// Copyright 2009-2020 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "../common/ray.h" #include "curve_intersector_precalculations.h" namespace embree { namespace isa { template struct DistanceCurveHit { __forceinline DistanceCurveHit() {} __forceinline DistanceCurveHit(const vbool& valid, const vfloat& U, const vfloat& V, const vfloat& T, const int i, const int N, const NativeCurve3fa& curve3D) : U(U), V(V), T(T), i(i), N(N), curve3D(curve3D), valid(valid) {} __forceinline void finalize() { vu = (vfloat(step)+U+vfloat(float(i)))*(1.0f/float(N)); vv = V; vt = T; } __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); } __forceinline float t (const size_t i) const { return vt[i]; } __forceinline Vec3fa Ng(const size_t i) const { return curve3D.eval_du(vu[i]); } public: vfloat U; vfloat V; vfloat T; int i, N; NativeCurve3fa curve3D; public: vbool valid; vfloat vu; vfloat vv; vfloat vt; }; template struct DistanceCurve1Intersector1 { template __forceinline bool intersect(const CurvePrecalculations1& pre,Ray& ray, IntersectContext* context, const CurveGeometry* geom, const unsigned int primID, const Vec3fa& v0, const Vec3fa& v1, const Vec3fa& v2, const Vec3fa& v3, const Epilog& epilog) { const int N = geom->tessellationRate; /* transform control points into ray space */ const NativeCurve3fa curve3Di(v0,v1,v2,v3); const NativeCurve3fa curve3D = enlargeRadiusToMinWidth(context,geom,ray.org,curve3Di); const NativeCurve3fa curve2D = curve3D.xfm_pr(pre.ray_space,ray.org); /* evaluate the bezier curve */ vboolx valid = vfloatx(step) < vfloatx(float(N)); const Vec4vfx p0 = curve2D.template eval0(0,N); const Vec4vfx p1 = curve2D.template eval1(0,N); /* approximative intersection with cone */ const Vec4vfx v = p1-p0; const Vec4vfx w = -p0; const vfloatx d0 = madd(w.x,v.x,w.y*v.y); const vfloatx d1 = madd(v.x,v.x,v.y*v.y); const vfloatx u = clamp(d0*rcp(d1),vfloatx(zero),vfloatx(one)); const Vec4vfx p = madd(u,v,p0); const vfloatx t = p.z*pre.depth_scale; const vfloatx d2 = madd(p.x,p.x,p.y*p.y); const vfloatx r = p.w; const vfloatx r2 = r*r; valid &= (d2 <= r2) & (vfloatx(ray.tnear()) <= t) & (t <= vfloatx(ray.tfar)); if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*pre.depth_scale; // ignore self intersections /* update hit information */ bool ishit = false; if (unlikely(any(valid))) { DistanceCurveHit hit(valid,u,0.0f,t,0,N,curve3D); ishit = ishit | epilog(valid,hit); } if (unlikely(VSIZEX < N)) { /* process SIMD-size many segments per iteration */ for (int i=VSIZEX; i(i,N); const Vec4vfx p1 = curve2D.template eval1(i,N); /* approximative intersection with cone */ const Vec4vfx v = p1-p0; const Vec4vfx w = -p0; const vfloatx d0 = madd(w.x,v.x,w.y*v.y); const vfloatx d1 = madd(v.x,v.x,v.y*v.y); const vfloatx u = clamp(d0*rcp(d1),vfloatx(zero),vfloatx(one)); const Vec4vfx p = madd(u,v,p0); const vfloatx t = p.z*pre.depth_scale; const vfloatx d2 = madd(p.x,p.x,p.y*p.y); const vfloatx r = p.w; const vfloatx r2 = r*r; valid &= (d2 <= r2) & (vfloatx(ray.tnear()) <= t) & (t <= vfloatx(ray.tfar)); if (EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR != 0.0f) valid &= t > float(EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR)*r*pre.depth_scale; // ignore self intersections /* update hit information */ if (unlikely(any(valid))) { DistanceCurveHit hit(valid,u,0.0f,t,i,N,curve3D); ishit = ishit | epilog(valid,hit); } } } return ishit; } }; } }