/**************************************************************************/ /* rasterizer_canvas_gles3.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "rasterizer_canvas_gles3.h" #ifdef GLES3_ENABLED #include "core/os/os.h" #include "rasterizer_gles3.h" #include "rasterizer_scene_gles3.h" #include "core/config/project_settings.h" #include "core/math/geometry_2d.h" #include "core/math/transform_interpolator.h" #include "servers/rendering/rendering_server_default.h" #include "storage/config.h" #include "storage/material_storage.h" #include "storage/mesh_storage.h" #include "storage/particles_storage.h" #include "storage/texture_storage.h" void RasterizerCanvasGLES3::_update_transform_2d_to_mat4(const Transform2D &p_transform, float *p_mat4) { p_mat4[0] = p_transform.columns[0][0]; p_mat4[1] = p_transform.columns[0][1]; p_mat4[2] = 0; p_mat4[3] = 0; p_mat4[4] = p_transform.columns[1][0]; p_mat4[5] = p_transform.columns[1][1]; p_mat4[6] = 0; p_mat4[7] = 0; p_mat4[8] = 0; p_mat4[9] = 0; p_mat4[10] = 1; p_mat4[11] = 0; p_mat4[12] = p_transform.columns[2][0]; p_mat4[13] = p_transform.columns[2][1]; p_mat4[14] = 0; p_mat4[15] = 1; } void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x4(const Transform2D &p_transform, float *p_mat2x4) { p_mat2x4[0] = p_transform.columns[0][0]; p_mat2x4[1] = p_transform.columns[1][0]; p_mat2x4[2] = 0; p_mat2x4[3] = p_transform.columns[2][0]; p_mat2x4[4] = p_transform.columns[0][1]; p_mat2x4[5] = p_transform.columns[1][1]; p_mat2x4[6] = 0; p_mat2x4[7] = p_transform.columns[2][1]; } void RasterizerCanvasGLES3::_update_transform_2d_to_mat2x3(const Transform2D &p_transform, float *p_mat2x3) { p_mat2x3[0] = p_transform.columns[0][0]; p_mat2x3[1] = p_transform.columns[0][1]; p_mat2x3[2] = p_transform.columns[1][0]; p_mat2x3[3] = p_transform.columns[1][1]; p_mat2x3[4] = p_transform.columns[2][0]; p_mat2x3[5] = p_transform.columns[2][1]; } void RasterizerCanvasGLES3::_update_transform_to_mat4(const Transform3D &p_transform, float *p_mat4) { p_mat4[0] = p_transform.basis.rows[0][0]; p_mat4[1] = p_transform.basis.rows[1][0]; p_mat4[2] = p_transform.basis.rows[2][0]; p_mat4[3] = 0; p_mat4[4] = p_transform.basis.rows[0][1]; p_mat4[5] = p_transform.basis.rows[1][1]; p_mat4[6] = p_transform.basis.rows[2][1]; p_mat4[7] = 0; p_mat4[8] = p_transform.basis.rows[0][2]; p_mat4[9] = p_transform.basis.rows[1][2]; p_mat4[10] = p_transform.basis.rows[2][2]; p_mat4[11] = 0; p_mat4[12] = p_transform.origin.x; p_mat4[13] = p_transform.origin.y; p_mat4[14] = p_transform.origin.z; p_mat4[15] = 1; } void RasterizerCanvasGLES3::canvas_render_items(RID p_to_render_target, Item *p_item_list, const Color &p_modulate, Light *p_light_list, Light *p_directional_light_list, const Transform2D &p_canvas_transform, RS::CanvasItemTextureFilter p_default_filter, RS::CanvasItemTextureRepeat p_default_repeat, bool p_snap_2d_vertices_to_pixel, bool &r_sdf_used, RenderingMethod::RenderInfo *r_render_info) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); Transform2D canvas_transform_inverse = p_canvas_transform.affine_inverse(); // Clear out any state that may have been left from the 3D pass. reset_canvas(); if (state.canvas_instance_data_buffers[state.current_data_buffer_index].fence != GLsync()) { GLint syncStatus; glGetSynciv(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, GL_SYNC_STATUS, 1, nullptr, &syncStatus); if (syncStatus == GL_UNSIGNALED) { // If older than 2 frames, wait for sync OpenGL can have up to 3 frames in flight, any more and we need to sync anyway. if (state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used < RSG::rasterizer->get_frame_number() - 2) { #ifndef WEB_ENABLED // On web, we do nothing as the glSubBufferData will force a sync anyway and WebGL does not like waiting. glClientWaitSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence, 0, 100000000); // wait for up to 100ms #endif state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number(); glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence); state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync(); } else { // Used in last frame or frame before that. OpenGL can get up to two frames behind, so these buffers may still be in use // Allocate a new buffer and use that. _allocate_instance_data_buffer(); } } else { // Already finished all rendering commands, we can use it. state.canvas_instance_data_buffers[state.current_data_buffer_index].last_frame_used = RSG::rasterizer->get_frame_number(); glDeleteSync(state.canvas_instance_data_buffers[state.current_data_buffer_index].fence); state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = GLsync(); } } //setup directional lights if exist uint32_t light_count = 0; uint32_t directional_light_count = 0; { Light *l = p_directional_light_list; uint32_t index = 0; while (l) { if (index == data.max_lights_per_render) { l->render_index_cache = -1; l = l->next_ptr; continue; } CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); if (!clight) { //unused or invalid texture l->render_index_cache = -1; l = l->next_ptr; ERR_CONTINUE(!clight); } Vector2 canvas_light_dir = l->xform_cache.columns[1].normalized(); state.light_uniforms[index].position[0] = -canvas_light_dir.x; state.light_uniforms[index].position[1] = -canvas_light_dir.y; _update_transform_2d_to_mat2x4(clight->shadow.directional_xform, state.light_uniforms[index].shadow_matrix); state.light_uniforms[index].height = l->height; //0..1 here for (int i = 0; i < 4; i++) { state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); state.light_uniforms[index].color[i] = l->color[i]; } state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate if (state.shadow_fb != 0) { state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; } else { state.light_uniforms[index].shadow_pixel_size = 1.0; state.light_uniforms[index].shadow_z_far_inv = 1.0; state.light_uniforms[index].shadow_y_ofs = 0; } state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; if (clight->shadow.enabled) { state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; } l->render_index_cache = index; index++; l = l->next_ptr; } light_count = index; directional_light_count = light_count; state.using_directional_lights = directional_light_count > 0; } //setup lights if exist { Light *l = p_light_list; uint32_t index = light_count; while (l) { if (index == data.max_lights_per_render) { l->render_index_cache = -1; l = l->next_ptr; continue; } CanvasLight *clight = canvas_light_owner.get_or_null(l->light_internal); if (!clight) { //unused or invalid texture l->render_index_cache = -1; l = l->next_ptr; ERR_CONTINUE(!clight); } Transform2D final_xform; if (!RSG::canvas->_interpolation_data.interpolation_enabled || !l->interpolated) { final_xform = l->xform_curr; } else { real_t f = Engine::get_singleton()->get_physics_interpolation_fraction(); TransformInterpolator::interpolate_transform_2d(l->xform_prev, l->xform_curr, final_xform, f); } // Convert light position to canvas coordinates, as all computation is done in canvas coordinates to avoid precision loss. Vector2 canvas_light_pos = p_canvas_transform.xform(final_xform.get_origin()); state.light_uniforms[index].position[0] = canvas_light_pos.x; state.light_uniforms[index].position[1] = canvas_light_pos.y; _update_transform_2d_to_mat2x4(l->light_shader_xform.affine_inverse(), state.light_uniforms[index].matrix); _update_transform_2d_to_mat2x4(l->xform_cache.affine_inverse(), state.light_uniforms[index].shadow_matrix); state.light_uniforms[index].height = l->height * (p_canvas_transform.columns[0].length() + p_canvas_transform.columns[1].length()) * 0.5; //approximate height conversion to the canvas size, since all calculations are done in canvas coords to avoid precision loss for (int i = 0; i < 4; i++) { state.light_uniforms[index].shadow_color[i] = uint8_t(CLAMP(int32_t(l->shadow_color[i] * 255.0), 0, 255)); state.light_uniforms[index].color[i] = l->color[i]; } state.light_uniforms[index].color[3] *= l->energy; //use alpha for energy, so base color can go separate if (state.shadow_fb != 0) { state.light_uniforms[index].shadow_pixel_size = (1.0 / state.shadow_texture_size) * (1.0 + l->shadow_smooth); state.light_uniforms[index].shadow_z_far_inv = 1.0 / clight->shadow.z_far; state.light_uniforms[index].shadow_y_ofs = clight->shadow.y_offset; } else { state.light_uniforms[index].shadow_pixel_size = 1.0; state.light_uniforms[index].shadow_z_far_inv = 1.0; state.light_uniforms[index].shadow_y_ofs = 0; } state.light_uniforms[index].flags = l->blend_mode << LIGHT_FLAGS_BLEND_SHIFT; state.light_uniforms[index].flags |= l->shadow_filter << LIGHT_FLAGS_FILTER_SHIFT; if (clight->shadow.enabled) { state.light_uniforms[index].flags |= LIGHT_FLAGS_HAS_SHADOW; } if (clight->texture.is_valid()) { Rect2 atlas_rect = GLES3::TextureStorage::get_singleton()->texture_atlas_get_texture_rect(clight->texture); state.light_uniforms[index].atlas_rect[0] = atlas_rect.position.x; state.light_uniforms[index].atlas_rect[1] = atlas_rect.position.y; state.light_uniforms[index].atlas_rect[2] = atlas_rect.size.width; state.light_uniforms[index].atlas_rect[3] = atlas_rect.size.height; } else { state.light_uniforms[index].atlas_rect[0] = 0; state.light_uniforms[index].atlas_rect[1] = 0; state.light_uniforms[index].atlas_rect[2] = 0; state.light_uniforms[index].atlas_rect[3] = 0; } l->render_index_cache = index; index++; l = l->next_ptr; } light_count = index; } if (light_count > 0) { glBindBufferBase(GL_UNIFORM_BUFFER, LIGHT_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].light_ubo); #ifdef WEB_ENABLED glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, state.light_uniforms); #else // On Desktop and mobile we map the memory without synchronizing for maximum speed. void *ubo = glMapBufferRange(GL_UNIFORM_BUFFER, 0, sizeof(LightUniform) * light_count, GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); memcpy(ubo, state.light_uniforms, sizeof(LightUniform) * light_count); glUnmapBuffer(GL_UNIFORM_BUFFER); #endif GLuint texture_atlas = texture_storage->texture_atlas_get_texture(); if (texture_atlas == 0) { GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); texture_atlas = tex->tex_id; } glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2); glBindTexture(GL_TEXTURE_2D, texture_atlas); GLuint shadow_tex = state.shadow_texture; if (shadow_tex == 0) { GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); shadow_tex = tex->tex_id; } glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3); glBindTexture(GL_TEXTURE_2D, shadow_tex); } { //update canvas state uniform buffer StateBuffer state_buffer; Size2i ssize = texture_storage->render_target_get_size(p_to_render_target); // If we've overridden the render target's color texture, then we need // to invert the Y axis, so 2D texture appear right side up. // We're probably rendering directly to an XR device. float y_scale = texture_storage->render_target_get_override_color(p_to_render_target).is_valid() ? -2.0f : 2.0f; Transform3D screen_transform; screen_transform.translate_local(-(ssize.width / 2.0f), -(ssize.height / 2.0f), 0.0f); screen_transform.scale(Vector3(2.0f / ssize.width, y_scale / ssize.height, 1.0f)); _update_transform_to_mat4(screen_transform, state_buffer.screen_transform); _update_transform_2d_to_mat4(p_canvas_transform, state_buffer.canvas_transform); Transform2D normal_transform = p_canvas_transform; normal_transform.columns[0].normalize(); normal_transform.columns[1].normalize(); normal_transform.columns[2] = Vector2(); _update_transform_2d_to_mat4(normal_transform, state_buffer.canvas_normal_transform); state_buffer.canvas_modulate[0] = p_modulate.r; state_buffer.canvas_modulate[1] = p_modulate.g; state_buffer.canvas_modulate[2] = p_modulate.b; state_buffer.canvas_modulate[3] = p_modulate.a; Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); state_buffer.screen_pixel_size[0] = 1.0 / render_target_size.x; state_buffer.screen_pixel_size[1] = 1.0 / render_target_size.y; state_buffer.time = state.time; state_buffer.use_pixel_snap = p_snap_2d_vertices_to_pixel; state_buffer.directional_light_count = directional_light_count; Vector2 canvas_scale = p_canvas_transform.get_scale(); state_buffer.sdf_to_screen[0] = render_target_size.width / canvas_scale.x; state_buffer.sdf_to_screen[1] = render_target_size.height / canvas_scale.y; state_buffer.screen_to_sdf[0] = 1.0 / state_buffer.sdf_to_screen[0]; state_buffer.screen_to_sdf[1] = 1.0 / state_buffer.sdf_to_screen[1]; Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_to_render_target); Rect2 sdf_tex_rect(sdf_rect.position / canvas_scale, sdf_rect.size / canvas_scale); state_buffer.sdf_to_tex[0] = 1.0 / sdf_tex_rect.size.width; state_buffer.sdf_to_tex[1] = 1.0 / sdf_tex_rect.size.height; state_buffer.sdf_to_tex[2] = -sdf_tex_rect.position.x / sdf_tex_rect.size.width; state_buffer.sdf_to_tex[3] = -sdf_tex_rect.position.y / sdf_tex_rect.size.height; state_buffer.tex_to_sdf = 1.0 / ((canvas_scale.x + canvas_scale.y) * 0.5); glBindBufferBase(GL_UNIFORM_BUFFER, BASE_UNIFORM_LOCATION, state.canvas_instance_data_buffers[state.current_data_buffer_index].state_ubo); glBufferData(GL_UNIFORM_BUFFER, sizeof(StateBuffer), &state_buffer, GL_STREAM_DRAW); GLuint global_buffer = material_storage->global_shader_parameters_get_uniform_buffer(); glBindBufferBase(GL_UNIFORM_BUFFER, GLOBAL_UNIFORM_LOCATION, global_buffer); glBindBuffer(GL_UNIFORM_BUFFER, 0); } glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 5); glBindTexture(GL_TEXTURE_2D, texture_storage->render_target_get_sdf_texture(p_to_render_target)); { state.default_filter = p_default_filter; state.default_repeat = p_default_repeat; } Size2 render_target_size = texture_storage->render_target_get_size(p_to_render_target); glViewport(0, 0, render_target_size.x, render_target_size.y); r_sdf_used = false; int item_count = 0; bool backbuffer_cleared = false; bool time_used = false; bool material_screen_texture_cached = false; bool material_screen_texture_mipmaps_cached = false; Rect2 back_buffer_rect; bool backbuffer_copy = false; bool backbuffer_gen_mipmaps = false; bool update_skeletons = false; Item *ci = p_item_list; Item *canvas_group_owner = nullptr; bool skip_item = false; state.last_item_index = 0; while (ci) { if (ci->copy_back_buffer && canvas_group_owner == nullptr) { backbuffer_copy = true; if (ci->copy_back_buffer->full) { back_buffer_rect = Rect2(); } else { back_buffer_rect = ci->copy_back_buffer->rect; } } // Check material for something that may change flow of rendering, but do not bind for now. RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; if (material.is_valid()) { GLES3::CanvasMaterialData *md = static_cast(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); if (md && md->shader_data->valid) { if (md->shader_data->uses_screen_texture && canvas_group_owner == nullptr) { if (!material_screen_texture_cached) { backbuffer_copy = true; back_buffer_rect = Rect2(); backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; } else if (!material_screen_texture_mipmaps_cached) { backbuffer_gen_mipmaps = md->shader_data->uses_screen_texture_mipmaps; } } if (md->shader_data->uses_sdf) { r_sdf_used = true; } if (md->shader_data->uses_time) { time_used = true; } } } if (ci->skeleton.is_valid()) { const Item::Command *c = ci->commands; while (c) { if (c->type == Item::Command::TYPE_MESH) { const Item::CommandMesh *cm = static_cast(c); if (cm->mesh_instance.is_valid()) { mesh_storage->mesh_instance_check_for_update(cm->mesh_instance); mesh_storage->mesh_instance_set_canvas_item_transform(cm->mesh_instance, canvas_transform_inverse * ci->final_transform); update_skeletons = true; } } c = c->next; } } if (ci->canvas_group_owner != nullptr) { if (canvas_group_owner == nullptr) { if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } // Canvas group begins here, render until before this item _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info, material_screen_texture_mipmaps_cached); item_count = 0; if (ci->canvas_group_owner->canvas_group->mode != RS::CANVAS_GROUP_MODE_TRANSPARENT) { Rect2i group_rect = ci->canvas_group_owner->global_rect_cache; texture_storage->render_target_copy_to_back_buffer(p_to_render_target, group_rect, false); if (ci->canvas_group_owner->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { ci->canvas_group_owner->use_canvas_group = false; items[item_count++] = ci->canvas_group_owner; } } else if (!backbuffer_cleared) { texture_storage->render_target_clear_back_buffer(p_to_render_target, Rect2i(), Color(0, 0, 0, 0)); backbuffer_cleared = true; } backbuffer_copy = false; canvas_group_owner = ci->canvas_group_owner; //continue until owner found } ci->canvas_group_owner = nullptr; //must be cleared } if (canvas_group_owner == nullptr && ci->canvas_group != nullptr && ci->canvas_group->mode != RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { skip_item = true; } if (ci == canvas_group_owner) { if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, true, r_render_info, material_screen_texture_mipmaps_cached); item_count = 0; if (ci->canvas_group->blur_mipmaps) { texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, ci->global_rect_cache); } canvas_group_owner = nullptr; // Backbuffer is dirty now and needs to be re-cleared if another CanvasGroup needs it. backbuffer_cleared = false; // Tell the renderer to paint this as a canvas group ci->use_canvas_group = true; } else { ci->use_canvas_group = false; } if (backbuffer_copy) { if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } //render anything pending, including clearing if no items _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, false, r_render_info, material_screen_texture_mipmaps_cached); item_count = 0; texture_storage->render_target_copy_to_back_buffer(p_to_render_target, back_buffer_rect, backbuffer_gen_mipmaps); backbuffer_copy = false; material_screen_texture_cached = true; // After a backbuffer copy, screen texture makes no further copies. material_screen_texture_mipmaps_cached = backbuffer_gen_mipmaps; backbuffer_gen_mipmaps = false; } if (backbuffer_gen_mipmaps) { texture_storage->render_target_gen_back_buffer_mipmaps(p_to_render_target, back_buffer_rect); backbuffer_gen_mipmaps = false; material_screen_texture_mipmaps_cached = true; } // just add all items for now if (skip_item) { skip_item = false; } else { items[item_count++] = ci; } if (!ci->next || item_count == MAX_RENDER_ITEMS - 1) { if (update_skeletons) { mesh_storage->update_mesh_instances(); update_skeletons = false; } _render_items(p_to_render_target, item_count, canvas_transform_inverse, p_light_list, r_sdf_used, canvas_group_owner != nullptr, r_render_info, material_screen_texture_mipmaps_cached); //then reset item_count = 0; } ci = ci->next; } if (time_used) { RenderingServerDefault::redraw_request(); } state.canvas_instance_data_buffers[state.current_data_buffer_index].fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); // Clear out state used in 2D pass reset_canvas(); state.current_data_buffer_index = (state.current_data_buffer_index + 1) % state.canvas_instance_data_buffers.size(); state.current_instance_buffer_index = 0; } void RasterizerCanvasGLES3::_render_items(RID p_to_render_target, int p_item_count, const Transform2D &p_canvas_transform_inverse, Light *p_lights, bool &r_sdf_used, bool p_to_backbuffer, RenderingMethod::RenderInfo *r_render_info, bool p_backbuffer_has_mipmaps) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); canvas_begin(p_to_render_target, p_to_backbuffer, p_backbuffer_has_mipmaps); if (p_item_count <= 0) { // Nothing to draw, just call canvas_begin() to clear the render target and return. return; } uint32_t index = 0; Item *current_clip = nullptr; GLES3::CanvasShaderData *shader_data_cache = nullptr; // Record Batches. // First item always forms its own batch. bool batch_broken = false; _new_batch(batch_broken); // Override the start position and index as we want to start from where we finished off last time. state.canvas_instance_batches[state.current_batch_index].start = state.last_item_index; index = 0; for (int i = 0; i < p_item_count; i++) { Item *ci = items[i]; if (ci->final_clip_owner != state.canvas_instance_batches[state.current_batch_index].clip) { _new_batch(batch_broken); state.canvas_instance_batches[state.current_batch_index].clip = ci->final_clip_owner; current_clip = ci->final_clip_owner; } RID material = ci->material_owner == nullptr ? ci->material : ci->material_owner->material; if (ci->use_canvas_group) { if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_AND_DRAW) { material = default_clip_children_material; } else { if (material.is_null()) { if (ci->canvas_group->mode == RS::CANVAS_GROUP_MODE_CLIP_ONLY) { material = default_clip_children_material; } else { material = default_canvas_group_material; } } } } if (material != state.canvas_instance_batches[state.current_batch_index].material) { _new_batch(batch_broken); GLES3::CanvasMaterialData *material_data = nullptr; if (material.is_valid()) { material_data = static_cast(material_storage->material_get_data(material, RS::SHADER_CANVAS_ITEM)); } shader_data_cache = nullptr; if (material_data) { if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { shader_data_cache = material_data->shader_data; } } state.canvas_instance_batches[state.current_batch_index].material = material; state.canvas_instance_batches[state.current_batch_index].material_data = material_data; if (shader_data_cache) { state.canvas_instance_batches[state.current_batch_index].vertex_input_mask = shader_data_cache->vertex_input_mask; } } GLES3::CanvasShaderData::BlendMode blend_mode = shader_data_cache ? shader_data_cache->blend_mode : GLES3::CanvasShaderData::BLEND_MODE_MIX; if (!ci->repeat_size.x && !ci->repeat_size.y) { _record_item_commands(ci, p_to_render_target, p_canvas_transform_inverse, current_clip, blend_mode, p_lights, index, batch_broken, r_sdf_used, Point2()); } else { Point2 start_pos = ci->repeat_size * -(ci->repeat_times / 2); Point2 offset; int repeat_times_x = ci->repeat_size.x ? ci->repeat_times : 0; int repeat_times_y = ci->repeat_size.y ? ci->repeat_times : 0; for (int ry = 0; ry <= repeat_times_y; ry++) { offset.y = start_pos.y + ry * ci->repeat_size.y; for (int rx = 0; rx <= repeat_times_x; rx++) { offset.x = start_pos.x + rx * ci->repeat_size.x; _record_item_commands(ci, p_to_render_target, p_canvas_transform_inverse, current_clip, blend_mode, p_lights, index, batch_broken, r_sdf_used, offset); } } } } if (index == 0) { // Nothing to render, just return. state.current_batch_index = 0; state.canvas_instance_batches.clear(); return; } // Copy over all data needed for rendering. glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]); #ifdef WEB_ENABLED glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * index, state.instance_data_array); #else // On Desktop and mobile we map the memory without synchronizing for maximum speed. void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); memcpy(buffer, state.instance_data_array, index * sizeof(InstanceData)); glUnmapBuffer(GL_ARRAY_BUFFER); #endif glDisable(GL_SCISSOR_TEST); current_clip = nullptr; GLES3::CanvasShaderData::BlendMode last_blend_mode = GLES3::CanvasShaderData::BLEND_MODE_MIX; Color last_blend_color; state.current_tex = RID(); for (uint32_t i = 0; i <= state.current_batch_index; i++) { // Skipping when there is no instances. if (state.canvas_instance_batches[i].instance_count == 0) { continue; } //setup clip if (current_clip != state.canvas_instance_batches[i].clip) { current_clip = state.canvas_instance_batches[i].clip; if (current_clip) { glEnable(GL_SCISSOR_TEST); glScissor(current_clip->final_clip_rect.position.x, current_clip->final_clip_rect.position.y, current_clip->final_clip_rect.size.x, current_clip->final_clip_rect.size.y); } else { glDisable(GL_SCISSOR_TEST); } } GLES3::CanvasMaterialData *material_data = state.canvas_instance_batches[i].material_data; CanvasShaderGLES3::ShaderVariant variant = state.canvas_instance_batches[i].shader_variant; uint64_t specialization = 0; specialization |= uint64_t(state.canvas_instance_batches[i].lights_disabled); specialization |= uint64_t(!GLES3::Config::get_singleton()->float_texture_supported) << 1; RID shader_version = data.canvas_shader_default_version; if (material_data) { if (material_data->shader_data->version.is_valid() && material_data->shader_data->valid) { // Bind uniform buffer and textures material_data->bind_uniforms(); shader_version = material_data->shader_data->version; } } bool success = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_bind_shader(shader_version, variant, specialization); if (!success) { continue; } GLES3::CanvasShaderData::BlendMode blend_mode = state.canvas_instance_batches[i].blend_mode; Color blend_color = state.canvas_instance_batches[i].blend_color; if (last_blend_mode != blend_mode || last_blend_color != blend_color) { if (last_blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { // re-enable it glEnable(GL_BLEND); } else if (blend_mode == GLES3::CanvasShaderData::BLEND_MODE_DISABLED) { // disable it glDisable(GL_BLEND); } switch (blend_mode) { case GLES3::CanvasShaderData::BLEND_MODE_DISABLED: { // Nothing to do here. } break; case GLES3::CanvasShaderData::BLEND_MODE_LCD: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFuncSeparate(GL_CONSTANT_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_ZERO, GL_ONE); } glBlendColor(blend_color.r, blend_color.g, blend_color.b, blend_color.a); } break; case GLES3::CanvasShaderData::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); if (state.transparent_render_target) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_SRC_ALPHA, GL_ONE); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); } else { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); } } break; case GLES3::CanvasShaderData::BLEND_MODE_PMALPHA: { glBlendEquation(GL_FUNC_ADD); if (state.transparent_render_target) { glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFuncSeparate(GL_ONE, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); } } break; } last_blend_mode = blend_mode; last_blend_color = blend_color; } _render_batch(p_lights, i, r_render_info); } glDisable(GL_SCISSOR_TEST); state.current_batch_index = 0; state.canvas_instance_batches.clear(); state.last_item_index += index; } void RasterizerCanvasGLES3::_record_item_commands(const Item *p_item, RID p_render_target, const Transform2D &p_canvas_transform_inverse, Item *¤t_clip, GLES3::CanvasShaderData::BlendMode p_blend_mode, Light *p_lights, uint32_t &r_index, bool &r_batch_broken, bool &r_sdf_used, const Point2 &p_repeat_offset) { RenderingServer::CanvasItemTextureFilter texture_filter = p_item->texture_filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? state.default_filter : p_item->texture_filter; if (texture_filter != state.canvas_instance_batches[state.current_batch_index].filter) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].filter = texture_filter; } RenderingServer::CanvasItemTextureRepeat texture_repeat = p_item->texture_repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? state.default_repeat : p_item->texture_repeat; if (texture_repeat != state.canvas_instance_batches[state.current_batch_index].repeat) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].repeat = texture_repeat; } Transform2D base_transform = p_item->final_transform; if (p_item->repeat_source_item && (p_repeat_offset.x || p_repeat_offset.y)) { base_transform.columns[2] += p_item->repeat_source_item->final_transform.basis_xform(p_repeat_offset); } base_transform = p_canvas_transform_inverse * base_transform; Transform2D draw_transform; // Used by transform command Color base_color = p_item->final_modulate; uint32_t base_flags = 0; Size2 texpixel_size; bool reclip = false; bool skipping = false; // TODO: consider making lights a per-batch property and then baking light operations in the shader for better performance. uint32_t lights[4] = { 0, 0, 0, 0 }; uint16_t light_count = 0; { Light *light = p_lights; while (light) { if (light->render_index_cache >= 0 && p_item->light_mask & light->item_mask && p_item->z_final >= light->z_min && p_item->z_final <= light->z_max && p_item->global_rect_cache.intersects_transformed(light->xform_cache, light->rect_cache)) { uint32_t light_index = light->render_index_cache; lights[light_count >> 2] |= light_index << ((light_count & 3) * 8); light_count++; if (light_count == data.max_lights_per_item - 1) { break; } } light = light->next_ptr; } base_flags |= light_count << FLAGS_LIGHT_COUNT_SHIFT; } bool lights_disabled = light_count == 0 && !state.using_directional_lights; if (lights_disabled != state.canvas_instance_batches[state.current_batch_index].lights_disabled) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].lights_disabled = lights_disabled; } const Item::Command *c = p_item->commands; while (c) { if (skipping && c->type != Item::Command::TYPE_ANIMATION_SLICE) { c = c->next; continue; } if (c->type != Item::Command::TYPE_MESH) { // For Meshes, this gets updated below. _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); } // Zero out most fields. for (int i = 0; i < 4; i++) { state.instance_data_array[r_index].modulation[i] = 0.0; state.instance_data_array[r_index].ninepatch_margins[i] = 0.0; state.instance_data_array[r_index].src_rect[i] = 0.0; state.instance_data_array[r_index].dst_rect[i] = 0.0; state.instance_data_array[r_index].lights[i] = uint32_t(0); } state.instance_data_array[r_index].color_texture_pixel_size[0] = 0.0; state.instance_data_array[r_index].color_texture_pixel_size[1] = 0.0; state.instance_data_array[r_index].pad[0] = 0.0; state.instance_data_array[r_index].pad[1] = 0.0; state.instance_data_array[r_index].lights[0] = lights[0]; state.instance_data_array[r_index].lights[1] = lights[1]; state.instance_data_array[r_index].lights[2] = lights[2]; state.instance_data_array[r_index].lights[3] = lights[3]; state.instance_data_array[r_index].flags = base_flags | (state.instance_data_array[r_index == 0 ? 0 : r_index - 1].flags & (FLAGS_DEFAULT_NORMAL_MAP_USED | FLAGS_DEFAULT_SPECULAR_MAP_USED)); // Reset on each command for safety, keep canvastexture binding config. Color blend_color = base_color; GLES3::CanvasShaderData::BlendMode blend_mode = p_blend_mode; if (c->type == Item::Command::TYPE_RECT) { const Item::CommandRect *rect = static_cast(c); if (rect->flags & CANVAS_RECT_LCD) { blend_mode = GLES3::CanvasShaderData::BLEND_MODE_LCD; blend_color = rect->modulate * base_color; } } if (blend_mode != state.canvas_instance_batches[state.current_batch_index].blend_mode || blend_color != state.canvas_instance_batches[state.current_batch_index].blend_color) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].blend_mode = blend_mode; state.canvas_instance_batches[state.current_batch_index].blend_color = blend_color; } switch (c->type) { case Item::Command::TYPE_RECT: { const Item::CommandRect *rect = static_cast(c); if (rect->flags & CANVAS_RECT_TILE && state.canvas_instance_batches[state.current_batch_index].repeat != RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].repeat = RenderingServer::CanvasItemTextureRepeat::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED; } if (rect->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_RECT) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].tex = rect->texture; state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_RECT; state.canvas_instance_batches[state.current_batch_index].command = c; state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_QUAD; } _prepare_canvas_texture(rect->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); Rect2 src_rect; Rect2 dst_rect; if (rect->texture != RID()) { src_rect = (rect->flags & CANVAS_RECT_REGION) ? Rect2(rect->source.position * texpixel_size, rect->source.size * texpixel_size) : Rect2(0, 0, 1, 1); dst_rect = Rect2(rect->rect.position, rect->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } if (rect->flags & CANVAS_RECT_FLIP_H) { src_rect.size.x *= -1; state.instance_data_array[r_index].flags |= FLAGS_FLIP_H; } if (rect->flags & CANVAS_RECT_FLIP_V) { src_rect.size.y *= -1; state.instance_data_array[r_index].flags |= FLAGS_FLIP_V; } if (rect->flags & CANVAS_RECT_TRANSPOSE) { state.instance_data_array[r_index].flags |= FLAGS_TRANSPOSE_RECT; } if (rect->flags & CANVAS_RECT_CLIP_UV) { state.instance_data_array[r_index].flags |= FLAGS_CLIP_RECT_UV; } } else { dst_rect = Rect2(rect->rect.position, rect->rect.size); if (dst_rect.size.width < 0) { dst_rect.position.x += dst_rect.size.width; dst_rect.size.width *= -1; } if (dst_rect.size.height < 0) { dst_rect.position.y += dst_rect.size.height; dst_rect.size.height *= -1; } src_rect = Rect2(0, 0, 1, 1); } if (rect->flags & CANVAS_RECT_MSDF) { state.instance_data_array[r_index].flags |= FLAGS_USE_MSDF; state.instance_data_array[r_index].msdf[0] = rect->px_range; // Pixel range. state.instance_data_array[r_index].msdf[1] = rect->outline; // Outline size. state.instance_data_array[r_index].msdf[2] = 0.f; // Reserved. state.instance_data_array[r_index].msdf[3] = 0.f; // Reserved. } else if (rect->flags & CANVAS_RECT_LCD) { state.instance_data_array[r_index].flags |= FLAGS_USE_LCD; } state.instance_data_array[r_index].modulation[0] = rect->modulate.r * base_color.r; state.instance_data_array[r_index].modulation[1] = rect->modulate.g * base_color.g; state.instance_data_array[r_index].modulation[2] = rect->modulate.b * base_color.b; state.instance_data_array[r_index].modulation[3] = rect->modulate.a * base_color.a; state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; _add_to_batch(r_index, r_batch_broken); } break; case Item::Command::TYPE_NINEPATCH: { const Item::CommandNinePatch *np = static_cast(c); if (np->texture != state.canvas_instance_batches[state.current_batch_index].tex || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_NINEPATCH) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].tex = np->texture; state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_NINEPATCH; state.canvas_instance_batches[state.current_batch_index].command = c; state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_NINEPATCH; } _prepare_canvas_texture(np->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); Rect2 src_rect; Rect2 dst_rect(np->rect.position.x, np->rect.position.y, np->rect.size.x, np->rect.size.y); if (np->texture == RID()) { texpixel_size = Size2(1, 1); src_rect = Rect2(0, 0, 1, 1); } else { if (np->source != Rect2()) { src_rect = Rect2(np->source.position.x * texpixel_size.width, np->source.position.y * texpixel_size.height, np->source.size.x * texpixel_size.width, np->source.size.y * texpixel_size.height); state.instance_data_array[r_index].color_texture_pixel_size[0] = 1.0 / np->source.size.width; state.instance_data_array[r_index].color_texture_pixel_size[1] = 1.0 / np->source.size.height; } else { src_rect = Rect2(0, 0, 1, 1); } } state.instance_data_array[r_index].modulation[0] = np->color.r * base_color.r; state.instance_data_array[r_index].modulation[1] = np->color.g * base_color.g; state.instance_data_array[r_index].modulation[2] = np->color.b * base_color.b; state.instance_data_array[r_index].modulation[3] = np->color.a * base_color.a; state.instance_data_array[r_index].src_rect[0] = src_rect.position.x; state.instance_data_array[r_index].src_rect[1] = src_rect.position.y; state.instance_data_array[r_index].src_rect[2] = src_rect.size.width; state.instance_data_array[r_index].src_rect[3] = src_rect.size.height; state.instance_data_array[r_index].dst_rect[0] = dst_rect.position.x; state.instance_data_array[r_index].dst_rect[1] = dst_rect.position.y; state.instance_data_array[r_index].dst_rect[2] = dst_rect.size.width; state.instance_data_array[r_index].dst_rect[3] = dst_rect.size.height; state.instance_data_array[r_index].flags |= int(np->axis_x) << FLAGS_NINEPATCH_H_MODE_SHIFT; state.instance_data_array[r_index].flags |= int(np->axis_y) << FLAGS_NINEPATCH_V_MODE_SHIFT; if (np->draw_center) { state.instance_data_array[r_index].flags |= FLAGS_NINEPACH_DRAW_CENTER; } state.instance_data_array[r_index].ninepatch_margins[0] = np->margin[SIDE_LEFT]; state.instance_data_array[r_index].ninepatch_margins[1] = np->margin[SIDE_TOP]; state.instance_data_array[r_index].ninepatch_margins[2] = np->margin[SIDE_RIGHT]; state.instance_data_array[r_index].ninepatch_margins[3] = np->margin[SIDE_BOTTOM]; _add_to_batch(r_index, r_batch_broken); // Restore if overridden. state.instance_data_array[r_index].color_texture_pixel_size[0] = texpixel_size.x; state.instance_data_array[r_index].color_texture_pixel_size[1] = texpixel_size.y; } break; case Item::Command::TYPE_POLYGON: { const Item::CommandPolygon *polygon = static_cast(c); // Polygon's can't be batched, so always create a