/**************************************************************************/ /* test_array.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_ARRAY_H #define TEST_ARRAY_H #include "core/variant/array.h" #include "tests/test_macros.h" #include "tests/test_tools.h" namespace TestArray { static inline Array build_array() { return Array(); } template static inline Array build_array(Variant item, Targs... Fargs) { Array a = build_array(Fargs...); a.push_front(item); return a; } static inline Dictionary build_dictionary() { return Dictionary(); } template static inline Dictionary build_dictionary(Variant key, Variant item, Targs... Fargs) { Dictionary d = build_dictionary(Fargs...); d[key] = item; return d; } TEST_CASE("[Array] size(), clear(), and is_empty()") { Array arr; CHECK(arr.size() == 0); CHECK(arr.is_empty()); arr.push_back(1); CHECK(arr.size() == 1); arr.clear(); CHECK(arr.is_empty()); CHECK(arr.size() == 0); } TEST_CASE("[Array] Assignment and comparison operators") { Array arr1; Array arr2; arr1.push_back(1); CHECK(arr1 != arr2); CHECK(arr1 > arr2); CHECK(arr1 >= arr2); arr2.push_back(2); CHECK(arr1 != arr2); CHECK(arr1 < arr2); CHECK(arr1 <= arr2); CHECK(arr2 > arr1); CHECK(arr2 >= arr1); Array arr3 = arr2; CHECK(arr3 == arr2); } TEST_CASE("[Array] append_array()") { Array arr1; Array arr2; arr1.push_back(1); arr1.append_array(arr2); CHECK(arr1.size() == 1); arr2.push_back(2); arr1.append_array(arr2); CHECK(arr1.size() == 2); CHECK(int(arr1[0]) == 1); CHECK(int(arr1[1]) == 2); } TEST_CASE("[Array] resize(), insert(), and erase()") { Array arr; arr.resize(2); CHECK(arr.size() == 2); arr.insert(0, 1); CHECK(int(arr[0]) == 1); arr.insert(0, 2); CHECK(int(arr[0]) == 2); arr.erase(2); CHECK(int(arr[0]) == 1); } TEST_CASE("[Array] front() and back()") { Array arr; arr.push_back(1); CHECK(int(arr.front()) == 1); CHECK(int(arr.back()) == 1); arr.push_back(3); CHECK(int(arr.front()) == 1); CHECK(int(arr.back()) == 3); } TEST_CASE("[Array] has() and count()") { Array arr; arr.push_back(1); arr.push_back(1); CHECK(arr.has(1)); CHECK(!arr.has(2)); CHECK(arr.count(1) == 2); CHECK(arr.count(2) == 0); } TEST_CASE("[Array] remove_at()") { Array arr; arr.push_back(1); arr.push_back(2); arr.remove_at(0); CHECK(arr.size() == 1); CHECK(int(arr[0]) == 2); arr.remove_at(0); CHECK(arr.size() == 0); // The array is now empty; try to use `remove_at()` again. // Normally, this prints an error message so we silence it. ERR_PRINT_OFF; arr.remove_at(0); ERR_PRINT_ON; CHECK(arr.size() == 0); } TEST_CASE("[Array] get()") { Array arr; arr.push_back(1); CHECK(int(arr.get(0)) == 1); } TEST_CASE("[Array] sort()") { Array arr; arr.push_back(3); arr.push_back(4); arr.push_back(2); arr.push_back(1); arr.sort(); int val = 1; for (int i = 0; i < arr.size(); i++) { CHECK(int(arr[i]) == val); val++; } } TEST_CASE("[Array] push_front(), pop_front(), pop_back()") { Array arr; arr.push_front(1); arr.push_front(2); CHECK(int(arr[0]) == 2); arr.pop_front(); CHECK(int(arr[0]) == 1); CHECK(arr.size() == 