/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2013 Erwin Coumans http://bulletphysics.org This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ ///This file was written by Erwin Coumans #include "btMultiBodyJointLimitConstraint.h" #include "btMultiBody.h" #include "btMultiBodyLinkCollider.h" #include "BulletCollision/CollisionDispatch/btCollisionObject.h" btMultiBodyJointLimitConstraint::btMultiBodyJointLimitConstraint(btMultiBody* body, int link, btScalar lower, btScalar upper) //:btMultiBodyConstraint(body,0,link,-1,2,true), :btMultiBodyConstraint(body,body,link,body->getLink(link).m_parent,2,true), m_lowerBound(lower), m_upperBound(upper) { } void btMultiBodyJointLimitConstraint::finalizeMultiDof() { // the data.m_jacobians never change, so may as well // initialize them here allocateJacobiansMultiDof(); unsigned int offset = 6 + m_bodyA->getLink(m_linkA).m_dofOffset; // row 0: the lower bound jacobianA(0)[offset] = 1; // row 1: the upper bound //jacobianA(1)[offset] = -1; jacobianB(1)[offset] = -1; m_numDofsFinalized = m_jacSizeBoth; } btMultiBodyJointLimitConstraint::~btMultiBodyJointLimitConstraint() { } int btMultiBodyJointLimitConstraint::getIslandIdA() const { if (m_bodyA) { if (m_linkA < 0) { btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider(); if (col) return col->getIslandTag(); } else { if (m_bodyA->getLink(m_linkA).m_collider) return m_bodyA->getLink(m_linkA).m_collider->getIslandTag(); } } return -1; } int btMultiBodyJointLimitConstraint::getIslandIdB() const { if (m_bodyB) { if (m_linkB < 0) { btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider(); if (col) return col->getIslandTag(); } else { if (m_bodyB->getLink(m_linkB).m_collider) return m_bodyB->getLink(m_linkB).m_collider->getIslandTag(); } } return -1; } void btMultiBodyJointLimitConstraint::createConstraintRows(btMultiBodyConstraintArray& constraintRows, btMultiBodyJacobianData& data, const btContactSolverInfo& infoGlobal) { // only positions need to be updated -- data.m_jacobians and force // directions were set in the ctor and never change. if (m_numDofsFinalized != m_jacSizeBoth) { finalizeMultiDof(); } // row 0: the lower bound setPosition(0, m_bodyA->getJointPos(m_linkA) - m_lowerBound); //multidof: this is joint-type dependent // row 1: the upper bound setPosition(1, m_upperBound - m_bodyA->getJointPos(m_linkA)); for (int row=0;row0) { continue; } btScalar direction = row? -1 : 1; btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing(); constraintRow.m_orgConstraint = this; constraintRow.m_orgDofIndex = row; constraintRow.m_multiBodyA = m_bodyA; constraintRow.m_multiBodyB = m_bodyB; const btScalar posError = 0; //why assume it's zero? const btVector3 dummy(0, 0, 0); btScalar rel_vel = fillMultiBodyConstraint(constraintRow,data,jacobianA(row),jacobianB(row),dummy,dummy,dummy,dummy,posError,infoGlobal,0,m_maxAppliedImpulse); { //expect either prismatic or revolute joint type for now btAssert((m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::eRevolute)||(m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::ePrismatic)); switch (m_bodyA->getLink(m_linkA).m_jointType) { case btMultibodyLink::eRevolute: { constraintRow.m_contactNormal1.setZero(); constraintRow.m_contactNormal2.setZero(); btVector3 revoluteAxisInWorld = direction*quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_topVec); constraintRow.m_relpos1CrossNormal=revoluteAxisInWorld; constraintRow.m_relpos2CrossNormal=-revoluteAxisInWorld; break; } case btMultibodyLink::ePrismatic: { btVector3 prismaticAxisInWorld = direction* quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_bottomVec); constraintRow.m_contactNormal1=prismaticAxisInWorld; constraintRow.m_contactNormal2=-prismaticAxisInWorld; constraintRow.m_relpos1CrossNormal.setZero(); constraintRow.m_relpos2CrossNormal.setZero(); break; } default: { btAssert(0); } }; } { btScalar positionalError = 0.f; btScalar velocityError = - rel_vel;// * damping; btScalar erp = infoGlobal.m_erp2; if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) { erp = infoGlobal.m_erp; } if (penetration>0) { positionalError = 0; velocityError = -penetration / infoGlobal.m_timeStep; } else { positionalError = -penetration * erp/infoGlobal.m_timeStep; } btScalar penetrationImpulse = positionalError*constraintRow.m_jacDiagABInv; btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv; if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) { //combine position and velocity into rhs constraintRow.m_rhs = penetrationImpulse+velocityImpulse; constraintRow.m_rhsPenetration = 0.f; } else { //split position and velocity into rhs and m_rhsPenetration constraintRow.m_rhs = velocityImpulse; constraintRow.m_rhsPenetration = penetrationImpulse; } } } }