/*************************************************************************/ /* transform_2d.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "transform_2d.h" #include "core/string/ustring.h" void Transform2D::invert() { // FIXME: this function assumes the basis is a rotation matrix, with no scaling. // Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that. SWAP(columns[0][1], columns[1][0]); columns[2] = basis_xform(-columns[2]); } Transform2D Transform2D::inverse() const { Transform2D inv = *this; inv.invert(); return inv; } void Transform2D::affine_invert() { real_t det = basis_determinant(); #ifdef MATH_CHECKS ERR_FAIL_COND(det == 0); #endif real_t idet = 1.0f / det; SWAP(columns[0][0], columns[1][1]); columns[0] *= Vector2(idet, -idet); columns[1] *= Vector2(-idet, idet); columns[2] = basis_xform(-columns[2]); } Transform2D Transform2D::affine_inverse() const { Transform2D inv = *this; inv.affine_invert(); return inv; } void Transform2D::rotate(const real_t p_angle) { *this = Transform2D(p_angle, Vector2()) * (*this); } real_t Transform2D::get_skew() const { real_t det = basis_determinant(); return Math::acos(columns[0].normalized().dot(SIGN(det) * columns[1].normalized())) - (real_t)Math_PI * 0.5f; } void Transform2D::set_skew(const real_t p_angle) { real_t det = basis_determinant(); columns[1] = SIGN(det) * columns[0].rotated(((real_t)Math_PI * 0.5f + p_angle)).normalized() * columns[1].length(); } real_t Transform2D::get_rotation() const { return Math::atan2(columns[0].y, columns[0].x); } void Transform2D::set_rotation(const real_t p_rot) { Size2 scale = get_scale(); real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); columns[0][0] = cr; columns[0][1] = sr; columns[1][0] = -sr; columns[1][1] = cr; set_scale(scale); } Transform2D::Transform2D(const real_t p_rot, const Vector2 &p_pos) { real_t cr = Math::cos(p_rot); real_t sr = Math::sin(p_rot); columns[0][0] = cr; columns[0][1] = sr; columns[1][0] = -sr; columns[1][1] = cr; columns[2] = p_pos; } Transform2D::Transform2D(const real_t p_rot, const Size2 &p_scale, const real_t p_skew, const Vector2 &p_pos) { columns[0][0] = Math::cos(p_rot) * p_scale.x; columns[1][1] = Math::cos(p_rot + p_skew) * p_scale.y; columns[1][0] = -Math::sin(p_rot + p_skew) * p_scale.y; columns[0][1] = Math::sin(p_rot) * p_scale.x; columns[2] = p_pos; } Size2 Transform2D::get_scale() const { real_t det_sign = SIGN(basis_determinant()); return Size2(columns[0].length(), det_sign * columns[1].length()); } void Transform2D::set_scale(const Size2 &p_scale) { columns[0].normalize(); columns[1].normalize(); columns[0] *= p_scale.x; columns[1] *= p_scale.y; } void Transform2D::scale(const Size2 &p_scale) { scale_basis(p_scale); columns[2] *= p_scale; } void Transform2D::scale_basis(const Size2 &p_scale) { columns[0][0] *= p_scale.x; columns[0][1] *= p_scale.y; columns[1][0] *= p_scale.x; columns[1][1] *= p_scale.y; } void Transform2D::translate_local(const real_t p_tx, const real_t p_ty) { translate_local(Vector2(p_tx, p_ty)); } void Transform2D::translate_local(const Vector2 &p_translation) { columns[2] += basis_xform(p_translation); } void Transform2D::orthonormalize() { // Gram-Schmidt Process Vector2 x = columns[0]; Vector2 y = columns[1]; x.normalize(); y = (y - x * (x.dot(y))); y.normalize(); columns[0] = x; columns[1] = y; } Transform2D Transform2D::orthonormalized() const { Transform2D on = *this; on.orthonormalize(); return on; } bool Transform2D::is_equal_approx(const Transform2D &p_transform) const { return columns[0].is_equal_approx(p_transform.columns[0]) && columns[1].is_equal_approx(p_transform.columns[1]) && columns[2].is_equal_approx(p_transform.columns[2]); } Transform2D Transform2D::looking_at(const Vector2 &p_target) const { Transform2D return_trans = Transform2D(get_rotation(), get_origin()); Vector2 target_position = affine_inverse().xform(p_target); return_trans.set_rotation(return_trans.get_rotation() + (target_position * get_scale()).angle()); return return_trans; } bool Transform2D::operator==(const Transform2D &p_transform) const { for (int i = 0; i < 3; i++) { if (columns[i] != p_transform.columns[i]) { return false; } } return true; } bool Transform2D::operator!