/*************************************************************************/ /* gltf_document.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "gltf_document.h" #include "core/error_list.h" #include "core/error_macros.h" #include "core/variant.h" #include "gltf_accessor.h" #include "gltf_animation.h" #include "gltf_camera.h" #include "gltf_light.h" #include "gltf_mesh.h" #include "gltf_node.h" #include "gltf_skeleton.h" #include "gltf_skin.h" #include "gltf_spec_gloss.h" #include "gltf_state.h" #include "gltf_texture.h" #include #include #include "core/bind/core_bind.h" #include "core/crypto/crypto_core.h" #include "core/error_macros.h" #include "core/io/json.h" #include "core/math/disjoint_set.h" #include "core/os/file_access.h" #include "core/variant.h" #include "core/version.h" #include "core/version_hash.gen.h" #include "drivers/png/png_driver_common.h" #include "editor/import/resource_importer_scene.h" #ifdef MODULE_CSG_ENABLED #include "modules/csg/csg_shape.h" #endif // MODULE_CSG_ENABLED #ifdef MODULE_GRIDMAP_ENABLED #include "modules/gridmap/grid_map.h" #endif // MODULE_GRIDMAP_ENABLED #ifdef MODULE_REGEX_ENABLED #include "modules/regex/regex.h" #endif // MODULE_REGEX_ENABLED #include "scene/2d/node_2d.h" #include "scene/3d/bone_attachment.h" #include "scene/3d/camera.h" #include "scene/3d/mesh_instance.h" #include "scene/3d/multimesh_instance.h" #include "scene/3d/skeleton.h" #include "scene/3d/spatial.h" #include "scene/animation/animation_player.h" #include "scene/main/node.h" #include "scene/resources/surface_tool.h" #include Error GLTFDocument::serialize(Ref state, Node *p_root, const String &p_path) { uint64_t begin_time = OS::get_singleton()->get_ticks_usec(); state->skeleton3d_to_gltf_skeleton.clear(); state->skin_and_skeleton3d_to_gltf_skin.clear(); _convert_scene_node(state, p_root, -1, -1); if (!state->buffers.size()) { state->buffers.push_back(Vector()); } /* STEP 1 CONVERT MESH INSTANCES */ _convert_mesh_instances(state); /* STEP 2 SERIALIZE CAMERAS */ Error err = _serialize_cameras(state); if (err != OK) { return Error::FAILED; } /* STEP 3 CREATE SKINS */ err = _serialize_skins(state); if (err != OK) { return Error::FAILED; } /* STEP 5 SERIALIZE MESHES (we have enough info now) */ err = _serialize_meshes(state); if (err != OK) { return Error::FAILED; } /* STEP 6 SERIALIZE TEXTURES */ err = _serialize_materials(state); if (err != OK) { return Error::FAILED; } /* STEP 7 SERIALIZE ANIMATIONS */ err = _serialize_animations(state); if (err != OK) { return Error::FAILED; } /* STEP 8 SERIALIZE ACCESSORS */ err = _encode_accessors(state); if (err != OK) { return Error::FAILED; } /* STEP 9 SERIALIZE IMAGES */ err = _serialize_images(state, p_path); if (err != OK) { return Error::FAILED; } /* STEP 10 SERIALIZE TEXTURES */ err = _serialize_textures(state); if (err != OK) { return Error::FAILED; } for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) { state->buffer_views.write[i]->buffer = 0; } /* STEP 11 SERIALIZE BUFFER VIEWS */ err = _encode_buffer_views(state); if (err != OK) { return Error::FAILED; } /* STEP 12 SERIALIZE NODES */ err = _serialize_nodes(state); if (err != OK) { return Error::FAILED; } /* STEP 13 SERIALIZE SCENE */ err = _serialize_scenes(state); if (err != OK) { return Error::FAILED; } /* STEP 14 SERIALIZE SCENE */ err = _serialize_lights(state); if (err != OK) { return Error::FAILED; } /* STEP 15 SERIALIZE EXTENSIONS */ err = _serialize_extensions(state); if (err != OK) { return Error::FAILED; } /* STEP 16 SERIALIZE VERSION */ err = _serialize_version(state); if (err != OK) { return Error::FAILED; } /* STEP 17 SERIALIZE FILE */ err = _serialize_file(state, p_path); if (err != OK) { return Error::FAILED; } uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time; float elapsed_sec = double(elapsed) / 1000000.0; elapsed_sec = Math::stepify(elapsed_sec, 0.01f); print_line("glTF: Export time elapsed seconds " + rtos(elapsed_sec).pad_decimals(2)); return OK; } Error GLTFDocument::_serialize_extensions(Ref state) const { const String texture_transform = "KHR_texture_transform"; const String punctual_lights = "KHR_lights_punctual"; Array extensions_used; extensions_used.push_back(punctual_lights); extensions_used.push_back(texture_transform); state->json["extensionsUsed"] = extensions_used; Array