new batch _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].tex = polygon->texture; state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_POLYGON; state.canvas_instance_batches[state.current_batch_index].command = c; state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES; _prepare_canvas_texture(polygon->texture, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); state.instance_data_array[r_index].modulation[0] = base_color.r; state.instance_data_array[r_index].modulation[1] = base_color.g; state.instance_data_array[r_index].modulation[2] = base_color.b; state.instance_data_array[r_index].modulation[3] = base_color.a; for (int j = 0; j < 4; j++) { state.instance_data_array[r_index].src_rect[j] = 0; state.instance_data_array[r_index].dst_rect[j] = 0; state.instance_data_array[r_index].ninepatch_margins[j] = 0; } _add_to_batch(r_index, r_batch_broken); } break; case Item::Command::TYPE_PRIMITIVE: { const Item::CommandPrimitive *primitive = static_cast(c); if (primitive->point_count != state.canvas_instance_batches[state.current_batch_index].primitive_points || state.canvas_instance_batches[state.current_batch_index].command_type != Item::Command::TYPE_PRIMITIVE) { _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].tex = primitive->texture; state.canvas_instance_batches[state.current_batch_index].primitive_points = primitive->point_count; state.canvas_instance_batches[state.current_batch_index].command_type = Item::Command::TYPE_PRIMITIVE; state.canvas_instance_batches[state.current_batch_index].command = c; state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_PRIMITIVE; } _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); for (uint32_t j = 0; j < MIN(3u, primitive->point_count); j++) { state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j].x; state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j].y; state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j].x; state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j].y; Color col = primitive->colors[j] * base_color; state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); } _add_to_batch(r_index, r_batch_broken); if (primitive->point_count == 4) { // Reset base data. _update_transform_2d_to_mat2x3(base_transform * draw_transform, state.instance_data_array[r_index].world); _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); for (uint32_t j = 0; j < 3; j++) { int offset = j == 0 ? 0 : 1; // Second triangle in the quad. Uses vertices 0, 2, 3. state.instance_data_array[r_index].points[j * 2 + 0] = primitive->points[j + offset].x; state.instance_data_array[r_index].points[j * 2 + 1] = primitive->points[j + offset].y; state.instance_data_array[r_index].uvs[j * 2 + 0] = primitive->uvs[j + offset].x; state.instance_data_array[r_index].uvs[j * 2 + 1] = primitive->uvs[j + offset].y; Color col = primitive->colors[j + offset] * base_color; state.instance_data_array[r_index].colors[j * 2 + 0] = (uint32_t(Math::make_half_float(col.g)) << 16) | Math::make_half_float(col.r); state.instance_data_array[r_index].colors[j * 2 + 1] = (uint32_t(Math::make_half_float(col.a)) << 16) | Math::make_half_float(col.b); } _add_to_batch(r_index, r_batch_broken); } } break; case Item::Command::TYPE_MESH: case Item::Command::TYPE_MULTIMESH: case Item::Command::TYPE_PARTICLES: { // Mesh's can't be batched, so always create a new batch _new_batch(r_batch_broken); Color modulate(1, 1, 1, 1); state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_ATTRIBUTES; if (c->type == Item::Command::TYPE_MESH) { const Item::CommandMesh *m = static_cast(c); state.canvas_instance_batches[state.current_batch_index].tex = m->texture; _update_transform_2d_to_mat2x3(base_transform * draw_transform * m->transform, state.instance_data_array[r_index].world); modulate = m->modulate; } else if (c->type == Item::Command::TYPE_MULTIMESH) { const Item::CommandMultiMesh *mm = static_cast(c); state.canvas_instance_batches[state.current_batch_index].tex = mm->texture; state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED; if (GLES3::MeshStorage::get_singleton()->multimesh_uses_colors(mm->multimesh)) { state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS; } if (GLES3::MeshStorage::get_singleton()->multimesh_uses_custom_data(mm->multimesh)) { state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; } } else if (c->type == Item::Command::TYPE_PARTICLES) { GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); const Item::CommandParticles *pt = static_cast(c); RID particles = pt->particles; state.canvas_instance_batches[state.current_batch_index].tex = pt->texture; state.canvas_instance_batches[state.current_batch_index].shader_variant = CanvasShaderGLES3::MODE_INSTANCED; state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_COLORS; state.instance_data_array[r_index].flags |= FLAGS_INSTANCING_HAS_CUSTOM_DATA; if (particles_storage->particles_has_collision(particles) && texture_storage->render_target_is_sdf_enabled(p_render_target)) { // Pass collision information. Transform2D xform = p_item->final_transform; GLuint sdf_texture = texture_storage->render_target_get_sdf_texture(p_render_target); Rect2 to_screen; { Rect2 sdf_rect = texture_storage->render_target_get_sdf_rect(p_render_target); to_screen.size = Vector2(1.0 / sdf_rect.size.width, 1.0 / sdf_rect.size.height); to_screen.position = -sdf_rect.position * to_screen.size; } particles_storage->particles_set_canvas_sdf_collision(pt->particles, true, xform, to_screen, sdf_texture); } else { particles_storage->particles_set_canvas_sdf_collision(pt->particles, false, Transform2D(), Rect2(), 0); } r_sdf_used |= particles_storage->particles_has_collision(particles); } state.canvas_instance_batches[state.current_batch_index].command = c; state.canvas_instance_batches[state.current_batch_index].command_type = c->type; _prepare_canvas_texture(state.canvas_instance_batches[state.current_batch_index].tex, state.canvas_instance_batches[state.current_batch_index].filter, state.canvas_instance_batches[state.current_batch_index].repeat, r_index, texpixel_size); state.instance_data_array[r_index].modulation[0] = base_color.r * modulate.r; state.instance_data_array[r_index].modulation[1] = base_color.g * modulate.g; state.instance_data_array[r_index].modulation[2] = base_color.b * modulate.b; state.instance_data_array[r_index].modulation[3] = base_color.a * modulate.a; for (int j = 0; j < 4; j++) { state.instance_data_array[r_index].src_rect[j] = 0; state.instance_data_array[r_index].dst_rect[j] = 0; state.instance_data_array[r_index].ninepatch_margins[j] = 0; } _add_to_batch(r_index, r_batch_broken); } break; case Item::Command::TYPE_TRANSFORM: { const Item::CommandTransform *transform = static_cast(c); draw_transform = transform->xform; } break; case Item::Command::TYPE_CLIP_IGNORE: { const Item::CommandClipIgnore *ci = static_cast(c); if (current_clip) { if (ci->ignore != reclip) { _new_batch(r_batch_broken); if (ci->ignore) { state.canvas_instance_batches[state.current_batch_index].clip = nullptr; reclip = true; } else { state.canvas_instance_batches[state.current_batch_index].clip = current_clip; reclip = false; } } } } break; case Item::Command::TYPE_ANIMATION_SLICE: { const Item::CommandAnimationSlice *as = static_cast(c); double current_time = RSG::rasterizer->get_total_time(); double local_time = Math::fposmod(current_time - as->offset, as->animation_length); skipping = !(local_time >= as->slice_begin && local_time < as->slice_end); RenderingServerDefault::redraw_request(); // animation visible means redraw request } break; } c = c->next; r_batch_broken = false; } if (current_clip && reclip) { //will make it re-enable clipping if needed afterwards current_clip = nullptr; } } _FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) { static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 }; static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 }; return (p_indices - subtractor[p_primitive]) / divisor[p_primitive]; } void RasterizerCanvasGLES3::_render_batch(Light *p_lights, uint32_t p_index, RenderingMethod::RenderInfo *r_render_info) { ERR_FAIL_NULL(state.canvas_instance_batches[state.current_batch_index].command); // Used by Polygon and Mesh. static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP }; _bind_canvas_texture(state.canvas_instance_batches[p_index].tex, state.canvas_instance_batches[p_index].filter, state.canvas_instance_batches[p_index].repeat); switch (state.canvas_instance_batches[p_index].command_type) { case Item::Command::TYPE_RECT: case Item::Command::TYPE_NINEPATCH: { glBindVertexArray(data.indexed_quad_array); glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); _enable_attributes(range_start, false); glDrawElementsInstanced(GL_TRIANGLES, 6, GL_UNSIGNED_INT, nullptr, state.canvas_instance_batches[p_index].instance_count); glBindVertexArray(0); if (r_render_info) { r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += state.canvas_instance_batches[p_index].instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += 2 * state.canvas_instance_batches[p_index].instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } break; case Item::Command::TYPE_POLYGON: { const Item::CommandPolygon *polygon = static_cast(state.canvas_instance_batches[p_index].command); PolygonBuffers *pb = polygon_buffers.polygons.getptr(polygon->polygon.polygon_id); ERR_FAIL_NULL(pb); glBindVertexArray(pb->vertex_array); glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); _enable_attributes(range_start, false); if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) { glVertexAttrib4f(RS::ARRAY_COLOR, pb->color.r, pb->color.g, pb->color.b, pb->color.a); } if (pb->index_buffer != 0) { glDrawElementsInstanced(prim[polygon->primitive], pb->count, GL_UNSIGNED_INT, nullptr, 1); } else { glDrawArraysInstanced(prim[polygon->primitive], 0, pb->count, 1); } glBindVertexArray(0); if (pb->color_disabled && pb->color != Color(1.0, 1.0, 1.0, 1.0)) { // Reset so this doesn't pollute other draw calls. glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); } if (r_render_info) { r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(polygon->primitive, pb->count); r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } break; case Item::Command::TYPE_PRIMITIVE: { glBindVertexArray(data.canvas_quad_array); glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); _enable_attributes(range_start, true); const GLenum primitive[5] = { GL_POINTS, GL_POINTS, GL_LINES, GL_TRIANGLES, GL_TRIANGLES }; int instance_count = state.canvas_instance_batches[p_index].instance_count; ERR_FAIL_COND(instance_count <= 0); if (instance_count >= 1) { glDrawArraysInstanced(primitive[state.canvas_instance_batches[p_index].primitive_points], 0, state.canvas_instance_batches[p_index].primitive_points, instance_count); } if (r_render_info) { const RenderingServer::PrimitiveType rs_primitive[5] = { RS::PRIMITIVE_POINTS, RS::PRIMITIVE_POINTS, RS::PRIMITIVE_LINES, RS::PRIMITIVE_TRIANGLES, RS::PRIMITIVE_TRIANGLES }; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] += instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(rs_primitive[state.canvas_instance_batches[p_index].primitive_points], state.canvas_instance_batches[p_index].primitive_points) * instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } break; case Item::Command::TYPE_MESH: case Item::Command::TYPE_MULTIMESH: case Item::Command::TYPE_PARTICLES: { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); GLES3::ParticlesStorage *particles_storage = GLES3::ParticlesStorage::get_singleton(); RID mesh; RID mesh_instance; uint32_t instance_count = 1; GLuint instance_buffer = 0; uint32_t instance_stride = 0; uint32_t instance_color_offset = 0; bool instance_uses_color = false; bool instance_uses_custom_data = false; bool use_instancing = false; if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MESH) { const Item::CommandMesh *m = static_cast(state.canvas_instance_batches[p_index].command); mesh = m->mesh; mesh_instance = m->mesh_instance; } else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_MULTIMESH) { const Item::CommandMultiMesh *mm = static_cast(state.canvas_instance_batches[p_index].command); RID multimesh = mm->multimesh; mesh = mesh_storage->multimesh_get_mesh(multimesh); if (mesh_storage->multimesh_get_transform_format(multimesh) != RS::MULTIMESH_TRANSFORM_2D) { break; } instance_count = mesh_storage->multimesh_get_instances_to_draw(multimesh); if (instance_count == 0) { break; } instance_buffer = mesh_storage->multimesh_get_gl_buffer(multimesh); instance_stride = mesh_storage->multimesh_get_stride(multimesh); instance_color_offset = mesh_storage->multimesh_get_color_offset(multimesh); instance_uses_color = mesh_storage->multimesh_uses_colors(multimesh); instance_uses_custom_data = mesh_storage->multimesh_uses_custom_data(multimesh); use_instancing = true; } else if (state.canvas_instance_batches[p_index].command_type == Item::Command::TYPE_PARTICLES) { const Item::CommandParticles *pt = static_cast(state.canvas_instance_batches[p_index].command); RID particles = pt->particles; mesh = particles_storage->particles_get_draw_pass_mesh(particles, 0); ERR_BREAK(particles_storage->particles_get_mode(particles) != RS::PARTICLES_MODE_2D); particles_storage->particles_request_process(particles); if (particles_storage->particles_is_inactive(particles)) { break; } RenderingServerDefault::redraw_request(); // Active particles means redraw request. int dpc = particles_storage->particles_get_draw_passes(particles); if (dpc == 0) { break; // Nothing to draw. } instance_count = particles_storage->particles_get_amount(particles); instance_buffer = particles_storage->particles_get_gl_buffer(particles); instance_stride = 12; // 8 bytes for instance transform and 4 bytes for packed color and custom. instance_color_offset = 8; // 8 bytes for instance transform. instance_uses_color = true; instance_uses_custom_data = true; use_instancing = true; } ERR_FAIL_COND(mesh.is_null()); uint32_t surf_count = mesh_storage->mesh_get_surface_count(mesh); for (uint32_t j = 0; j < surf_count; j++) { void *surface = mesh_storage->mesh_get_surface(mesh, j); RS::PrimitiveType primitive = mesh_storage->mesh_surface_get_primitive(surface); ERR_CONTINUE(primitive < 0 || primitive >= RS::PRIMITIVE_MAX); GLuint vertex_array_gl = 0; GLuint index_array_gl = 0; uint64_t vertex_input_mask = state.canvas_instance_batches[p_index].vertex_input_mask; if (mesh_instance.is_valid()) { mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(mesh_instance, j, vertex_input_mask, vertex_array_gl); } else { mesh_storage->mesh_surface_get_vertex_arrays_and_format(surface, vertex_input_mask, vertex_array_gl); } index_array_gl = mesh_storage->mesh_surface_get_index_buffer(surface, 0); bool use_index_buffer = false; glBindVertexArray(vertex_array_gl); glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.canvas_instance_batches[p_index].instance_buffer_index]); uint32_t range_start = state.canvas_instance_batches[p_index].start * sizeof(InstanceData); _enable_attributes(range_start, false, instance_count); if (index_array_gl != 0) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl); use_index_buffer = true; } if (use_instancing) { if (instance_buffer == 0) { break; } // Bind instance buffers. glBindBuffer(GL_ARRAY_BUFFER, instance_buffer); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(0)); glVertexAttribDivisor(1, 1); glEnableVertexAttribArray(2); glVertexAttribPointer(2, 4, GL_FLOAT, GL_FALSE, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(4 * 4)); glVertexAttribDivisor(2, 1); if (instance_uses_color || instance_uses_custom_data) { glEnableVertexAttribArray(5); glVertexAttribIPointer(5, 4, GL_UNSIGNED_INT, instance_stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(instance_color_offset * sizeof(float))); glVertexAttribDivisor(5, 1); } else { // Set all default instance color and custom data values to 1.0 or 0.0 using a compressed format. uint16_t zero = Math::make_half_float(0.0f); uint16_t one = Math::make_half_float(1.0f); GLuint default_color = (uint32_t(one) << 16) | one; GLuint default_custom = (uint32_t(zero) << 16) | zero; glVertexAttribI4ui(5, default_color, default_color, default_custom, default_custom); } } GLenum primitive_gl = prim[int(primitive)]; uint32_t vertex_count = mesh_storage->mesh_surface_get_vertices_drawn_count(surface); if (use_index_buffer) { glDrawElementsInstanced(primitive_gl, vertex_count, mesh_storage->mesh_surface_get_index_type(surface), nullptr, instance_count); } else { glDrawArraysInstanced(primitive_gl, 0, vertex_count, instance_count); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); if (use_instancing) { glDisableVertexAttribArray(5); glDisableVertexAttribArray(8); glDisableVertexAttribArray(9); glDisableVertexAttribArray(10); } if (r_render_info) { // Meshes, Particles, and MultiMesh are always just one object with one draw call. r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME]++; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += _indices_to_primitives(primitive, vertex_count) * instance_count; r_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_CANVAS][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME]++; } } } break; case Item::Command::TYPE_TRANSFORM: case Item::Command::TYPE_CLIP_IGNORE: case Item::Command::TYPE_ANIMATION_SLICE: { // Can ignore these as they only impact batch creation. } break; } } void RasterizerCanvasGLES3::_add_to_batch(uint32_t &r_index, bool &r_batch_broken) { state.canvas_instance_batches[state.current_batch_index].instance_count++; r_index++; if (r_index + state.last_item_index >= data.max_instances_per_buffer) { // Copy over all data needed for rendering right away // then go back to recording item commands. glBindBuffer(GL_ARRAY_BUFFER, state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers[state.current_instance_buffer_index]); #ifdef WEB_ENABLED glBufferSubData(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), sizeof(InstanceData) * r_index, state.instance_data_array); #else // On Desktop and mobile we map the memory without synchronizing for maximum speed. void *buffer = glMapBufferRange(GL_ARRAY_BUFFER, state.last_item_index * sizeof(InstanceData), r_index * sizeof(InstanceData), GL_MAP_WRITE_BIT | GL_MAP_UNSYNCHRONIZED_BIT); memcpy(buffer, state.instance_data_array, r_index * sizeof(InstanceData)); glUnmapBuffer(GL_ARRAY_BUFFER); #endif _allocate_instance_buffer(); r_index = 0; state.last_item_index = 0; r_batch_broken = false; // Force a new batch to be created _new_batch(r_batch_broken); state.canvas_instance_batches[state.current_batch_index].start = 0; } } void RasterizerCanvasGLES3::_new_batch(bool &r_batch_broken) { if (state.canvas_instance_batches.size() == 0) { state.canvas_instance_batches.push_back(Batch()); return; } if (r_batch_broken || state.canvas_instance_batches[state.current_batch_index].instance_count == 0) { return; } r_batch_broken = true; // Copy the properties of the current batch, we will manually update the things that changed. Batch new_batch = state.canvas_instance_batches[state.current_batch_index]; new_batch.instance_count = 0; new_batch.start = state.canvas_instance_batches[state.current_batch_index].start + state.canvas_instance_batches[state.current_batch_index].instance_count; new_batch.instance_buffer_index = state.current_instance_buffer_index; state.current_batch_index++; state.canvas_instance_batches.push_back(new_batch); } void RasterizerCanvasGLES3::_enable_attributes(uint32_t p_start, bool p_primitive, uint32_t p_rate) { uint32_t split = p_primitive ? 13 : 14; for (uint32_t i = 8; i < split; i++) { glEnableVertexAttribArray(i); glVertexAttribPointer(i, 4, GL_FLOAT, GL_FALSE, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 8) * 4 * sizeof(float))); glVertexAttribDivisor(i, p_rate); } for (uint32_t i = split; i <= 15; i++) { glEnableVertexAttribArray(i); glVertexAttribIPointer(i, 4, GL_UNSIGNED_INT, sizeof(InstanceData), CAST_INT_TO_UCHAR_PTR(p_start + (i - 8) * 4 * sizeof(float))); glVertexAttribDivisor(i, p_rate); } } RID RasterizerCanvasGLES3::light_create() { CanvasLight canvas_light; return canvas_light_owner.make_rid(canvas_light); } void RasterizerCanvasGLES3::light_set_texture(RID p_rid, RID p_texture) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_NULL(cl); if (cl->texture == p_texture) { return; } ERR_FAIL_COND(p_texture.is_valid() && !texture_storage->owns_texture(p_texture)); if (cl->texture.is_valid()) { texture_storage->texture_remove_from_texture_atlas(cl->texture); } cl->texture = p_texture; if (cl->texture.is_valid()) { texture_storage->texture_add_to_texture_atlas(cl->texture); } } void RasterizerCanvasGLES3::light_set_use_shadow(RID p_rid, bool p_enable) { CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_NULL(cl); cl->shadow.enabled = p_enable; } void RasterizerCanvasGLES3::light_update_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_near, float p_far, LightOccluderInstance *p_occluders) { GLES3::Config *config = GLES3::Config::get_singleton(); CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_COND(!cl->shadow.enabled); _update_shadow_atlas(); cl->shadow.z_far = p_far; cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2); glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glDisable(GL_BLEND); glEnable(GL_SCISSOR_TEST); glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2); glClearColor(p_far, p_far, p_far, 1.0); RasterizerGLES3::clear_depth(1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glCullFace(GL_BACK); glDisable(GL_CULL_FACE); RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA; bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); if (!success) { return; } for (int i = 0; i < 4; i++) { glViewport((state.shadow_texture_size / 4) * i, p_shadow_index * 2, (state.shadow_texture_size / 4), 2); Projection projection; { real_t fov = 90; real_t nearp = p_near; real_t farp = p_far; real_t aspect = 1.0; real_t ymax = nearp * Math::tan(Math::deg_to_rad(fov * 0.5)); real_t ymin = -ymax; real_t xmin = ymin * aspect; real_t xmax = ymax * aspect; projection.set_frustum(xmin, xmax, ymin, ymax, nearp, farp); } Vector3 cam_target = Basis::from_euler(Vector3(0, 0, Math_TAU * ((i + 3) / 4.0))).xform(Vector3(0, 1, 0)); projection = projection * Projection(Transform3D().looking_at(cam_target, Vector3(0, 0, -1)).affine_inverse()); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant); static const Vector2 directions[4] = { Vector2(1, 0), Vector2(0, 1), Vector2(-1, 0), Vector2(0, -1) }; shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, directions[i].x, directions[i].y, shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, p_far, shadow_render.shader_version, variant); LightOccluderInstance *instance = p_occluders; while (instance) { OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) { instance = instance->next; continue; } Transform2D modelview = p_light_xform * instance->xform_cache; shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); if (co->cull_mode != cull_mode) { if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { glDisable(GL_CULL_FACE); } else { if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { // Last time was disabled, so enable and set proper face. glEnable(GL_CULL_FACE); } glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK); } cull_mode = co->cull_mode; } glBindVertexArray(co->vertex_array); glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, nullptr); instance = instance->next; } } glBindVertexArray(0); glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); } void RasterizerCanvasGLES3::light_update_directional_shadow(RID p_rid, int p_shadow_index, const Transform2D &p_light_xform, int p_light_mask, float p_cull_distance, const Rect2 &p_clip_rect, LightOccluderInstance *p_occluders) { GLES3::Config *config = GLES3::Config::get_singleton(); CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_COND(!cl->shadow.enabled); _update_shadow_atlas(); Vector2 light_dir = p_light_xform.columns[1].normalized(); Vector2 center = p_clip_rect.get_center(); float to_edge_distance = ABS(light_dir.dot(p_clip_rect.get_support(-light_dir)) - light_dir.dot(center)); Vector2 from_pos = center - light_dir * (to_edge_distance + p_cull_distance); float distance = to_edge_distance * 2.0 + p_cull_distance; float half_size = p_clip_rect.size.length() * 0.5; //shadow length, must keep this no matter the angle cl->shadow.z_far = distance; cl->shadow.y_offset = float(p_shadow_index * 2 + 1) / float(data.max_lights_per_render * 2); Transform2D to_light_xform; to_light_xform[2] = from_pos; to_light_xform[1] = light_dir; to_light_xform[0] = -light_dir.orthogonal(); to_light_xform.invert(); glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); glViewport(0, p_shadow_index * 2, state.shadow_texture_size, 2); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LESS); glDisable(GL_BLEND); glEnable(GL_SCISSOR_TEST); glScissor(0, p_shadow_index * 2, state.shadow_texture_size, 2); glClearColor(1.0, 1.0, 1.0, 1.0); RasterizerGLES3::clear_depth(1.0); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glCullFace(GL_BACK); glDisable(GL_CULL_FACE); RS::CanvasOccluderPolygonCullMode cull_mode = RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED; CanvasOcclusionShaderGLES3::ShaderVariant variant = config->float_texture_supported ? CanvasOcclusionShaderGLES3::MODE_SHADOW : CanvasOcclusionShaderGLES3::MODE_SHADOW_RGBA; bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); if (!success) { return; } Projection projection; projection.set_orthogonal(-half_size, half_size, -0.5, 0.5, 0.0, distance); projection = projection * Projection(Transform3D().looking_at(Vector3(0, 1, 0), Vector3(0, 0, -1)).affine_inverse()); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, projection, shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 1.0, shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, distance, shadow_render.shader_version, variant); LightOccluderInstance *instance = p_occluders; while (instance) { OccluderPolygon *co = occluder_polygon_owner.get_or_null(instance->occluder); if (!co || co->vertex_array == 0 || !