1); arr.push_front(2); arr.push_front(3); arr.pop_back(); CHECK(int(arr[1]) == 2); CHECK(arr.size() == 2); } TEST_CASE("[Array] pop_at()") { ErrorDetector ed; Array arr; arr.push_back(2); arr.push_back(4); arr.push_back(6); arr.push_back(8); arr.push_back(10); REQUIRE(int(arr.pop_at(2)) == 6); REQUIRE(arr.size() == 4); CHECK(int(arr[0]) == 2); CHECK(int(arr[1]) == 4); CHECK(int(arr[2]) == 8); CHECK(int(arr[3]) == 10); REQUIRE(int(arr.pop_at(2)) == 8); REQUIRE(arr.size() == 3); CHECK(int(arr[0]) == 2); CHECK(int(arr[1]) == 4); CHECK(int(arr[2]) == 10); // Negative index. REQUIRE(int(arr.pop_at(-1)) == 10); REQUIRE(arr.size() == 2); CHECK(int(arr[0]) == 2); CHECK(int(arr[1]) == 4); // Invalid pop. ed.clear(); ERR_PRINT_OFF; const Variant ret = arr.pop_at(-15); ERR_PRINT_ON; REQUIRE(ret.is_null()); CHECK(ed.has_error); REQUIRE(int(arr.pop_at(0)) == 2); REQUIRE(arr.size() == 1); CHECK(int(arr[0]) == 4); REQUIRE(int(arr.pop_at(0)) == 4); REQUIRE(arr.is_empty()); // Pop from empty array. ed.clear(); REQUIRE(arr.pop_at(24).is_null()); CHECK_FALSE(ed.has_error); } TEST_CASE("[Array] max() and min()") { Array arr; arr.push_back(3); arr.push_front(4); arr.push_back(5); arr.push_back(2); int max = int(arr.max()); int min = int(arr.min()); CHECK(max == 5); CHECK(min == 2); } TEST_CASE("[Array] slice()") { Array array; array.push_back(0); array.push_back(1); array.push_back(2); array.push_back(3); array.push_back(4); array.push_back(5); Array slice0 = array.slice(0, 0); CHECK(slice0.size() == 0); Array slice1 = array.slice(1, 3); CHECK(slice1.size() == 2); CHECK(slice1[0] == Variant(1)); CHECK(slice1[1] == Variant(2)); Array slice2 = array.slice(1, -1); CHECK(slice2.size() == 4); CHECK(slice2[0] == Variant(1)); CHECK(slice2[1] == Variant(2)); CHECK(slice2[2] == Variant(3)); CHECK(slice2[3] == Variant(4)); Array slice3 = array.slice(3); CHECK(slice3.size() == 3); CHECK(slice3[0] == Variant(3)); CHECK(slice3[1] == Variant(4)); CHECK(slice3[2] == Variant(5)); Array slice4 = array.slice(2, -2); CHECK(slice4.size() == 2); CHECK(slice4[0] == Variant(2)); CHECK(slice4[1] == Variant(3)); Array slice5 = array.slice(-2); CHECK(slice5.size() == 2); CHECK(slice5[0] == Variant(4)); CHECK(slice5[1] == Variant(5)); Array slice6 = array.slice(2, 42); CHECK(slice6.size() == 4); CHECK(slice6[0] == Variant(2)); CHECK(slice6[1] == Variant(3)); CHECK(slice6[2] == Variant(4)); CHECK(slice6[3] == Variant(5)); Array slice7 = array.slice(4, 0, -2); CHECK(slice7.size() == 2); CHECK(slice7[0] == Variant(4)); CHECK(slice7[1] == Variant(2)); Array slice8 = array.slice(5, 0, -2); CHECK(slice8.size() == 3); CHECK(slice8[0] == Variant(5)); CHECK(slice8[1] == Variant(3)); CHECK(slice8[2] == Variant(1)); Array slice9 = array.slice(10, 0, -2); CHECK(slice9.size() == 3); CHECK(slice9[0] == Variant(5)); CHECK(slice9[1] == Variant(3)); CHECK(slice9[2] == Variant(1)); Array slice10 = array.slice(2, -10, -1); CHECK(slice10.size() == 3); CHECK(slice10[0] == Variant(2)); CHECK(slice10[1] == Variant(1)); CHECK(slice10[2] == Variant(0)); ERR_PRINT_OFF; Array