=(const Transform2D &p_transform) const { for (int i = 0; i < 3; i++) { if (columns[i] != p_transform.columns[i]) { return true; } } return false; } void Transform2D::operator*=(const Transform2D &p_transform) { columns[2] = xform(p_transform.columns[2]); real_t x0, x1, y0, y1; x0 = tdotx(p_transform.columns[0]); x1 = tdoty(p_transform.columns[0]); y0 = tdotx(p_transform.columns[1]); y1 = tdoty(p_transform.columns[1]); columns[0][0] = x0; columns[0][1] = x1; columns[1][0] = y0; columns[1][1] = y1; } Transform2D Transform2D::operator*(const Transform2D &p_transform) const { Transform2D t = *this; t *= p_transform; return t; } Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const { Transform2D copy = *this; copy.scale_basis(p_scale); return copy; } Transform2D Transform2D::scaled(const Size2 &p_scale) const { // Equivalent to left multiplication Transform2D copy = *this; copy.scale(p_scale); return copy; } Transform2D Transform2D::scaled_local(const Size2 &p_scale) const { // Equivalent to right multiplication return Transform2D(columns[0] * p_scale.x, columns[1] * p_scale.y, columns[2]); } Transform2D Transform2D::untranslated() const { Transform2D copy = *this; copy.columns[2] = Vector2(); return copy; } Transform2D Transform2D::translated(const Vector2 &p_offset) const { // Equivalent to left multiplication return Transform2D(columns[0], columns[1], columns[2] + p_offset); } Transform2D Transform2D::translated_local(const Vector2 &p_offset) const { // Equivalent to right multiplication return Transform2D(columns[0], columns[1], columns[2] + basis_xform(p_offset)); } Transform2D Transform2D::rotated(const real_t p_angle) const { // Equivalent to left multiplication return Transform2D(p_angle, Vector2()) * (*this); } Transform2D Transform2D::rotated_local(const real_t p_angle) const { // Equivalent to right multiplication return (*this) * Transform2D(p_angle, Vector2()); // Could be optimized, because origin transform can be skipped. } real_t Transform2D::basis_determinant() const { return columns[0].x * columns[1].y - columns[0].y * columns[1].x; } Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, const real_t p_c) const { //extract parameters Vector2 p1 = get_origin(); Vector2 p2 = p_transform.get_origin(); real_t r1 = get_rotation(); real_t r2 = p_transform.get_rotation(); Size2 s1 = get_scale(); Size2 s2 = p_transform.get_scale(); //slerp rotation Vector2 v1(Math::cos(r1), Math::sin(r1)); Vector2 v2(Math::cos(r2), Math::sin(r2)); real_t dot = v1.dot(v2); dot = CLAMP(dot, (real_t)-1.0, (real_t)1.0); Vector2 v; if (dot > 0.9995f) { v = v1.lerp(v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues } else { real_t angle = p_c * Math::acos(dot); Vector2 v3 = (v2 - v1 * dot).normalized(); v = v1 * Math::cos(angle) + v3 * Math::sin(angle); } //construct matrix Transform2D res(v.angle(), p1.lerp(p2, p_c)); res.scale_basis(s1.lerp(s2, p_c)); return res; } void Transform2D::operator*=(const real_t p_val) { columns[0] *= p_val; columns[1] *= p_val; columns[2] *= p_val; } Transform2D Transform2D::operator*(const real_t p_val) const { Transform2D ret(*this); ret *= p_val; return ret; } Transform2D::operator String() const { return "[X: " + columns[0].operator String() + ", Y: " + columns[1].operator String() + ", O: " + columns[2].operator String() + "]"; }