(p_light_mask & instance->light_mask)) { instance = instance->next; continue; } Transform2D modelview = to_light_xform * instance->xform_cache; shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); if (co->cull_mode != cull_mode) { if (co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { glDisable(GL_CULL_FACE); } else { if (cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_DISABLED) { // Last time was disabled, so enable and set proper face. glEnable(GL_CULL_FACE); } glCullFace(co->cull_mode == RS::CANVAS_OCCLUDER_POLYGON_CULL_CLOCKWISE ? GL_FRONT : GL_BACK); } cull_mode = co->cull_mode; } glBindVertexArray(co->vertex_array); glDrawElements(GL_TRIANGLES, 3 * co->line_point_count, GL_UNSIGNED_SHORT, nullptr); instance = instance->next; } Transform2D to_shadow; to_shadow.columns[0].x = 1.0 / -(half_size * 2.0); to_shadow.columns[2].x = 0.5; cl->shadow.directional_xform = to_shadow * to_light_xform; glBindVertexArray(0); glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glDisable(GL_CULL_FACE); } void RasterizerCanvasGLES3::_update_shadow_atlas() { GLES3::Config *config = GLES3::Config::get_singleton(); if (state.shadow_fb == 0) { glActiveTexture(GL_TEXTURE0); glGenFramebuffers(1, &state.shadow_fb); glBindFramebuffer(GL_FRAMEBUFFER, state.shadow_fb); glGenRenderbuffers(1, &state.shadow_depth_buffer); glBindRenderbuffer(GL_RENDERBUFFER, state.shadow_depth_buffer); glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, state.shadow_texture_size, data.max_lights_per_render * 2); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, state.shadow_depth_buffer); glGenTextures(1, &state.shadow_texture); glBindTexture(GL_TEXTURE_2D, state.shadow_texture); if (config->float_texture_supported) { glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RED, GL_FLOAT, nullptr); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, state.shadow_texture_size, data.max_lights_per_render * 2, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 1); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, state.shadow_texture, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { glDeleteFramebuffers(1, &state.shadow_fb); glDeleteTextures(1, &state.shadow_texture); glDeleteRenderbuffers(1, &state.shadow_depth_buffer); state.shadow_fb = 0; state.shadow_texture = 0; state.shadow_depth_buffer = 0; WARN_PRINT("Could not create CanvasItem shadow atlas, status: " + GLES3::TextureStorage::get_singleton()->get_framebuffer_error(status)); } GLES3::Utilities::get_singleton()->texture_allocated_data(state.shadow_texture, state.shadow_texture_size * data.max_lights_per_render * 2 * 4, "2D shadow atlas texture"); glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); } } void RasterizerCanvasGLES3::render_sdf(RID p_render_target, LightOccluderInstance *p_occluders) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLuint fb = texture_storage->render_target_get_sdf_framebuffer(p_render_target); Rect2i rect = texture_storage->render_target_get_sdf_rect(p_render_target); Transform2D to_sdf; to_sdf.columns[0] *= rect.size.width; to_sdf.columns[1] *= rect.size.height; to_sdf.columns[2] = rect.position; Transform2D to_clip; to_clip.columns[0] *= 2.0; to_clip.columns[1] *= 2.0; to_clip.columns[2] = -Vector2(1.0, 1.0); to_clip = to_clip * to_sdf.affine_inverse(); glBindFramebuffer(GL_FRAMEBUFFER, fb); glViewport(0, 0, rect.size.width, rect.size.height); glDepthMask(GL_FALSE); glDisable(GL_DEPTH_TEST); glDisable(GL_BLEND); glDisable(GL_CULL_FACE); glDisable(GL_SCISSOR_TEST); glClearColor(0.0, 0.0, 0.0, 0.0); glClear(GL_COLOR_BUFFER_BIT); CanvasOcclusionShaderGLES3::ShaderVariant variant = CanvasOcclusionShaderGLES3::MODE_SDF; bool success = shadow_render.shader.version_bind_shader(shadow_render.shader_version, variant); if (!success) { return; } shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::PROJECTION, Projection(), shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::DIRECTION, 0.0, 0.0, shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::Z_FAR, 0.0, shadow_render.shader_version, variant); LightOccluderInstance *instance = p_occluders; while (instance) { OccluderPolygon *oc = occluder_polygon_owner.get_or_null(instance->occluder); if (!oc || oc->sdf_vertex_array == 0 || !instance->sdf_collision) { instance = instance->next; continue; } Transform2D modelview = to_clip * instance->xform_cache; shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW1, modelview.columns[0][0], modelview.columns[1][0], 0, modelview.columns[2][0], shadow_render.shader_version, variant); shadow_render.shader.version_set_uniform(CanvasOcclusionShaderGLES3::MODELVIEW2, modelview.columns[0][1], modelview.columns[1][1], 0, modelview.columns[2][1], shadow_render.shader_version, variant); glBindVertexArray(oc->sdf_vertex_array); glDrawElements(oc->sdf_is_lines ? GL_LINES : GL_TRIANGLES, oc->sdf_index_count, GL_UNSIGNED_INT, nullptr); instance = instance->next; } texture_storage->render_target_sdf_process(p_render_target); //done rendering, process it glBindVertexArray(0); glBindFramebuffer(GL_FRAMEBUFFER, GLES3::TextureStorage::system_fbo); } RID RasterizerCanvasGLES3::occluder_polygon_create() { OccluderPolygon occluder; return occluder_polygon_owner.make_rid(occluder); } void RasterizerCanvasGLES3::occluder_polygon_set_shape(RID p_occluder, const Vector &p_points, bool p_closed) { OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); ERR_FAIL_NULL(oc); Vector lines; if (p_points.size()) { int lc = p_points.size() * 2; lines.resize(lc - (p_closed ? 0 : 2)); { Vector2 *w = lines.ptrw(); const Vector2 *r = p_points.ptr(); int max = lc / 2; if (!p_closed) { max--; } for (int i = 0; i < max; i++) { Vector2 a = r[i]; Vector2 b = r[(i + 1) % (lc / 2)]; w[i * 2 + 0] = a; w[i * 2 + 1] = b; } } } if (oc->line_point_count != lines.size() && oc->vertex_array != 0) { glDeleteVertexArrays(1, &oc->vertex_array); GLES3::Utilities::get_singleton()->buffer_free_data(oc->vertex_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(oc->index_buffer); oc->vertex_array = 0; oc->vertex_buffer = 0; oc->index_buffer = 0; } if (lines.size()) { Vector geometry; Vector indices; int lc = lines.size(); geometry.resize(lc * 6 * sizeof(float)); indices.resize(lc * 3 * sizeof(uint16_t)); { uint8_t *vw = geometry.ptrw(); float *vwptr = reinterpret_cast(vw); uint8_t *iw = indices.ptrw(); uint16_t *iwptr = (uint16_t *)iw; const Vector2 *lr = lines.ptr(); const int POLY_HEIGHT = 16384; for (int i = 0; i < lc / 2; i++) { vwptr[i * 12 + 0] = lr[i * 2 + 0].x; vwptr[i * 12 + 1] = lr[i * 2 + 0].y; vwptr[i * 12 + 2] = POLY_HEIGHT; vwptr[i * 12 + 3] = lr[i * 2 + 1].x; vwptr[i * 12 + 4] = lr[i * 2 + 1].y; vwptr[i * 12 + 5] = POLY_HEIGHT; vwptr[i * 12 + 6] = lr[i * 2 + 1].x; vwptr[i * 12 + 7] = lr[i * 2 + 1].y; vwptr[i * 12 + 8] = -POLY_HEIGHT; vwptr[i * 12 + 9] = lr[i * 2 + 0].x; vwptr[i * 12 + 10] = lr[i * 2 + 0].y; vwptr[i * 12 + 11] = -POLY_HEIGHT; iwptr[i * 6 + 0] = i * 4 + 0; iwptr[i * 6 + 1] = i * 4 + 1; iwptr[i * 6 + 2] = i * 4 + 2; iwptr[i * 6 + 3] = i * 4 + 2; iwptr[i * 6 + 4] = i * 4 + 3; iwptr[i * 6 + 5] = i * 4 + 0; } } if (oc->vertex_array == 0) { oc->line_point_count = lc; glGenVertexArrays(1, &oc->vertex_array); glBindVertexArray(oc->vertex_array); glGenBuffers(1, &oc->vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->vertex_buffer, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW, "Occluder polygon vertex buffer"); glEnableVertexAttribArray(RS::ARRAY_VERTEX); glVertexAttribPointer(RS::ARRAY_VERTEX, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), nullptr); glGenBuffers(1, &oc->index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW, "Occluder polygon index buffer"); glBindVertexArray(0); } else { glBindBuffer(GL_ARRAY_BUFFER, oc->vertex_buffer); glBufferData(GL_ARRAY_BUFFER, lc * 6 * sizeof(float), geometry.ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->index_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, 3 * lc * sizeof(uint16_t), indices.ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } } // sdf Vector sdf_indices; if (p_points.size()) { if (p_closed) { sdf_indices = Geometry2D::triangulate_polygon(p_points); oc->sdf_is_lines = false; } else { int max = p_points.size(); sdf_indices.resize(max * 2); int *iw = sdf_indices.ptrw(); for (int i = 0; i < max; i++) { iw[i * 2 + 0] = i; iw[i * 2 + 1] = (i + 1) % max; } oc->sdf_is_lines = true; } } if (oc->sdf_index_count != sdf_indices.size() && oc->sdf_point_count != p_points.size() && oc->sdf_vertex_array != 0) { glDeleteVertexArrays(1, &oc->sdf_vertex_array); GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_vertex_buffer); GLES3::Utilities::get_singleton()->buffer_free_data(oc->sdf_index_buffer); oc->sdf_vertex_array = 0; oc->sdf_vertex_buffer = 0; oc->sdf_index_buffer = 0; oc->sdf_index_count = sdf_indices.size(); oc->sdf_point_count = p_points.size(); } if (sdf_indices.size()) { if (oc->sdf_vertex_array == 0) { oc->sdf_index_count = sdf_indices.size(); oc->sdf_point_count = p_points.size(); glGenVertexArrays(1, &oc->sdf_vertex_array); glBindVertexArray(oc->sdf_vertex_array); glGenBuffers(1, &oc->sdf_vertex_buffer); glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer, oc->sdf_point_count * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF vertex buffer"); glEnableVertexAttribArray(RS::ARRAY_VERTEX); glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), nullptr); glGenBuffers(1, &oc->sdf_index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer, oc->sdf_index_count * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW, "Occluder polygon SDF index buffer"); glBindVertexArray(0); } else { glBindBuffer(GL_ARRAY_BUFFER, oc->sdf_vertex_buffer); glBufferData(GL_ARRAY_BUFFER, p_points.size() * 2 * sizeof(float), p_points.to_byte_array().ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, oc->sdf_index_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sdf_indices.size() * sizeof(uint32_t), sdf_indices.to_byte_array().ptr(), GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } } } void RasterizerCanvasGLES3::occluder_polygon_set_cull_mode(RID p_occluder, RS::CanvasOccluderPolygonCullMode p_mode) { OccluderPolygon *oc = occluder_polygon_owner.get_or_null(p_occluder); ERR_FAIL_NULL(oc); oc->cull_mode = p_mode; } void RasterizerCanvasGLES3::set_shadow_texture_size(int p_size) { GLES3::Config *config = GLES3::Config::get_singleton(); p_size = nearest_power_of_2_templated(p_size); if (p_size > config->max_texture_size) { p_size = config->max_texture_size; WARN_PRINT("Attempting to set CanvasItem shadow atlas size to " + itos(p_size) + " which is beyond limit of " + itos(config->max_texture_size) + "supported by hardware."); } if (p_size == state.shadow_texture_size) { return; } state.shadow_texture_size = p_size; if (state.shadow_fb != 0) { glDeleteFramebuffers(1, &state.shadow_fb); GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture); glDeleteRenderbuffers(1, &state.shadow_depth_buffer); state.shadow_fb = 0; state.shadow_texture = 0; state.shadow_depth_buffer = 0; } _update_shadow_atlas(); } bool RasterizerCanvasGLES3::free(RID p_rid) { if (canvas_light_owner.owns(p_rid)) { CanvasLight *cl = canvas_light_owner.get_or_null(p_rid); ERR_FAIL_NULL_V(cl, false); canvas_light_owner.free(p_rid); } else if (occluder_polygon_owner.owns(p_rid)) { occluder_polygon_set_shape(p_rid, Vector(), false); occluder_polygon_owner.free(p_rid); } else { return false; } return true; } void RasterizerCanvasGLES3::update() { } void RasterizerCanvasGLES3::canvas_begin(RID p_to_render_target, bool p_to_backbuffer, bool p_backbuffer_has_mipmaps) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); GLES3::RenderTarget *render_target = texture_storage->get_render_target(p_to_render_target); if (p_to_backbuffer) { glBindFramebuffer(GL_FRAMEBUFFER, render_target->backbuffer_fbo); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glBindFramebuffer(GL_FRAMEBUFFER, render_target->fbo); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 4); glBindTexture(GL_TEXTURE_2D, render_target->backbuffer); if (render_target->backbuffer != 0) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, p_backbuffer_has_mipmaps ? render_target->mipmap_count - 1 : 0); } } if (render_target->is_transparent || p_to_backbuffer) { state.transparent_render_target = true; glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { state.transparent_render_target = false; glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); } if (render_target && render_target->clear_requested) { const Color &col = render_target->clear_color; glClearColor(col.r, col.g, col.b, render_target->is_transparent ? col.a : 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); render_target->clear_requested = false; } glActiveTexture(GL_TEXTURE0); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } void RasterizerCanvasGLES3::_bind_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); if (p_texture == RID()) { p_texture = default_canvas_texture; } if (state.current_tex == p_texture && state.current_filter_mode == p_base_filter && state.current_repeat_mode == p_base_repeat) { return; } state.current_tex = p_texture; state.current_filter_mode = p_base_filter; state.current_repeat_mode = p_base_repeat; GLES3::CanvasTexture *ct = nullptr; GLES3::Texture *t = texture_storage->get_texture(p_texture); if (t) { ERR_FAIL_NULL(t->canvas_texture); ct = t->canvas_texture; if (t->render_target) { t->render_target->used_in_frame = true; } } else { ct = texture_storage->get_canvas_texture(p_texture); } if (!ct) { // Invalid Texture RID. _bind_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat); return; } RS::CanvasItemTextureFilter filter = ct->texture_filter != RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT ? ct->texture_filter : p_base_filter; ERR_FAIL_COND(filter == RS::CANVAS_ITEM_TEXTURE_FILTER_DEFAULT); RS::CanvasItemTextureRepeat repeat = ct->texture_repeat != RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT ? ct->texture_repeat : p_base_repeat; ERR_FAIL_COND(repeat == RS::CANVAS_ITEM_TEXTURE_REPEAT_DEFAULT); GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse); if (!texture) { GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texture->tex_id); texture->gl_set_filter(filter); texture->gl_set_repeat(repeat); if (texture->render_target) { texture->render_target->used_in_frame = true; } } GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map); if (!normal_map) { glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_NORMAL)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 6); glBindTexture(GL_TEXTURE_2D, normal_map->tex_id); normal_map->gl_set_filter(filter); normal_map->gl_set_repeat(repeat); if (normal_map->render_target) { normal_map->render_target->used_in_frame = true; } } GLES3::Texture *specular_map = texture_storage->get_texture(ct->specular); if (!specular_map) { glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); GLES3::Texture *tex = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE)); glBindTexture(GL_TEXTURE_2D, tex->tex_id); } else { glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 7); glBindTexture(GL_TEXTURE_2D, specular_map->tex_id); specular_map->gl_set_filter(filter); specular_map->gl_set_repeat(repeat); if (specular_map->render_target) { specular_map->render_target->used_in_frame = true; } } } void RasterizerCanvasGLES3::_prepare_canvas_texture(RID p_texture, RS::CanvasItemTextureFilter p_base_filter, RS::CanvasItemTextureRepeat p_base_repeat, uint32_t &r_index, Size2 &r_texpixel_size) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); if (p_texture == RID()) { p_texture = default_canvas_texture; } GLES3::CanvasTexture *ct = nullptr; GLES3::Texture *t = texture_storage->get_texture(p_texture); if (t) { //regular texture if (!t->canvas_texture) { t->canvas_texture = memnew(GLES3::CanvasTexture); t->canvas_texture->diffuse = p_texture; } ct = t->canvas_texture; } else { ct = texture_storage->get_canvas_texture(p_texture); } if (!ct) { // Invalid Texture RID. _prepare_canvas_texture(default_canvas_texture, p_base_filter, p_base_repeat, r_index, r_texpixel_size); return; } GLES3::Texture *texture = texture_storage->get_texture(ct->diffuse); Size2i size_cache; // Cache default white resource ID. const RID default_texture_id = texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_WHITE); // If no texture is assigned, assign default white. if (!texture) { ct->diffuse = default_texture_id; } // Enforce a 1x1 size if default white texture. size_cache = ct->diffuse == default_texture_id ? Size2i(1, 1) : Size2i(texture->width, texture->height); GLES3::Texture *normal_map = texture_storage->get_texture(ct->normal_map); if (ct->specular_color.a < 0.999) { state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_SPECULAR_MAP_USED; } else { state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_SPECULAR_MAP_USED; } if (normal_map) { state.instance_data_array[r_index].flags |= FLAGS_DEFAULT_NORMAL_MAP_USED; } else { state.instance_data_array[r_index].flags &= ~FLAGS_DEFAULT_NORMAL_MAP_USED; } state.instance_data_array[r_index].specular_shininess = uint32_t(CLAMP(ct->specular_color.a * 255.0, 0, 255)) << 24; state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.b * 255.0, 0, 255)) << 16; state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.g * 255.0, 0, 255)) << 8; state.instance_data_array[r_index].specular_shininess |= uint32_t(CLAMP(ct->specular_color.r * 255.0, 0, 255)); r_texpixel_size.x = 1.0 / float(size_cache.x); r_texpixel_size.y = 1.0 / float(size_cache.y); state.instance_data_array[r_index].color_texture_pixel_size[0] = r_texpixel_size.x; state.instance_data_array[r_index].color_texture_pixel_size[1] = r_texpixel_size.y; } void RasterizerCanvasGLES3::reset_canvas() { glDisable(GL_CULL_FACE); glDisable(GL_DEPTH_TEST); glDisable(GL_SCISSOR_TEST); glEnable(GL_BLEND); glBlendEquation(GL_FUNC_ADD); glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 2); glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE0 + GLES3::Config::get_singleton()->max_texture_image_units - 3); glBindTexture(GL_TEXTURE_2D, 0); glActiveTexture(GL_TEXTURE0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } void RasterizerCanvasGLES3::draw_lens_distortion_rect(const Rect2 &p_rect, float p_k1, float p_k2, const Vector2 &p_eye_center, float p_oversample) { } RendererCanvasRender::PolygonID RasterizerCanvasGLES3::request_polygon(const Vector &p_indices, const Vector &p_points, const Vector &p_colors, const Vector &p_uvs, const Vector &p_bones, const Vector &p_weights) { // We interleave the vertex data into one big VBO to improve cache coherence uint32_t vertex_count = p_points.size(); uint32_t stride = 2; if ((uint32_t)p_colors.size() == vertex_count) { stride += 4; } if ((uint32_t)p_uvs.size() == vertex_count) { stride += 2; } if ((uint32_t)p_bones.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { stride += 4; } PolygonBuffers pb; glGenBuffers(1, &pb.vertex_buffer); glGenVertexArrays(1, &pb.vertex_array); glBindVertexArray(pb.vertex_array); pb.count = vertex_count; pb.index_buffer = 0; uint32_t buffer_size = stride * p_points.size(); Vector polygon_buffer; polygon_buffer.resize(buffer_size * sizeof(float)); { glBindBuffer(GL_ARRAY_BUFFER, pb.vertex_buffer); uint8_t *r = polygon_buffer.ptrw(); float *fptr = reinterpret_cast(r); uint32_t *uptr = (uint32_t *)r; uint32_t base_offset = 0; { // Always uses vertex positions glEnableVertexAttribArray(RS::ARRAY_VERTEX); glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), nullptr); const Vector2 *points_ptr = p_points.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = points_ptr[i].x; fptr[base_offset + i * stride + 1] = points_ptr[i].y; } base_offset += 2; } // Next add colors if ((uint32_t)p_colors.size() == vertex_count) { glEnableVertexAttribArray(RS::ARRAY_COLOR); glVertexAttribPointer(RS::ARRAY_COLOR, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const Color *color_ptr = p_colors.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = color_ptr[i].r; fptr[base_offset + i * stride + 1] = color_ptr[i].g; fptr[base_offset + i * stride + 2] = color_ptr[i].b; fptr[base_offset + i * stride + 3] = color_ptr[i].a; } base_offset += 4; } else { glDisableVertexAttribArray(RS::ARRAY_COLOR); pb.color_disabled = true; pb.color = p_colors.size() == 1 ? p_colors[0] : Color(1.0, 1.0, 1.0, 1.0); } if ((uint32_t)p_uvs.size() == vertex_count) { glEnableVertexAttribArray(RS::ARRAY_TEX_UV); glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const Vector2 *uv_ptr = p_uvs.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { fptr[base_offset + i * stride + 0] = uv_ptr[i].x; fptr[base_offset + i * stride + 1] = uv_ptr[i].y; } base_offset += 2; } else { glDisableVertexAttribArray(RS::ARRAY_TEX_UV); } if ((uint32_t)p_indices.size() == vertex_count * 4 && (uint32_t)p_weights.size() == vertex_count * 4) { glEnableVertexAttribArray(RS::ARRAY_BONES); glVertexAttribPointer(RS::ARRAY_BONES, 4, GL_UNSIGNED_INT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const int *bone_ptr = p_bones.