slice11 = array.slice(4, 1); CHECK(slice11.size() == 0); Array slice12 = array.slice(3, -4); CHECK(slice12.size() == 0); ERR_PRINT_ON; Array slice13 = Array().slice(1); CHECK(slice13.size() == 0); Array slice14 = array.slice(6); CHECK(slice14.size() == 0); } TEST_CASE("[Array] Duplicate array") { // a = [1, [2, 2], {3: 3}] Array a = build_array(1, build_array(2, 2), build_dictionary(3, 3)); // Deep copy Array deep_a = a.duplicate(true); CHECK_MESSAGE(deep_a.id() != a.id(), "Should create a new array"); CHECK_MESSAGE(Array(deep_a[1]).id() != Array(a[1]).id(), "Should clone nested array"); CHECK_MESSAGE(Dictionary(deep_a[2]).id() != Dictionary(a[2]).id(), "Should clone nested dictionary"); CHECK_EQ(deep_a, a); deep_a.push_back(1); CHECK_NE(deep_a, a); deep_a.pop_back(); Array(deep_a[1]).push_back(1); CHECK_NE(deep_a, a); Array(deep_a[1]).pop_back(); CHECK_EQ(deep_a, a); // Shallow copy Array shallow_a = a.duplicate(false); CHECK_MESSAGE(shallow_a.id() != a.id(), "Should create a new array"); CHECK_MESSAGE(Array(shallow_a[1]).id() == Array(a[1]).id(), "Should keep nested array"); CHECK_MESSAGE(Dictionary(shallow_a[2]).id() == Dictionary(a[2]).id(), "Should keep nested dictionary"); CHECK_EQ(shallow_a, a); Array(shallow_a).push_back(1); CHECK_NE(shallow_a, a); } TEST_CASE("[Array] Duplicate recursive array") { // Self recursive Array a; a.push_back(a); Array a_shallow = a.duplicate(false); CHECK_EQ(a, a_shallow); // Deep copy of recursive array ends up with recursion limit and return // an invalid result (multiple nested arrays), the point is we should // not end up with a segfault and an error log should be printed ERR_PRINT_OFF; a.duplicate(true); ERR_PRINT_ON; // Nested recursive Array a1; Array a2; a2.push_back(a1); a1.push_back(a2); Array a1_shallow = a1.duplicate(false); CHECK_EQ(a1, a1_shallow); // Same deep copy issue as above ERR_PRINT_OFF; a1.duplicate(true); ERR_PRINT_ON; // Break the recursivity otherwise Array teardown will leak memory a.clear(); a1.clear(); a2.clear(); } TEST_CASE("[Array] Hash array") { // a = [1, [2, 2], {3: 3}] Array a = build_array(1, build_array(2, 2), build_dictionary(3, 3)); uint32_t original_hash = a.hash(); a.push_back(1); CHECK_NE(a.hash(), original_hash); a.pop_back(); CHECK_EQ(a.hash(), original_hash); Array(a[1]).push_back(1); CHECK_NE(a.hash(), original_hash); Array(a[1]).pop_back(); CHECK_EQ(a.hash(), original_hash); (Dictionary(a[2]))[1] = 1; CHECK_NE(a.hash(), original_hash); Dictionary(a[2]).erase(1); CHECK_EQ(a.hash(), original_hash); Array a2 = a.duplicate(true); CHECK_EQ(a2.hash(), a.hash()); } TEST_CASE("[Array] Hash recursive array") { Array a1; a1.push_back(a1); Array a2; a2.push_back(a2); // Hash should reach recursion limit ERR_PRINT_OFF; CHECK_EQ(a1.hash(), a2.hash()); ERR_PRINT_ON; // Break the recursivity otherwise Array teardown will leak memory a1.clear(); a2.clear(); } TEST_CASE("[Array] Empty comparison") { Array a1; Array a2; // test both operator== and operator!