extensions_required; extensions_required.push_back(texture_transform); state->json["extensionsRequired"] = extensions_required; return OK; } Error GLTFDocument::_serialize_scenes(Ref state) { Array scenes; const int loaded_scene = 0; state->json["scene"] = loaded_scene; if (state->nodes.size()) { Dictionary s; if (!state->scene_name.empty()) { s["name"] = state->scene_name; } Array nodes; nodes.push_back(0); s["nodes"] = nodes; scenes.push_back(s); } state->json["scenes"] = scenes; return OK; } Error GLTFDocument::_parse_json(const String &p_path, Ref state) { Error err; FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) { return err; } Vector array; array.resize(f->get_len()); f->get_buffer(array.ptrw(), array.size()); String text; text.parse_utf8((const char *)array.ptr(), array.size()); String err_txt; int err_line; Variant v; err = JSON::parse(text, v, err_txt, err_line); if (err != OK) { _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); return err; } state->json = v; return OK; } Error GLTFDocument::_parse_glb(const String &p_path, Ref state) { Error err; FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) { return err; } uint32_t magic = f->get_32(); ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF f->get_32(); // version f->get_32(); // length uint32_t chunk_length = f->get_32(); uint32_t chunk_type = f->get_32(); ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON Vector json_data; json_data.resize(chunk_length); uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length); ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); String text; text.parse_utf8((const char *)json_data.ptr(), json_data.size()); String err_txt; int err_line; Variant v; err = JSON::parse(text, v, err_txt, err_line); if (err != OK) { _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); return err; } state->json = v; //data? chunk_length = f->get_32(); chunk_type = f->get_32(); if (f->eof_reached()) { return OK; //all good } ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN state->glb_data.resize(chunk_length); len = f->get_buffer(state->glb_data.ptrw(), chunk_length); ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); return OK; } static Array _vec3_to_arr(const Vector3 &p_vec3) { Array array; array.resize(3); array[0] = p_vec3.x; array[1] = p_vec3.y; array[2] = p_vec3.z; return array; } static Vector3 _arr_to_vec3(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 3, Vector3()); return Vector3(p_array[0], p_array[1], p_array[2]); } static Array _quat_to_array(const Quat &p_quat) { Array array; array.resize(4); array[0] = p_quat.x; array[1] = p_quat.y; array[2] = p_quat.z; array[3] = p_quat.w; return array; } static Quat _arr_to_quat(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 4, Quat()); return Quat(p_array[0], p_array[1], p_array[2], p_array[3]); } static Transform _arr_to_xform(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 16, Transform()); Transform xform; xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2])); xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6])); xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10])); xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14])); return xform; } static Vector _xform_to_array(const Transform p_transform) { Vector array; array.resize(16); Vector3 axis_x = p_transform.get_basis().get_axis(Vector3::AXIS_X); array.write[0] = axis_x.x; array.write[1] = axis_x.y; array.write[2] = axis_x.z; array.write[3] = 0.0f; Vector3 axis_y = p_transform.get_basis().get_axis(Vector3::AXIS_Y); array.write[4] = axis_y.x; array.write[5] = axis_y.y; array.write[6] = axis_y.z; array.write[7] = 0.0f; Vector3 axis_z = p_transform.get_basis().get_axis(Vector3::AXIS_Z); array.write[8] = axis_z.x; array.write[9] = axis_z.y; array.write[10] = axis_z.z; array.write[11] = 0.0f; Vector3 origin = p_transform.get_origin(); array.write[12] = origin.x; array.write[13] = origin.y; array.write[14] = origin.z; array.write[15] = 1.0f; return array; } Error GLTFDocument::_serialize_nodes(Ref state) { Array nodes; for (int i = 0; i < state->nodes.size(); i++) { Dictionary node; Ref n = state->nodes[i]; Dictionary extensions; node["extensions"] = extensions; if (!n->get_name().empty()) { node["name"] = n->get_name(); } if (n->camera != -1) { node["camera"] = n->camera; } if (n->light != -1) { Dictionary