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { uint16_t *bone16w = (uint16_t *)&uptr[base_offset + i * stride]; bone16w[0] = bone_ptr[i * 4 + 0]; bone16w[1] = bone_ptr[i * 4 + 1]; bone16w[2] = bone_ptr[i * 4 + 2]; bone16w[3] = bone_ptr[i * 4 + 3]; } base_offset += 2; } else { glDisableVertexAttribArray(RS::ARRAY_BONES); } if ((uint32_t)p_weights.size() == vertex_count * 4) { glEnableVertexAttribArray(RS::ARRAY_WEIGHTS); glVertexAttribPointer(RS::ARRAY_WEIGHTS, 4, GL_FLOAT, GL_FALSE, stride * sizeof(float), CAST_INT_TO_UCHAR_PTR(base_offset * sizeof(float))); const float *weight_ptr = p_weights.ptr(); for (uint32_t i = 0; i < vertex_count; i++) { uint16_t *weight16w = (uint16_t *)&uptr[base_offset + i * stride]; weight16w[0] = CLAMP(weight_ptr[i * 4 + 0] * 65535, 0, 65535); weight16w[1] = CLAMP(weight_ptr[i * 4 + 1] * 65535, 0, 65535); weight16w[2] = CLAMP(weight_ptr[i * 4 + 2] * 65535, 0, 65535); weight16w[3] = CLAMP(weight_ptr[i * 4 + 3] * 65535, 0, 65535); } base_offset += 2; } else { glDisableVertexAttribArray(RS::ARRAY_WEIGHTS); } ERR_FAIL_COND_V(base_offset != stride, 0); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, pb.vertex_buffer, vertex_count * stride * sizeof(float), polygon_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D vertex buffer"); } if (p_indices.size()) { //create indices, as indices were requested Vector index_buffer; index_buffer.resize(p_indices.size() * sizeof(int32_t)); { uint8_t *w = index_buffer.ptrw(); memcpy(w, p_indices.ptr(), sizeof(int32_t) * p_indices.size()); } glGenBuffers(1, &pb.index_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ELEMENT_ARRAY_BUFFER, pb.index_buffer, p_indices.size() * 4, index_buffer.ptr(), GL_STATIC_DRAW, "Polygon 2D index buffer"); pb.count = p_indices.size(); } glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); PolygonID id = polygon_buffers.last_id++; polygon_buffers.polygons[id] = pb; return id; } void RasterizerCanvasGLES3::free_polygon(PolygonID p_polygon) { PolygonBuffers *pb_ptr = polygon_buffers.polygons.getptr(p_polygon); ERR_FAIL_NULL(pb_ptr); PolygonBuffers &pb = *pb_ptr; if (pb.index_buffer != 0) { GLES3::Utilities::get_singleton()->buffer_free_data(pb.index_buffer); } glDeleteVertexArrays(1, &pb.vertex_array); GLES3::Utilities::get_singleton()->buffer_free_data(pb.vertex_buffer); polygon_buffers.polygons.erase(p_polygon); } // Creates a new uniform buffer and uses it right away // This expands the instance buffer continually // In theory allocations can reach as high as number of windows * 3 frames // because OpenGL can start rendering subsequent frames before finishing the current one void RasterizerCanvasGLES3::_allocate_instance_data_buffer() { GLuint new_buffers[3]; glGenBuffers(3, new_buffers); // Batch UBO. glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "2D Batch UBO[" + itos(state.current_data_buffer_index) + "][0]"); // Light uniform buffer. glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D Lights UBO[" + itos(state.current_data_buffer_index) + "]"); // State buffer. glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D State UBO[" + itos(state.current_data_buffer_index) + "]"); state.current_data_buffer_index = (state.current_data_buffer_index + 1); DataBuffer db; db.instance_buffers.push_back(new_buffers[0]); db.light_ubo = new_buffers[1]; db.state_ubo = new_buffers[2]; db.last_frame_used = RSG::rasterizer->get_frame_number(); state.canvas_instance_data_buffers.insert(state.current_data_buffer_index, db); state.current_data_buffer_index = state.current_data_buffer_index % state.canvas_instance_data_buffers.size(); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_UNIFORM_BUFFER, 0); } void RasterizerCanvasGLES3::_allocate_instance_buffer() { state.current_instance_buffer_index++; if (int(state.current_instance_buffer_index) < state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) { // We already allocated another buffer in a previous frame, so we can just use it. return; } GLuint new_buffer; glGenBuffers(1, &new_buffer); glBindBuffer(GL_ARRAY_BUFFER, new_buffer); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffer, data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[" + itos(state.current_data_buffer_index) + "][" + itos(state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.size()) + "]"); state.canvas_instance_data_buffers[state.current_data_buffer_index].instance_buffers.push_back(new_buffer); glBindBuffer(GL_ARRAY_BUFFER, 0); } void RasterizerCanvasGLES3::set_time(double p_time) { state.time = p_time; } RasterizerCanvasGLES3 *RasterizerCanvasGLES3::singleton = nullptr; RasterizerCanvasGLES3 *RasterizerCanvasGLES3::get_singleton() { return singleton; } RasterizerCanvasGLES3::RasterizerCanvasGLES3() { singleton = this; GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); glVertexAttrib4f(RS::ARRAY_COLOR, 1.0, 1.0, 1.0, 1.0); polygon_buffers.last_id = 1; // quad buffer { glGenBuffers(1, &data.canvas_quad_vertices); glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); const float qv[8] = { 0, 0, 0, 1, 1, 1, 1, 0 }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 8, qv, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); glGenVertexArrays(1, &data.canvas_quad_array); glBindVertexArray(data.canvas_quad_array); glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr); glEnableVertexAttribArray(0); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } { //particle quad buffers glGenBuffers(1, &data.particle_quad_vertices); glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); { //quad of size 1, with pivot on the center for particles, then regular UVS. Color is general plus fetched from particle const float qv[16] = { -0.5, -0.5, 0.0, 0.0, -0.5, 0.5, 0.0, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, -0.5, 1.0, 0.0 }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glGenVertexArrays(1, &data.particle_quad_array); glBindVertexArray(data.particle_quad_array); glBindBuffer(GL_ARRAY_BUFFER, data.particle_quad_vertices); glEnableVertexAttribArray(RS::ARRAY_VERTEX); glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, nullptr); glEnableVertexAttribArray(RS::ARRAY_TEX_UV); glVertexAttribPointer(RS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, CAST_INT_TO_UCHAR_PTR(8)); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } // ninepatch buffers { // array buffer glGenBuffers(1, &data.ninepatch_vertices); glBindBuffer(GL_ARRAY_BUFFER, data.ninepatch_vertices); glBufferData(GL_ARRAY_BUFFER, sizeof(float) * (16 + 16) * 2, nullptr, GL_DYNAMIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); // element buffer glGenBuffers(1, &data.ninepatch_elements); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.ninepatch_elements); #define _EIDX(y, x) (y * 4 + x) uint8_t elems[3 * 2 * 9] = { // first row _EIDX(0, 0), _EIDX(0, 1), _EIDX(1, 1), _EIDX(1, 1), _EIDX(1, 0), _EIDX(0, 0), _EIDX(0, 1), _EIDX(0, 2), _EIDX(1, 2), _EIDX(1, 2), _EIDX(1, 1), _EIDX(0, 1), _EIDX(0, 2), _EIDX(0, 3), _EIDX(1, 3), _EIDX(1, 3), _EIDX(1, 2), _EIDX(0, 2), // second row _EIDX(1, 0), _EIDX(1, 1), _EIDX(2, 1), _EIDX(2, 1), _EIDX(2, 0), _EIDX(1, 0), // the center one would be here, but we'll put it at the end // so it's easier to disable the center and be able to use // one draw call for both _EIDX(1, 2), _EIDX(1, 3), _EIDX(2, 3), _EIDX(2, 3), _EIDX(2, 2), _EIDX(1, 2), // third row _EIDX(2, 0), _EIDX(2, 1), _EIDX(3, 1), _EIDX(3, 1), _EIDX(3, 0), _EIDX(2, 0), _EIDX(2, 1), _EIDX(2, 2), _EIDX(3, 2), _EIDX(3, 2), _EIDX(3, 1), _EIDX(2, 1), _EIDX(2, 2), _EIDX(2, 3), _EIDX(3, 3), _EIDX(3, 3), _EIDX(3, 2), _EIDX(2, 2), // center field _EIDX(1, 1), _EIDX(1, 2), _EIDX(2, 2), _EIDX(2, 2), _EIDX(2, 1), _EIDX(1, 1) }; #undef _EIDX glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(elems), elems, GL_STATIC_DRAW); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); } if (config->max_uniform_buffer_size < 65536) { data.max_lights_per_render = 64; } else { data.max_lights_per_render = 256; } // Reserve 3 Uniform Buffers for instance data Frame N, N+1 and N+2 data.max_instances_per_buffer = uint32_t(GLOBAL_GET("rendering/gl_compatibility/item_buffer_size")); data.max_instance_buffer_size = data.max_instances_per_buffer * sizeof(InstanceData); // 16,384 instances * 128 bytes = 2,097,152 bytes = 2,048 kb state.canvas_instance_data_buffers.resize(3); state.canvas_instance_batches.reserve(200); for (int i = 0; i < 3; i++) { GLuint new_buffers[3]; glGenBuffers(3, new_buffers); // Batch UBO. glBindBuffer(GL_ARRAY_BUFFER, new_buffers[0]); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_ARRAY_BUFFER, new_buffers[0], data.max_instance_buffer_size, nullptr, GL_STREAM_DRAW, "Batch UBO[0][0]"); // Light uniform buffer. glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[1]); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[1], sizeof(LightUniform) * data.max_lights_per_render, nullptr, GL_STREAM_DRAW, "2D lights UBO[0]"); // State buffer. glBindBuffer(GL_UNIFORM_BUFFER, new_buffers[2]); GLES3::Utilities::get_singleton()->buffer_allocate_data(GL_UNIFORM_BUFFER, new_buffers[2], sizeof(StateBuffer), nullptr, GL_STREAM_DRAW, "2D state UBO[0]"); DataBuffer db; db.instance_buffers.push_back(new_buffers[0]); db.light_ubo = new_buffers[1]; db.state_ubo = new_buffers[2]; db.last_frame_used = 0; db.fence = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); state.canvas_instance_data_buffers[i] = db; } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_UNIFORM_BUFFER, 0); state.instance_data_array = memnew_arr(InstanceData, data.max_instances_per_buffer); state.light_uniforms = memnew_arr(LightUniform, data.max_lights_per_render); { const uint32_t indices[6] = { 0, 2, 1, 3, 2, 0 }; glGenVertexArrays(1, &data.indexed_quad_array); glBindVertexArray(data.indexed_quad_array); glBindBuffer(GL_ARRAY_BUFFER, data.canvas_quad_vertices); glGenBuffers(1, &data.indexed_quad_buffer); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, data.indexed_quad_buffer); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(uint32_t) * 6, indices, GL_STATIC_DRAW); glBindVertexArray(0); } String global_defines; global_defines += "#define MAX_GLOBAL_SHADER_UNIFORMS 256\n"; // TODO: this is arbitrary for now global_defines += "#define MAX_LIGHTS " + itos(data.max_lights_per_render) + "\n"; GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.initialize(global_defines, 1); data.canvas_shader_default_version = GLES3::MaterialStorage::get_singleton()->shaders.canvas_shader.version_create(); state.shadow_texture_size = GLOBAL_GET("rendering/2d/shadow_atlas/size"); shadow_render.shader.initialize(); shadow_render.shader_version = shadow_render.shader.version_create(); { default_canvas_group_shader = material_storage->shader_allocate(); material_storage->shader_initialize(default_canvas_group_shader); material_storage->shader_set_code(default_canvas_group_shader, R"( // Default CanvasGroup shader. shader_type canvas_item; render_mode unshaded; uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; void fragment() { vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); if (c.a > 0.0001) { c.rgb /= c.a; } COLOR *= c; } )"); default_canvas_group_material = material_storage->material_allocate(); material_storage->material_initialize(default_canvas_group_material); material_storage->material_set_shader(default_canvas_group_material, default_canvas_group_shader); } { default_clip_children_shader = material_storage->shader_allocate(); material_storage->shader_initialize(default_clip_children_shader); material_storage->shader_set_code(default_clip_children_shader, R"( // Default clip children shader. shader_type canvas_item; render_mode unshaded; uniform sampler2D screen_texture : hint_screen_texture, repeat_disable, filter_nearest; void fragment() { vec4 c = textureLod(screen_texture, SCREEN_UV, 0.0); COLOR.rgb = c.rgb; } )"); default_clip_children_material = material_storage->material_allocate(); material_storage->material_initialize(default_clip_children_material); material_storage->material_set_shader(default_clip_children_material, default_clip_children_shader); } default_canvas_texture = texture_storage->canvas_texture_allocate(); texture_storage->canvas_texture_initialize(default_canvas_texture); state.time = 0.0; } RasterizerCanvasGLES3::~RasterizerCanvasGLES3() { singleton = nullptr; GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); material_storage->shaders.canvas_shader.version_free(data.canvas_shader_default_version); shadow_render.shader.version_free(shadow_render.shader_version); material_storage->material_free(default_canvas_group_material); material_storage->shader_free(default_canvas_group_shader); material_storage->material_free(default_clip_children_material); material_storage->shader_free(default_clip_children_shader); singleton = nullptr; glDeleteBuffers(1, &data.canvas_quad_vertices); glDeleteVertexArrays(1, &data.canvas_quad_array); glDeleteBuffers(1, &data.canvas_quad_vertices); glDeleteVertexArrays(1, &data.canvas_quad_array); GLES3::TextureStorage::get_singleton()->canvas_texture_free(default_canvas_texture); memdelete_arr(state.instance_data_array); memdelete_arr(state.light_uniforms); if (state.shadow_fb != 0) { glDeleteFramebuffers(1, &state.shadow_fb); GLES3::Utilities::get_singleton()->texture_free_data(state.shadow_texture); glDeleteRenderbuffers(1, &state.shadow_depth_buffer); state.shadow_fb = 0; state.shadow_texture = 0; state.shadow_depth_buffer = 0; } for (uint32_t i = 0; i < state.canvas_instance_data_buffers.size(); i++) { for (int j = 0; j < state.canvas_instance_data_buffers[i].instance_buffers.size(); j++) { if (state.canvas_instance_data_buffers[i].instance_buffers[j]) { GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].instance_buffers[j]); } } if (state.canvas_instance_data_buffers[i].light_ubo) { GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].light_ubo); } if (state.canvas_instance_data_buffers[i].state_ubo) { GLES3::Utilities::get_singleton()->buffer_free_data(state.canvas_instance_data_buffers[i].state_ubo); } } } #endif // GLES3_ENABLED