/**************************************************************************/ /* rid_owner.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef RID_OWNER_H #define RID_OWNER_H #include "core/os/memory.h" #include "core/os/mutex.h" #include "core/string/print_string.h" #include "core/templates/hash_set.h" #include "core/templates/list.h" #include "core/templates/oa_hash_map.h" #include "core/templates/rid.h" #include "core/templates/safe_refcount.h" #include #include class RID_AllocBase { static SafeNumeric base_id; protected: static RID _make_from_id(uint64_t p_id) { RID rid; rid._id = p_id; return rid; } static RID _gen_rid() { return _make_from_id(_gen_id()); } friend struct VariantUtilityFunctions; static uint64_t _gen_id() { return base_id.increment(); } public: virtual ~RID_AllocBase() {} }; template class RID_Alloc : public RID_AllocBase { struct Chunk { T data; uint32_t validator; }; Chunk **chunks = nullptr; uint32_t **free_list_chunks = nullptr; uint32_t elements_in_chunk; uint32_t max_alloc = 0; uint32_t alloc_count = 0; uint32_t chunk_limit = 0; const char *description = nullptr; mutable Mutex mutex; _FORCE_INLINE_ RID _allocate_rid() { if constexpr (THREAD_SAFE) { mutex.lock(); } if (alloc_count == max_alloc) { //allocate a new chunk uint32_t chunk_count = alloc_count == 0 ? 0 : (max_alloc / elements_in_chunk); if (THREAD_SAFE && chunk_count == chunk_limit) { mutex.unlock(); if (description != nullptr) { ERR_FAIL_V_MSG(RID(), vformat("Element limit for RID of type '%s' reached.", String(description))); } else { ERR_FAIL_V_MSG(RID(), "Element limit reached."); } } //grow chunks if constexpr (!THREAD_SAFE) { chunks = (Chunk **)memrealloc(chunks, sizeof(Chunk *) * (chunk_count + 1)); } chunks[chunk_count] = (Chunk *)memalloc(sizeof(Chunk) * elements_in_chunk); //but don't initialize //grow free lists if constexpr (!THREAD_SAFE) { free_list_chunks = (uint32_t **)memrealloc(free_list_chunks, sizeof(uint32_t *) * (chunk_count + 1)); } free_list_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk); //initialize for (uint32_t i = 0; i < elements_in_chunk; i++) { // Don't initialize chunk. chunks[chunk_count][i].validator = 0xFFFFFFFF; free_list_chunks[chunk_count][i] = alloc_count + i; } max_alloc += elements_in_chunk; } uint32_t free_index = free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk]; uint32_t free_chunk = free_index / elements_in_chunk; uint32_t free_element = free_index % elements_in_chunk; uint32_t validator = (uint32_t)(_gen_id() & 0x7FFFFFFF); CRASH_COND_MSG(validator == 0x7FFFFFFF, "Overflow in RID validator"); uint64_t id = validator; id <<= 32; id |= free_index; chunks[free_chunk][free_element].validator = validator; chunks[free_chunk][free_element].validator |= 0x80000000; //mark uninitialized bit alloc_count++; if constexpr (THREAD_SAFE) { mutex.unlock(); } return _make_from_id(id); } public: RID make_rid() { RID rid = _allocate_rid(); initialize_rid(rid); return rid; } RID make_rid(const T &p_value) { RID rid = _allocate_rid(); initialize_rid(rid, p_value); return rid; } //allocate but don't initialize, use initialize_rid afterwards RID allocate_rid() { return _allocate_rid(); } _FORCE_INLINE_ T *get_or_null(const RID &p_rid, bool p_initialize = false) { if (p_rid == RID()) { return nullptr; } uint64_t id = p_rid.get_id(); uint32_t idx = uint32_t(id & 0xFFFFFFFF); if (unlikely(idx >= max_alloc)) { return nullptr; } uint32_t idx_chunk = idx / elements_in_chunk; uint32_t idx_element = idx % elements_in_chunk; uint32_t validator = uint32_t(id >> 32); Chunk &c = chunks[idx_chunk][idx_element]; if (unlikely(p_initialize)) { if (unlikely(!