lights_punctual; extensions["KHR_lights_punctual"] = lights_punctual; lights_punctual["light"] = n->light; } if (n->mesh != -1) { node["mesh"] = n->mesh; } if (n->skin != -1) { node["skin"] = n->skin; } if (n->skeleton != -1 && n->skin < 0) { } if (n->xform != Transform()) { node["matrix"] = _xform_to_array(n->xform); } if (!n->rotation.is_equal_approx(Quat())) { node["rotation"] = _quat_to_array(n->rotation); } if (!n->scale.is_equal_approx(Vector3(1.0f, 1.0f, 1.0f))) { node["scale"] = _vec3_to_arr(n->scale); } if (!n->translation.is_equal_approx(Vector3())) { node["translation"] = _vec3_to_arr(n->translation); } if (n->children.size()) { Array children; for (int j = 0; j < n->children.size(); j++) { children.push_back(n->children[j]); } node["children"] = children; } nodes.push_back(node); } state->json["nodes"] = nodes; return OK; } String GLTFDocument::_sanitize_scene_name(Ref state, const String &p_name) { if (state->use_legacy_names) { #ifdef MODULE_REGEX_ENABLED RegEx regex("([^a-zA-Z0-9_ -]+)"); String s_name = regex.sub(p_name, "", true); return s_name; #else WARN_PRINT("GLTF: Legacy scene names are not supported without the RegEx module. Falling back to new names."); #endif // MODULE_REGEX_ENABLED } return p_name.validate_node_name(); } String GLTFDocument::_legacy_validate_node_name(const String &p_name) { String invalid_character = ". : @ / \""; String name = p_name; Vector chars = invalid_character.split(" "); for (int i = 0; i < chars.size(); i++) { name = name.replace(chars[i], ""); } return name; } String GLTFDocument::_gen_unique_name(Ref state, const String &p_name) { const String s_name = _sanitize_scene_name(state, p_name); String name; int index = 1; while (true) { name = s_name; if (index > 1) { if (state->use_legacy_names) { name += " "; } name += itos(index); } if (!state->unique_names.has(name)) { break; } index++; } state->unique_names.insert(name); return name; } String GLTFDocument::_sanitize_animation_name(const String &p_name) { // Animations disallow the normal node invalid characters as well as "," and "[" // (See animation/animation_player.cpp::add_animation) // TODO: Consider adding invalid_characters or a validate_animation_name to animation_player to mirror Node. String name = p_name.validate_node_name(); name = name.replace(",", ""); name = name.replace("[", ""); return name; } String GLTFDocument::_gen_unique_animation_name(Ref state, const String &p_name) { const String s_name = _sanitize_animation_name(p_name); String name; int index = 1; while (true) { name = s_name; if (index > 1) { name += itos(index); } if (!state->unique_animation_names.has(name)) { break; } index++; } state->unique_animation_names.insert(name); return name; } String GLTFDocument::_sanitize_bone_name(Ref state, const String &p_name) { if (state->use_legacy_names) { #ifdef MODULE_REGEX_ENABLED String name = p_name.camelcase_to_underscore(true); RegEx pattern_del("([^a-zA-Z0-9_ ])+"); name = pattern_del.sub(name, "", true); RegEx pattern_nospace(" +"); name = pattern_nospace.sub(name, "_", true); RegEx pattern_multiple("_+"); name = pattern_multiple.sub(name, "_", true); RegEx pattern_padded("0+(\\d+)"); name = pattern_padded.sub(name, "$1", true); return name; #else WARN_PRINT("GLTF: Legacy bone names are not supported without the RegEx module. Falling back to new names."); #endif // MODULE_REGEX_ENABLED } String name = p_name; name = name.replace(":", "_"); name = name.replace("/", "_"); if (name.empty()) { name = "bone"; } return name; } String GLTFDocument::_gen_unique_bone_name(Ref state, const GLTFSkeletonIndex skel_i, const String &p_name) { String s_name = _sanitize_bone_name(state, p_name); String name; int index = 1; while (true) { name = s_name; if (index > 1) { name += "_" + itos(index); } if (!state->skeletons[skel_i]->unique_names.has(name)) { break; } index++; } state->skeletons.write[skel_i]->unique_names.insert(name); return name; } Error GLTFDocument::_parse_scenes(Ref state) { ERR_FAIL_COND_V(!state->json.has("scenes"), ERR_FILE_CORRUPT); const Array &scenes = state->json["scenes"]; int loaded_scene = 0; if (state->json.has("scene")) { loaded_scene = state->json["scene"]; } else { WARN_PRINT("The load-time scene is not defined in the glTF2 file. Picking the first scene."); } if (scenes.size()) { ERR_FAIL_COND_V(loaded_scene >= scenes.size(), ERR_FILE_CORRUPT); const Dictionary &s = scenes[loaded_scene]; ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE); const Array &nodes = s["nodes"]; for (int j = 0; j < nodes.size(); j++) { state->root_nodes.push_back(nodes[j]); } if (s.has("name") && !String(s["name"]).empty() && !