR_FAIL_COND(p_pitch_scale <= 0.0);
	pitch_scale = p_pitch_scale;
}
float AudioStreamPlayer3D::get_pitch_scale() const {
	return pitch_scale;
}

void AudioStreamPlayer3D::play(float p_from_pos) {
	if (!is_playing()) {
		// Reset the prev_output_count if the stream is stopped
		prev_output_count = 0;
	}

	if (stream_playback.is_valid()) {
		setplay.set(p_from_pos);
		output_ready.clear();
		set_physics_process_internal(true);
	}
}

void AudioStreamPlayer3D::seek(float p_seconds) {
	if (stream_playback.is_valid()) {
		setseek.set(p_seconds);
	}
}

void AudioStreamPlayer3D::stop() {
	if (stream_playback.is_valid()) {
		active.clear();
		set_physics_process_internal(false);
		setplay.set(-1);
	}
}

bool AudioStreamPlayer3D::is_playing() const {
	if (stream_playback.is_valid()) {
		return active.is_set() || setplay.get() >= 0;
	}

	return false;
}

float AudioStreamPlayer3D::get_playback_position() {
	if (stream_playback.is_valid()) {
		float ss = setseek.get();
		if (ss >= 0.0) {
			return ss;
		}
		return stream_playback->get_playback_position();
	}

	return 0;
}

void AudioStreamPlayer3D::set_bus(const StringName &p_bus) {
	//if audio is active, must lock this
	AudioServer::get_singleton()->lock();
	bus = p_bus;
	AudioServer::get_singleton()->unlock();
}
StringName AudioStreamPlayer3D::get_bus() const {
	for (int i = 0; i < AudioServer::get_singleton()->get_bus_count(); i++) {
		if (AudioServer::get_singleton()->get_bus_name(i) == bus) {
			return bus;
		}
	}
	return "Master";
}

void AudioStreamPlayer3D::set_autoplay(bool p_enable) {
	autoplay = p_enable;
}
bool AudioStreamPlayer3D::is_autoplay_enabled() {
	return autoplay;
}

void AudioStreamPlayer3D::_set_playing(bool p_enable) {
	if (p_enable) {
		play();
	} else {
		stop();
	}
}
bool AudioStreamPlayer3D::_is_active() const {
	return active.is_set();
}

void AudioStreamPlayer3D::_validate_property(PropertyInfo &property) const {
	if (property.name == "bus") {
		String options;
		for (int i = 0; i < AudioServer::get_singleton()->get_bus_count(); i++) {
			if (i > 0) {
				options += ",";
			}
			String name = AudioServer::get_singleton()->get_bus_name(i);
			options += name;
		}

		property.hint_string = options;
	}
}

void AudioStreamPlayer3D::_bus_layout_changed() {
	_change_notify();
}

void AudioStreamPlayer3D::set_max_distance(float p_metres) {
	ERR_FAIL_COND(p_metres < 0.0);
	max_distance = p_metres;
}

float AudioStreamPlayer3D::get_max_distance() const {
	return max_distance;
}

void AudioStreamPlayer3D::set_area_mask(uint32_t p_mask) {
	area_mask = p_mask;
}

uint32_t AudioStreamPlayer3D::get_area_mask() const {
	return area_mask;
}

void AudioStreamPlayer3D::set_emission_angle_enabled(bool p_enable) {
	emission_angle_enabled = p_enable;
	update_gizmo();
}

bool AudioStreamPlayer3D::is_emission_angle_enabled() const {
	return emission_angle_enabled;
}

void AudioStreamPlayer3D::set_emission_angle(float p_angle) {
	ERR_FAIL_COND(p_angle < 0 || p_angle > 90);
	emission_angle = p_angle;
	update_gizmo();
	_change_notify("emission_angle");
}

float AudioStreamPlayer3D::get_emission_angle() const {
	return emission_angle;
}

void AudioStreamPlayer3D::set_emission_angle_filter_attenuation_db(float p_angle_attenuation_db) {
	emission_angle_filter_attenuation_db = p_angle_attenuation_db;
}

float AudioStreamPlayer3D::get_emission_angle_filter_attenuation_db() const {
	return emission_angle_filter_attenuation_db;
}

void AudioStreamPlayer3D::set_attenuation_filter_cutoff_hz(float p_hz) {
	attenuation_filter_cutoff_hz = p_hz;
}
float AudioStreamPlayer3D::get_attenuation_filter_cutoff_hz() const {
	return attenuation_filter_cutoff_hz;
}

void AudioStreamPlayer3D::set_attenuation_filter_db(float p_db) {
	attenuation_filter_db = p_db;
}
float AudioStreamPlayer3D::get_attenuation_filter_db() const {
	return attenuation_filter_db;
}

void AudioStreamPlayer3D::set_attenuation_model(AttenuationModel p_model) {
	ERR_FAIL_INDEX((int)p_model, 4);
	attenuation_model = p_model;
}