= CHECK_EQ(a1, a2); CHECK_FALSE(a1 != a2); } TEST_CASE("[Array] Flat comparison") { Array a1 = build_array(1); Array a2 = build_array(1); Array other_a = build_array(2); // test both operator== and operator!= CHECK_EQ(a1, a1); // compare self CHECK_FALSE(a1 != a1); CHECK_EQ(a1, a2); // different equivalent arrays CHECK_FALSE(a1 != a2); CHECK_NE(a1, other_a); // different arrays with different content CHECK_FALSE(a1 == other_a); } TEST_CASE("[Array] Nested array comparison") { // a1 = [[[1], 2], 3] Array a1 = build_array(build_array(build_array(1), 2), 3); Array a2 = a1.duplicate(true); // other_a = [[[1, 0], 2], 3] Array other_a = build_array(build_array(build_array(1, 0), 2), 3); // test both operator== and operator!= CHECK_EQ(a1, a1); // compare self CHECK_FALSE(a1 != a1); CHECK_EQ(a1, a2); // different equivalent arrays CHECK_FALSE(a1 != a2); CHECK_NE(a1, other_a); // different arrays with different content CHECK_FALSE(a1 == other_a); } TEST_CASE("[Array] Nested dictionary comparison") { // a1 = [{1: 2}, 3] Array a1 = build_array(build_dictionary(1, 2), 3); Array a2 = a1.duplicate(true); // other_a = [{1: 0}, 3] Array other_a = build_array(build_dictionary(1, 0), 3); // test both operator== and operator!= CHECK_EQ(a1, a1); // compare self CHECK_FALSE(a1 != a1); CHECK_EQ(a1, a2); // different equivalent arrays CHECK_FALSE(a1 != a2); CHECK_NE(a1, other_a); // different arrays with different content CHECK_FALSE(a1 == other_a); } TEST_CASE("[Array] Recursive comparison") { Array a1; a1.push_back(a1); Array a2; a2.push_back(a2); // Comparison should reach recursion limit ERR_PRINT_OFF; CHECK_EQ(a1, a2); CHECK_FALSE(a1 != a2); ERR_PRINT_ON; a1.push_back(1); a2.push_back(1); // Comparison should reach recursion limit ERR_PRINT_OFF; CHECK_EQ(a1, a2); CHECK_FALSE(a1 != a2); ERR_PRINT_ON; a1.push_back(1); a2.push_back(2); // Comparison should reach recursion limit ERR_PRINT_OFF; CHECK_NE(a1, a2); CHECK_FALSE(a1 == a2); ERR_PRINT_ON; // Break the recursivity otherwise Array tearndown will leak memory a1.clear(); a2.clear(); } TEST_CASE("[Array] Recursive self comparison") { Array a1; Array a2; a2.push_back(a1); a1.push_back(a2); CHECK_EQ(a1, a1); CHECK_FALSE(a1 != a1); // Break the recursivity otherwise Array tearndown will leak memory a1.clear(); a2.clear(); } TEST_CASE("[Array] Iteration") { Array a1 = build_array(1, 2, 3); Array a2 = build_array(1, 2, 3); int idx = 0; for (Variant &E : a1) { CHECK_EQ(int(a2[idx]), int(E)); idx++; } idx = 0; for (const Variant &E : (const Array &)a1) { CHECK_EQ(int(a2[idx]), int(E)); idx++; } a1.clear(); } TEST_CASE("[Array] Iteration and modification") { Array a1 = build_array(1, 2, 3); Array a2 = build_array(2, 3, 4); Array a3 = build_array(1, 2, 3); Array a4 = build_array(1, 2, 3); a3.make_read_only(); int idx = 0; for (Variant &E : a1) { E = a2[idx]; idx++; } CHECK_EQ(a1, a2); // Ensure read-only is respected. idx = 0; for (Variant &E : a3) { E = a2[idx]; } CHECK_EQ(a3, a4); a1.clear(); a2.clear(); a4.clear(); } } // namespace TestArray #endif // TEST_ARRAY_H