((String)s["name"]).begins_with("Scene")) { state->scene_name = s["name"]; } else { state->scene_name = state->filename; } } return OK; } Error GLTFDocument::_parse_nodes(Ref state) { ERR_FAIL_COND_V(!state->json.has("nodes"), ERR_FILE_CORRUPT); const Array &nodes = state->json["nodes"]; for (int i = 0; i < nodes.size(); i++) { Ref node; node.instance(); const Dictionary &n = nodes[i]; if (n.has("name")) { node->set_name(n["name"]); } if (n.has("camera")) { node->camera = n["camera"]; } if (n.has("mesh")) { node->mesh = n["mesh"]; } if (n.has("skin")) { node->skin = n["skin"]; } if (n.has("matrix")) { node->xform = _arr_to_xform(n["matrix"]); } else { if (n.has("translation")) { node->translation = _arr_to_vec3(n["translation"]); } if (n.has("rotation")) { node->rotation = _arr_to_quat(n["rotation"]); } if (n.has("scale")) { node->scale = _arr_to_vec3(n["scale"]); } node->xform.basis.set_quat_scale(node->rotation, node->scale); node->xform.origin = node->translation; } if (n.has("extensions")) { Dictionary extensions = n["extensions"]; if (extensions.has("KHR_lights_punctual")) { Dictionary lights_punctual = extensions["KHR_lights_punctual"]; if (lights_punctual.has("light")) { GLTFLightIndex light = lights_punctual["light"]; node->light = light; } } } if (n.has("children")) { const Array &children = n["children"]; for (int j = 0; j < children.size(); j++) { node->children.push_back(children[j]); } } state->nodes.push_back(node); } // build the hierarchy for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) { for (int j = 0; j < state->nodes[node_i]->children.size(); j++) { GLTFNodeIndex child_i = state->nodes[node_i]->children[j]; ERR_FAIL_INDEX_V(child_i, state->nodes.size(), ERR_FILE_CORRUPT); ERR_CONTINUE(state->nodes[child_i]->parent != -1); //node already has a parent, wtf. state->nodes.write[child_i]->parent = node_i; } } _compute_node_heights(state); return OK; } void GLTFDocument::_compute_node_heights(Ref state) { state->root_nodes.clear(); for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) { Ref node = state->nodes[node_i]; node->height = 0; GLTFNodeIndex current_i = node_i; while (current_i >= 0) { const GLTFNodeIndex parent_i = state->nodes[current_i]->parent; if (parent_i >= 0) { ++node->height; } current_i = parent_i; } if (node->height == 0) { state->root_nodes.push_back(node_i); } } } static Vector _parse_base64_uri(const String &uri) { int start = uri.find(","); ERR_FAIL_COND_V(start == -1, Vector()); CharString substr = uri.right(start + 1).ascii(); int strlen = substr.length(); Vector buf; buf.resize(strlen / 4 * 3 + 1 + 1); size_t len = 0; ERR_FAIL_COND_V(CryptoCore::b64_decode(buf.ptrw(), buf.size(), &len, (unsigned char *)substr.get_data(), strlen) != OK, Vector()); buf.resize(len); return buf; } Error GLTFDocument::_encode_buffer_glb(Ref state, const String &p_path) { print_verbose("glTF: Total buffers: " + itos(state->buffers.size())); if (!state->buffers.size()) { return OK; } Array buffers; if (state->buffers.size()) { Vector buffer_data = state->buffers[0]; Dictionary gltf_buffer; gltf_buffer["byteLength"] = buffer_data.size(); buffers.push_back(gltf_buffer); } for (GLTFBufferIndex i = 1; i < state->buffers.size() - 1; i++) { Vector buffer_data = state->buffers[i]; Dictionary gltf_buffer; String filename = p_path.get_basename().get_file() + itos(i) + ".bin"; String path = p_path.get_base_dir() + "/" + filename; Error err; FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err); if (!f) { return err; } if (buffer_data.size() == 0) { return OK; } f->create(FileAccess::ACCESS_RESOURCES); f->store_buffer(buffer_data.ptr(), buffer_data.size()); f->close(); gltf_buffer["uri"] = filename; gltf_buffer["byteLength"] = buffer_data.size(); buffers.push_back(gltf_buffer); } if (!buffers.size()) { return OK; } state->json["buffers"] = buffers; return OK; } Error GLTFDocument::_encode_buffer_bins(Ref state, const String &p_path) { print_verbose("glTF: Total buffers: " + itos(state->buffers.size())); if (!state->buffers.size()) { return OK; } Array buffers; for (GLTFBufferIndex i = 0; i < state->buffers.size(); i++) { Vector buffer_data = state->buffers[i]; Dictionary gltf_buffer; String filename = p_path.get_basename().get_file() + itos(i) + ".bin"; String path = p_path.get_base_dir() + "/" + filename; Error err; FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err); if (!f) { return err; } if (buffer_data.size() == 0) { return OK; } f->create(FileAccess::ACCESS_RESOURCES); f->store_buffer(buffer_data.ptr(), buffer_data.size()); f->close(); gltf_buffer["uri"] = filename; gltf_buffer["byteLength"] = buffer_data.size(); buffers.push_back(gltf_buffer); } state->json["buffers"] = buffers; return OK; } Error GLTFDocument::_parse_buffers(Ref state, const String &p_base_path) { if (!state->json.has("buffers")) { return OK; } const Array &buffers = state->json["buffers"]; for (GLTFBufferIndex i = 0; i < buffers.size(); i++) { if (i == 0 && state->glb_data.size()) { state->buffers.push_back(state->glb_data); } else { const Dictionary &buffer = buffers[i]; if (buffer.has("uri")) { Vector buffer_data; String uri = buffer["uri"]; if (uri.begins_with("data:")) { // Embedded data using base64. // Validate data MIME types and throw an error if it's one we don't know/support. if (!uri.begins_with("data:application/octet-stream;base64") && !uri.begins_with("data:application/gltf-buffer;base64")) { ERR_PRINT("glTF: Got buffer with an unknown URI data type: " + uri); } buffer_data = _parse_base64_uri(uri); } else { // Relative path to an external image file. uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows. buffer_data = FileAccess::get_file_as_array(uri); ERR_FAIL_COND_V_MSG(buffer.size() == 0, ERR_PARSE_ERROR, "glTF: Couldn't load binary file as an array: " + uri); } ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR); int byteLength = buffer["byteLength"]; ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR); state->buffers.push_back(buffer_data); } } } print_verbose("glTF: Total buffers: " + itos(state->buffers.size())); return OK; } Error GLTFDocument::_encode_buffer_views(Ref state) { Array buffers; for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) { Dictionary d; Ref buffer_view = state->buffer_views[i]; d["buffer"] = buffer_view->buffer; d["byteLength"] = buffer_view->byte_length; d["byteOffset"] = buffer_view->byte_offset; if (buffer_view->byte_stride != -1) { d["byteStride"] = buffer_view->byte_stride; } // TODO Sparse // d["target"] = buffer_view->indices; ERR_FAIL_COND_V(!d.has("buffer"), ERR_INVALID_DATA); ERR_FAIL_COND_V(!d.has("byteLength"), ERR_INVALID_DATA); buffers.push_back(d); } print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size())); if (!buffers.size()) { return OK; } state->json["bufferViews"] = buffers; return OK; } Error GLTFDocument::_parse_buffer_views(Ref state) { if (!state->json.has("bufferViews")) { return OK; } const Array &buffers = state->json["bufferViews"]; for (GLTFBufferViewIndex i = 0; i < buffers.size(); i++) { const Dictionary &d = buffers[i]; Ref buffer_view; buffer_view.instance(); ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR); buffer_view->buffer = d["buffer"]; ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR); buffer_view->byte_length = d["byteLength"]; if (d.has("byteOffset")) { buffer_view->byte_offset = d["byteOffset"]; } if (d.has("byteStride")) { buffer_view->byte_stride = d["byteStride"]; } if (d.has("target")) { const int target = d["target"]; buffer_view->indices = target == GLTFDocument::ELEMENT_ARRAY_BUFFER; } state->buffer_views.push_back(buffer_view); } print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size())); return OK; } Error GLTFDocument::_encode_accessors(Ref state) { Array accessors; for (GLTFAccessorIndex i = 0; i < state->accessors.size(); i++) { Dictionary d; Ref accessor = state->accessors[i]; d["componentType"] = accessor->component_type; d["count"] = accessor->count; d["type"] = _get_accessor_type_name(accessor->type); d["byteOffset"] = accessor->byte_offset; d["normalized"] = accessor->normalized; Array max; max.resize(accessor->max.size()); for (int32_t max_i = 0; max_i < max.size(); max_i++) { max[max_i] = accessor->max[max_i]; } d["max"] = max; Array min; min.resize(accessor->min.size()); for (int32_t min_i = 0; min_i < min.size(); min_i++) { min[min_i] = accessor->min[min_i]; } d["min"] = min; d["bufferView"] = accessor->buffer_view; //optional because it may be sparse... // Dictionary