AudioStreamPlayer3D::AttenuationModel AudioStreamPlayer3D::get_attenuation_model() const {
	return attenuation_model;
}

void AudioStreamPlayer3D::set_out_of_range_mode(OutOfRangeMode p_mode) {
	ERR_FAIL_INDEX((int)p_mode, 2);
	out_of_range_mode = p_mode;
}

AudioStreamPlayer3D::OutOfRangeMode AudioStreamPlayer3D::get_out_of_range_mode() const {
	return out_of_range_mode;
}

void AudioStreamPlayer3D::set_doppler_tracking(DopplerTracking p_tracking) {
	if (doppler_tracking == p_tracking) {
		return;
	}

	doppler_tracking = p_tracking;

	if (doppler_tracking != DOPPLER_TRACKING_DISABLED) {
		set_notify_transform(true);
		velocity_tracker->set_track_physics_step(doppler_tracking == DOPPLER_TRACKING_PHYSICS_STEP);
		if (is_inside_tree()) {
			velocity_tracker->reset(get_global_transform().origin);
		}
	} else {
		set_notify_transform(false);
	}
}

AudioStreamPlayer3D::DopplerTracking AudioStreamPlayer3D::get_doppler_tracking() const {
	return doppler_tracking;
}

void AudioStreamPlayer3D::set_stream_paused(bool p_pause) {
	if (p_pause != stream_paused) {
		stream_paused = p_pause;
		stream_paused_fade_in = !stream_paused;
		stream_paused_fade_out = stream_paused;
	}
}

bool AudioStreamPlayer3D::get_stream_paused() const {
	return stream_paused;
}

Ref<AudioStreamPlayback> AudioStreamPlayer3D::get_stream_playback() {
	return stream_playback;
}

void AudioStreamPlayer3D::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_stream", "stream"), &AudioStreamPlayer3D::set_stream);
	ClassDB::bind_method(D_METHOD("get_stream"), &AudioStreamPlayer3D::get_stream);

	ClassDB::bind_method(D_METHOD("set_unit_db", "unit_db"), &AudioStreamPlayer3D::set_unit_db);
	ClassDB::bind_method(D_METHOD("get_unit_db"), &AudioStreamPlayer3D::get_unit_db);

	ClassDB::bind_method(D_METHOD("set_unit_size", "unit_size"), &AudioStreamPlayer3D::set_unit_size);
	ClassDB::bind_method(D_METHOD("get_unit_size"), &AudioStreamPlayer3D::get_unit_size);

	ClassDB::bind_method(D_METHOD("set_max_db", "max_db"), &AudioStreamPlayer3D::set_max_db);
	ClassDB::bind_method(D_METHOD("get_max_db"), &AudioStreamPlayer3D::get_max_db);

	ClassDB::bind_method(D_METHOD("set_pitch_scale", "pitch_scale"), &AudioStreamPlayer3D::set_pitch_scale);
	ClassDB::bind_method(D_METHOD("get_pitch_scale"), &AudioStreamPlayer3D::get_pitch_scale);

	ClassDB::bind_method(D_METHOD("play", "from_position"), &AudioStreamPlayer3D::play, DEFVAL(0.0));
	ClassDB::bind_method(D_METHOD("seek", "to_position"), &AudioStreamPlayer3D::seek);
	ClassDB::bind_method(D_METHOD("stop"), &AudioStreamPlayer3D::stop);

	ClassDB::bind_method(D_METHOD("is_playing"), &AudioStreamPlayer3D::is_playing);
	ClassDB::bind_method(D_METHOD("get_playback_position"), &AudioStreamPlayer3D::get_playback_position);

	ClassDB::bind_method(D_METHOD("set_bus", "bus"), &AudioStreamPlayer3D::set_bus);
	ClassDB::bind_method(D_METHOD("get_bus"), &AudioStreamPlayer3D::get_bus);