(c.validator & 0x80000000))) { ERR_FAIL_V_MSG(nullptr, "Initializing already initialized RID"); } if (unlikely((c.validator & 0x7FFFFFFF) != validator)) { ERR_FAIL_V_MSG(nullptr, "Attempting to initialize the wrong RID"); } c.validator &= 0x7FFFFFFF; //initialized } else if (unlikely(c.validator != validator)) { if ((c.validator & 0x80000000) && c.validator != 0xFFFFFFFF) { ERR_FAIL_V_MSG(nullptr, "Attempting to use an uninitialized RID"); } return nullptr; } T *ptr = &c.data; return ptr; } void initialize_rid(RID p_rid) { T *mem = get_or_null(p_rid, true); ERR_FAIL_NULL(mem); memnew_placement(mem, T); } void initialize_rid(RID p_rid, const T &p_value) { T *mem = get_or_null(p_rid, true); ERR_FAIL_NULL(mem); memnew_placement(mem, T(p_value)); } _FORCE_INLINE_ bool owns(const RID &p_rid) const { if constexpr (THREAD_SAFE) { mutex.lock(); } uint64_t id = p_rid.get_id(); uint32_t idx = uint32_t(id & 0xFFFFFFFF); if (unlikely(idx >= max_alloc)) { if constexpr (THREAD_SAFE) { mutex.unlock(); } return false; } uint32_t idx_chunk = idx / elements_in_chunk; uint32_t idx_element = idx % elements_in_chunk; uint32_t validator = uint32_t(id >> 32); bool owned = (validator != 0x7FFFFFFF) && (chunks[idx_chunk][idx_element].validator & 0x7FFFFFFF) == validator; if constexpr (THREAD_SAFE) { mutex.unlock(); } return owned; } _FORCE_INLINE_ void free(const RID &p_rid) { if constexpr (THREAD_SAFE) { mutex.lock(); } uint64_t id = p_rid.get_id(); uint32_t idx = uint32_t(id & 0xFFFFFFFF); if (unlikely(idx >= max_alloc)) { if constexpr (THREAD_SAFE) { mutex.unlock(); } ERR_FAIL(); } uint32_t idx_chunk = idx / elements_in_chunk; uint32_t idx_element = idx % elements_in_chunk; uint32_t validator = uint32_t(id >> 32); if (unlikely(chunks[idx_chunk][idx_element].validator & 0x80000000)) { if constexpr (THREAD_SAFE) { mutex.unlock(); } ERR_FAIL_MSG("Attempted to free an uninitialized or invalid RID"); } else if (unlikely(chunks[idx_chunk][idx_element].validator != validator)) { if constexpr (THREAD_SAFE) { mutex.unlock(); } ERR_FAIL(); } chunks[idx_chunk][idx_element].data.~T(); chunks[idx_chunk][idx_element].validator = 0xFFFFFFFF; // go invalid alloc_count--; free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk] = idx; if constexpr (THREAD_SAFE) { mutex.unlock(); } } _FORCE_INLINE_ uint32_t get_rid_count() const { return alloc_count; } void get_owned_list(List *p_owned) const { if constexpr (THREAD_SAFE) { mutex.lock(); } for (size_t i = 0; i < max_alloc; i++) { uint64_t validator = chunks[i / elements_in_chunk][i % elements_in_chunk].validator; if (validator != 0xFFFFFFFF) { p_owned->push_back(_make_from_id((validator << 32) | i)); } } if constexpr (THREAD_SAFE) { mutex.unlock(); } } //used for fast iteration in the elements or RIDs void fill_owned_buffer(RID *p_rid_buffer) const { if constexpr (THREAD_SAFE) { mutex.lock(); } uint32_t idx = 0; for (size_t i = 0; i < max_alloc; i++) { uint64_t validator = chunks[i / elements_in_chunk][i % elements_in_chunk].validator; if (validator != 0xFFFFFFFF) { p_rid_buffer[idx] = _make_from_id((validator << 32) | i); idx++; } } if constexpr (THREAD_SAFE) { mutex.unlock(); } } void set_description(const char *p_descrption) { description = p_descrption; } RID_Alloc(uint32_t p_target_chunk_byte_size = 65536, uint32_t p_maximum_number_of_elements = 262144) { elements_in_chunk = sizeof(T) > p_target_chunk_byte_size ? 