	ClassDB::bind_method(D_METHOD("set_autoplay", "enable"), &AudioStreamPlayer3D::set_autoplay);
	ClassDB::bind_method(D_METHOD("is_autoplay_enabled"), &AudioStreamPlayer3D::is_autoplay_enabled);

	ClassDB::bind_method(D_METHOD("_set_playing", "enable"), &AudioStreamPlayer3D::_set_playing);
	ClassDB::bind_method(D_METHOD("_is_active"), &AudioStreamPlayer3D::_is_active);

	ClassDB::bind_method(D_METHOD("set_max_distance", "metres"), &AudioStreamPlayer3D::set_max_distance);
	ClassDB::bind_method(D_METHOD("get_max_distance"), &AudioStreamPlayer3D::get_max_distance);

	ClassDB::bind_method(D_METHOD("set_area_mask", "mask"), &AudioStreamPlayer3D::set_area_mask);
	ClassDB::bind_method(D_METHOD("get_area_mask"), &AudioStreamPlayer3D::get_area_mask);

	ClassDB::bind_method(D_METHOD("set_emission_angle", "degrees"), &AudioStreamPlayer3D::set_emission_angle);
	ClassDB::bind_method(D_METHOD("get_emission_angle"), &AudioStreamPlayer3D::get_emission_angle);

	ClassDB::bind_method(D_METHOD("set_emission_angle_enabled", "enabled"), &AudioStreamPlayer3D::set_emission_angle_enabled);
	ClassDB::bind_method(D_METHOD("is_emission_angle_enabled"), &AudioStreamPlayer3D::is_emission_angle_enabled);

	ClassDB::bind_method(D_METHOD("set_emission_angle_filter_attenuation_db", "db"), &AudioStreamPlayer3D::set_emission_angle_filter_attenuation_db);
	ClassDB::bind_method(D_METHOD("get_emission_angle_filter_attenuation_db"), &AudioStreamPlayer3D::get_emission_angle_filter_attenuation_db);

	ClassDB::bind_method(D_METHOD("set_attenuation_filter_cutoff_hz", "degrees"), &AudioStreamPlayer3D::set_attenuation_filter_cutoff_hz);
	ClassDB::bind_method(D_METHOD("get_attenuation_filter_cutoff_hz"), &AudioStreamPlayer3D::get_attenuation_filter_cutoff_hz);

	ClassDB::bind_method(D_METHOD("set_attenuation_filter_db", "db"), &AudioStreamPlayer3D::set_attenuation_filter_db);
	ClassDB::bind_method(D_METHOD("get_attenuation_filter_db"), &AudioStreamPlayer3D::get_attenuation_filter_db);

	ClassDB::bind_method(D_METHOD("set_attenuation_model", "model"), &AudioStreamPlayer3D::set_attenuation_model);
	ClassDB::bind_method(D_METHOD("get_attenuation_model"), &AudioStreamPlayer3D::get_attenuation_model);

	ClassDB::bind_method(D_METHOD("set_out_of_range_mode", "mode"), &AudioStreamPlayer3D::set_out_of_range_mode);
	ClassDB::bind_method(D_METHOD("get_out_of_range_mode"), &AudioStreamPlayer3D::get_out_of_range_mode);

	ClassDB::bind_method(D_METHOD("set_doppler_tracking", "mode"), &AudioStreamPlayer3D::set_doppler_tracking);
	ClassDB::bind_method(D_METHOD("get_doppler_tracking"), &AudioStreamPlayer3D::get_doppler_tracking);

	ClassDB::bind_method(D_METHOD("set_stream_paused", "pause"), &AudioStreamPlayer3D::set_stream_paused);
	ClassDB::bind_method(D_METHOD("get_stream_paused"), &AudioStreamPlayer3D::get_stream_paused);

	ClassDB::bind_method(D_METHOD("get_stream_playback"), &AudioStreamPlayer3D::get_stream_playback);

	ClassDB::bind_method(D_METHOD("_bus_layout_changed"), &AudioStreamPlayer3D::_bus_layout_changed);

	ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "stream", PROPERTY_HINT_RESOURCE_TYPE, "AudioStream"), "set_stream", "get_stream");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "attenuation_model", PROPERTY_HINT_ENUM, "Inverse,InverseSquare,Log,Disabled"), "set_attenuation_model", "get_attenuation_model");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "unit_db", PROPERTY_HINT_RANGE, "-80,80"), "set_unit_db", "get_unit_db");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "unit_size", PROPERTY_HINT_RANGE, "0.1,100,0.1"), "set_unit_size", "get_unit_size");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "max_db", PROPERTY_HINT_RANGE, "-24,6"), "set_max_db", "get_max_db");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "pitch_scale", PROPERTY_HINT_RANGE, "0.01,4,0.01,or_greater"), "set_pitch_scale", "get_pitch_scale");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "playing", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_EDITOR), "_set_playing", "is_playing");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "autoplay"), "set_autoplay", "is_autoplay_enabled");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "stream_paused", PROPERTY_HINT_NONE, ""), "set_stream_paused", "get_stream_paused");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "max_distance", PROPERTY_HINT_EXP_RANGE, "0,4096,1,or_greater"), "set_max_distance", "get_max_distance");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "out_of_range_mode", PROPERTY_HINT_ENUM, "Mix,Pause"), "set_out_of_range_mode", "get_out_of_range_mode");
	ADD_PROPERTY(PropertyInfo(Variant::STRING, "bus", PROPERTY_HINT_ENUM, ""), "set_bus", "get_bus");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "area_mask", PROPERTY_HINT_LAYERS_2D_PHYSICS), "set_area_mask", "get_area_mask");
	ADD_GROUP("Emission Angle", "emission_angle");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "emission_angle_enabled"), "set_emission_angle_enabled", "is_emission_angle_enabled");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_angle_degrees", PROPERTY_HINT_RANGE, "0.1,90,0.1"), "set_emission_angle", "get_emission_angle");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "emission_angle_filter_attenuation_db", PROPERTY_HINT_RANGE, "-80,0,0.1"), "set_emission_angle_filter_attenuation_db", "get_emission_angle_filter_attenuation_db");
	ADD_GROUP("Attenuation Filter", "attenuation_filter_");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "attenuation_filter_cutoff_hz", PROPERTY_HINT_RANGE, "1,20500,1"), "set_attenuation_filter_cutoff_hz", "get_attenuation_filter_cutoff_hz");
	ADD_PROPERTY(PropertyInfo(Variant::REAL, "attenuation_filter_db", PROPERTY_HINT_RANGE, "-80,0,0.1"), "set_attenuation_filter_db", "get_attenuation_filter_db");
	ADD_GROUP("Doppler", "doppler_");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "doppler_tracking", PROPERTY_HINT_ENUM, "Disabled,Idle,Physics"), "set_doppler_tracking", "get_doppler_tracking");

	BIND_ENUM_CONSTANT(ATTENUATION_INVERSE_DISTANCE);
	BIND_ENUM_CONSTANT(ATTENUATION_INVERSE_SQUARE_DISTANCE);
	BIND_ENUM_CONSTANT(ATTENUATION_LOGARITHMIC);
	BIND_ENUM_CONSTANT(ATTENUATION_DISABLED);

	BIND_ENUM_CONSTANT(OUT_OF_RANGE_MIX);
	BIND_ENUM_CONSTANT(OUT_OF_RANGE_PAUSE);

	BIND_ENUM_CONSTANT(DOPPLER_TRACKING_DISABLED);
	BIND_ENUM_CONSTANT(DOPPLER_TRACKING_IDLE_STEP);
	BIND_ENUM_CONSTANT(DOPPLER_TRACKING_PHYSICS_STEP);

	ADD_SIGNAL(MethodInfo("finished"));
}

AudioStreamPlayer3D::AudioStreamPlayer3D() {
	unit_db = 0;
	unit_size = 1;
	attenuation_model = ATTENUATION_INVERSE_DISTANCE;
	max_db = 3;
	pitch_scale = 1.0;
	autoplay = false;
	setseek.set(-1);
	prev_output_count = 0;
	max_distance = 0;
	setplay.set(-1);
	area_mask = 1;
	emission_angle = 45;
	emission_angle_enabled = false;
	emission_angle_filter_attenuation_db = -12;
	attenuation_filter_cutoff_hz = 5000;
	attenuation_filter_db = -24;
	out_of_range_mode = OUT_OF_RANGE_MIX;
	doppler_tracking = DOPPLER_TRACKING_DISABLED;
	stream_paused = false;
	stream_paused_fade_in = false;
	stream_paused_fade_out = false;

	velocity_tracker.instance();
	AudioServer::get_singleton()->connect("bus_layout_changed", this, "_bus_layout_changed");
	set_disable_scale(true);
}
AudioStreamPlayer3D::~AudioStreamPlayer3D() {
}