1 : (p_target_chunk_byte_size / sizeof(T)); if constexpr (THREAD_SAFE) { chunk_limit = (p_maximum_number_of_elements / elements_in_chunk) + 1; chunks = (Chunk **)memalloc(sizeof(Chunk *) * chunk_limit); free_list_chunks = (uint32_t **)memalloc(sizeof(uint32_t *) * chunk_limit); } } ~RID_Alloc() { if (alloc_count) { print_error(vformat("ERROR: %d RID allocations of type '%s' were leaked at exit.", alloc_count, description ? description : typeid(T).name())); for (size_t i = 0; i < max_alloc; i++) { uint64_t validator = chunks[i / elements_in_chunk][i % elements_in_chunk].validator; if (validator & 0x80000000) { continue; //uninitialized } if (validator != 0xFFFFFFFF) { chunks[i / elements_in_chunk][i % elements_in_chunk].data.~T(); } } } uint32_t chunk_count = max_alloc / elements_in_chunk; for (uint32_t i = 0; i < chunk_count; i++) { memfree(chunks[i]); memfree(free_list_chunks[i]); } if (chunks) { memfree(chunks); memfree(free_list_chunks); } } }; template class RID_PtrOwner { RID_Alloc alloc; public: _FORCE_INLINE_ RID make_rid(T *p_ptr) { return alloc.make_rid(p_ptr); } _FORCE_INLINE_ RID allocate_rid() { return alloc.allocate_rid(); } _FORCE_INLINE_ void initialize_rid(RID p_rid, T *p_ptr) { alloc.initialize_rid(p_rid, p_ptr); } _FORCE_INLINE_ T *get_or_null(const RID &p_rid) { T **ptr = alloc.get_or_null(p_rid); if (unlikely(!ptr)) { return nullptr; } return *ptr; } _FORCE_INLINE_ void replace(const RID &p_rid, T *p_new_ptr) { T **ptr = alloc.get_or_null(p_rid); ERR_FAIL_NULL(ptr); *ptr = p_new_ptr; } _FORCE_INLINE_ bool owns(const RID &p_rid) const { return alloc.owns(p_rid); } _FORCE_INLINE_ void free(const RID &p_rid) { alloc.free(p_rid); } _FORCE_INLINE_ uint32_t get_rid_count() const { return alloc.get_rid_count(); } _FORCE_INLINE_ void get_owned_list(List *p_owned) const { return alloc.get_owned_list(p_owned); } void fill_owned_buffer(RID *p_rid_buffer) const { alloc.fill_owned_buffer(p_rid_buffer); } void set_description(const char *p_descrption) { alloc.set_description(p_descrption); } RID_PtrOwner(uint32_t p_target_chunk_byte_size = 65536, uint32_t p_maximum_number_of_elements = 262144) : alloc(p_target_chunk_byte_size, p_maximum_number_of_elements) {} }; template class RID_Owner { RID_Alloc alloc; public: _FORCE_INLINE_ RID make_rid() { return alloc.make_rid(); } _FORCE_INLINE_ RID make_rid(const T &p_ptr) { return alloc.make_rid(p_ptr); } _FORCE_INLINE_ RID allocate_rid() { return alloc.allocate_rid(); } _FORCE_INLINE_ void initialize_rid(RID p_rid) { alloc.initialize_rid(p_rid); } _FORCE_INLINE_ void initialize_rid(RID p_rid, const T &p_ptr) { alloc.initialize_rid(p_rid, p_ptr); } _FORCE_INLINE_ T *get_or_null(const RID &p_rid) { return alloc.get_or_null(p_rid); } _FORCE_INLINE_ bool owns(const RID &p_rid) const { return alloc.owns(p_rid); } _FORCE_INLINE_ void free(const RID &p_rid) { alloc.free(p_rid); } _FORCE_INLINE_ uint32_t get_rid_count() const { return alloc.get_rid_count(); } _FORCE_INLINE_ void get_owned_list(List *p_owned) const { return alloc.get_owned_list(p_owned); } void fill_owned_buffer(RID *p_rid_buffer) const { alloc.fill_owned_buffer(p_rid_buffer); } void set_description(const char *p_descrption) { alloc.set_description(p_descrption); } RID_Owner(uint32_t p_target_chunk_byte_size = 65536, uint32_t p_maximum_number_of_elements = 262144) : alloc(p_target_chunk_byte_size, p_maximum_number_of_elements) {} }; #endif // RID_OWNER_H