s; // s["count"] = accessor->sparse_count; // ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR); // s["indices"] = accessor->sparse_accessors; // ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR); // Dictionary si; // si["bufferView"] = accessor->sparse_indices_buffer_view; // ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR); // si["componentType"] = accessor->sparse_indices_component_type; // if (si.has("byteOffset")) { // si["byteOffset"] = accessor->sparse_indices_byte_offset; // } // ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR); // s["indices"] = si; // Dictionary sv; // sv["bufferView"] = accessor->sparse_values_buffer_view; // if (sv.has("byteOffset")) { // sv["byteOffset"] = accessor->sparse_values_byte_offset; // } // ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR); // s["values"] = sv; // ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR); // d["sparse"] = s; accessors.push_back(d); } if (!accessors.size()) { return OK; } state->json["accessors"] = accessors; ERR_FAIL_COND_V(!state->json.has("accessors"), ERR_FILE_CORRUPT); print_verbose("glTF: Total accessors: " + itos(state->accessors.size())); return OK; } String GLTFDocument::_get_accessor_type_name(const GLTFDocument::GLTFType p_type) { if (p_type == GLTFDocument::TYPE_SCALAR) { return "SCALAR"; } if (p_type == GLTFDocument::TYPE_VEC2) { return "VEC2"; } if (p_type == GLTFDocument::TYPE_VEC3) { return "VEC3"; } if (p_type == GLTFDocument::TYPE_VEC4) { return "VEC4"; } if (p_type == GLTFDocument::TYPE_MAT2) { return "MAT2"; } if (p_type == GLTFDocument::TYPE_MAT3) { return "MAT3"; } if (p_type == GLTFDocument::TYPE_MAT4) { return "MAT4"; } ERR_FAIL_V("SCALAR"); } GLTFDocument::GLTFType GLTFDocument::_get_type_from_str(const String &p_string) { if (p_string == "SCALAR") { return GLTFDocument::TYPE_SCALAR; } if (p_string == "VEC2") { return GLTFDocument::TYPE_VEC2; } if (p_string == "VEC3") { return GLTFDocument::TYPE_VEC3; } if (p_string == "VEC4") { return GLTFDocument::TYPE_VEC4; } if (p_string == "MAT2") { return GLTFDocument::TYPE_MAT2; } if (p_string == "MAT3") { return GLTFDocument::TYPE_MAT3; } if (p_string == "MAT4") { return GLTFDocument::TYPE_MAT4; } ERR_FAIL_V(GLTFDocument::TYPE_SCALAR); } Error GLTFDocument::_parse_accessors(Ref state) { if (!state->json.has("accessors")) { return OK; } const Array &accessors = state->json["accessors"]; for (GLTFAccessorIndex i = 0; i < accessors.size(); i++) { const Dictionary &d = accessors[i]; Ref accessor; accessor.instance(); ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR); accessor->component_type = d["componentType"]; ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR); accessor->count = d["count"]; ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); accessor->type = _get_type_from_str(d["type"]); if (d.has("bufferView")) { accessor->buffer_view = d["bufferView"]; //optional because it may be sparse... } if (d.has("byteOffset")) { accessor->byte_offset = d["byteOffset"]; } if (d.has("normalized")) { accessor->normalized = d["normalized"]; } if (d.has("max")) { Array max = d["max"]; accessor->max.resize(max.size()); PoolVector::Write max_write = accessor->max.write(); for (int32_t max_i = 0; max_i < accessor->max.size(); max_i++) { max_write[max_i] = max[max_i]; } } if (d.has("min")) { Array min = d["min"]; accessor->min.resize(min.size()); PoolVector::Write min_write = accessor->min.write(); for (int32_t min_i = 0; min_i < accessor->min.size(); min_i++) { min_write[min_i] = min[min_i]; } } if (d.has("sparse")) { //eeh.. const Dictionary &s = d["sparse"]; ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR); accessor->sparse_count = s["count"]; ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR); const Dictionary &si = s["indices"]; ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR); accessor->sparse_indices_buffer_view = si["bufferView"]; ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR); accessor->sparse_indices_component_type = si["componentType"]; if (si.has("byteOffset")) { accessor->sparse_indices_byte_offset = si["byteOffset"]; } ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR); const Dictionary &sv = s["values"]; ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR); accessor->sparse_values_buffer_view = sv["bufferView"]; if (sv.has("byteOffset")) { accessor->sparse_values_byte_offset = sv["byteOffset"]; } } state->accessors.push_back(accessor); } print_verbose("glTF: Total accessors: " + itos(state->accessors.size())); return OK; } double GLTFDocument::_filter_number(double p_float) { if (Math::is_nan(p_float)) { return 0.0f; } return p_float; } String GLTFDocument::_get_component_type_name(const uint32_t p_component) { switch (p_component) { case GLTFDocument::COMPONENT_TYPE_BYTE: return "Byte"; case GLTFDocument::COMPONENT_TYPE_UNSIGNED_BYTE: return "UByte"; case GLTFDocument::COMPONENT_TYPE_SHORT: return "Short"; case GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT: return "UShort"; case GLTFDocument::COMPONENT_TYPE_INT: return "Int"; case GLTFDocument::COMPONENT_TYPE_FLOAT: return "Float"; } return ""; } String GLTFDocument::_get_type_name(const GLTFType p_component) { static const char *names[] = { "float", "vec2", "vec3", "vec4", "mat2", "mat3", "mat4" }; return names[p_component]; } Error GLTFDocument::_encode_buffer_view(Ref state, const double *src, const int count, const GLTFType type, const int component_type, const bool normalized, const int byte_offset, const bool for_vertex, GLTFBufferViewIndex &r_accessor) { const int component_count_for_type[7] = { 1, 2, 3, 4, 4, 9, 16 }; const int component_count = component_count_for_type[type]; const int component_size = _get_component_type_size(component_type); ERR_FAIL_COND_V(component_size == 0, FAILED); int skip_every = 0; int skip_bytes = 0; //special case of alignments, as described in spec switch (component_type) { case COMPONENT_TYPE_BYTE: case COMPONENT_TYPE_UNSIGNED_BYTE: { if (type == TYPE_MAT2) { skip_every = 2; skip_bytes = 2; } if (type == TYPE_MAT3) { skip_every = 3; skip_bytes = 1; } } break; case COMPONENT_TYPE_SHORT: case COMPONENT_TYPE_UNSIGNED_SHORT: { if (type == TYPE_MAT3) { skip_every = 6; skip_bytes = 4; } } break; default: { } } Ref bv; bv.instance(); const uint32_t offset = bv->byte_offset = byte_offset; Vector &gltf_buffer = state->buffers.write[0]; int stride = _get_component_type_size(component_type); if (for_vertex && stride % 4) { stride += 4 - (stride % 4); //according to spec must be multiple of 4 } //use to debug print_verbose("glTF: encoding type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count)); print_verbose("glTF: encoding accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(gltf_buffer.size()) + " view len " + itos(bv->byte_length)); const int buffer_end = (stride * (count - 1)) + _get_component_type_size(component_type); // TODO define bv->byte_stride bv->byte_offset = gltf_buffer.size(); switch (component_type) { case COMPONENT_TYPE_BYTE: { Vector buffer; buffer.resize(count * component_count); int32_t dst_i = 0; for (int i = 0; i < count; i++) { for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { dst_i += skip_bytes; } double d = *src; if (normalized) { buffer.write[dst_i] = d * 128.0; } else { buffer.write[dst_i] = d; } src++; dst_i++; } } int64_t old_size = gltf_buffer.size(); gltf_buffer.resize(old_size + (buffer.size() * sizeof(int8_t))); memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int8_t)); bv->byte_length = buffer.size() * sizeof(int8_t); } break; case COMPONENT_TYPE_UNSIGNED_BYTE: { Vector buffer; buffer.resize(count * component_count); int32_t dst_i = 0; for (int i = 0; i < count; i++) { for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { dst_i += skip_bytes; } double d = *src; if (normalized) { buffer.write[dst_i] = d * 255.0; } else { buffer.write[dst_i] = d; } src++; dst_i++; } } gltf_buffer.append_array(buffer); bv->byte_length = buffer.size() * sizeof(uint8_t); } break; case COMPONENT_TYPE_SHORT: { Vector buffer; buffer.resize(count * component_count); int32_t dst_i = 0; for (int i = 0; i < count; i++) { for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { dst_i += skip_bytes; } double d = *src; if (normalized) { buffer.write[dst_i] = d * 32768.0; } else { buffer.write[dst_i] = d; } src++; dst_i++; } } int64_t old_size = gltf_buffer.size(); gltf_buffer.resize(old_size + (buffer.size() * sizeof(int16_t))); memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int16_t)); bv->byte_length = buffer.size() * sizeof(int16_t); } break; case COMPONENT_TYPE_UNSIGNED_SHORT: { Vector buffer; buffer.resize(count * component_count); int32_t dst_i = 0; for (int i = 0; i < count; i++) { for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { dst_i += skip_bytes; } double d = *src; if (normalized) { buffer.write[dst_i] = d * 65535.0; } else { buffer.write[dst_i] = d; } src++; dst_i++; } } int64_t old_size = gltf_buffer.size(); gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint16_t))); memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint16_t)); bv->byte_length = buffer.size() * sizeof(uint16_t); } break; case COMPONENT_TYPE_INT: { Vector buffer; buffer.resize(count * component_count); int32_t dst_i = 0; for (int i = 0; i < count; i++) { for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { dst_i += skip_bytes; } double d = *src; buffer.write[dst_i] = d; src++; dst_i++; } } int64_t old_size = gltf_buffer.size(); gltf_buffer.resize(old_size + (buffer.size() * sizeof(int32_t))); memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int32_t)); bv->byte_length = buffer.size() * sizeof(int32_t); } break; case COMPONENT_TYPE_FLOAT: { Vector buffer; buffer.resize(count * component_count); int32_t dst_i = 0; for (int i = 0; i < count; i++) { for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { dst_i += skip_bytes; } double d = *src; buffer.write[dst_i] = d; src++; dst_i++; } } int64_t old_size = gltf_buffer.size(); gltf_buffer.resize(old_size + (buffer.size() * sizeof(float))); memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(float)); bv->byte_length = buffer.size() * sizeof(float); } break; } ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_INVALID_DATA); ERR_FAIL_COND_V((int)(offset + buffer_end) > gltf_buffer.size(), ERR_INVALID_DATA); r_accessor = bv->buffer = state->buffer_views.size(); state->buffer_views.push_back(bv); return OK; } Error GLTFDocument::_decode_buffer_view(Ref state, double *dst, const GLTFBufferViewIndex p_buffer_view, const int skip_every, const int skip_bytes, const int element_size, const int count, const GLTFType type, const int component_count, const int component_type, const int component_size, const bool normalized, const int byte_offset, const bool for_vertex) { const Ref bv = state->buffer_views[p_buffer_view]; int stride = element_size; if (bv->byte_stride != -1) { stride = bv->byte_stride; } if (for_vertex && stride % 4) { stride += 4 - (stride % 4); //according to spec must be multiple of 4 } ERR_FAIL_INDEX_V(bv->buffer, state->buffers.size(), ERR_PARSE_ERROR); const uint32_t offset = bv->byte_offset + byte_offset; Vector buffer = state->buffers[bv->buffer]; //copy on write, so no performance hit const uint8_t *bufptr = buffer.ptr(); //use to debug print_verbose("glTF: type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count)); print_verbose("glTF: accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv->byte_length)); const int buffer_end = (stride * (count - 1)) + element_size; ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_PARSE_ERROR); ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR); //fill everything as doubles for (int i = 0; i < count; i++) { const uint8_t *src = &bufptr[offset + i * stride]; for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { src += skip_bytes; } double d = 0; switch (component_type) { case COMPONENT_TYPE_BYTE: { int8_t b = int8_t(*src); if (normalized) { d = (double(b) / 128.0); } else { d = double(b); } } break; case COMPONENT_TYPE_UNSIGNED_BYTE: { uint8_t b = *src; if (normalized) { d = (double(b) / 255.0); } else { d = double(b); } } break; case COMPONENT_TYPE_SHORT: { int16_t s = *(int16_t *)src; if (normalized) { d = (double(s) / 32768.0); } else { d = double(s); } } break; case COMPONENT_TYPE_UNSIGNED_SHORT: { uint16_t s = *(uint16_t *)src; if (normalized) { d = (double(s) / 65535.0); } else { d = double(s); } } break; case COMPONENT_TYPE_INT: { d = *(int *)src; } break; case COMPONENT_TYPE_FLOAT: { d = *(float *)src; } break; } *dst++ = d; src += component_size; } } return OK; } int GLTFDocument::_get_component_type_size(const int component_type) { switch (component_type) { case COMPONENT_TYPE_BYTE: case COMPONENT_TYPE_UNSIGNED_BYTE: return 1; break; case COMPONENT_TYPE_SHORT: case COMPONENT_TYPE_UNSIGNED_SHORT: return 2; break; case COMPONENT_TYPE_INT: case COMPONENT_TYPE_FLOAT: return 4; break; default: { ERR_FAIL_V(0); } } return 0; } Vector GLTFDocument::_decode_accessor(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { //spec, for reference: //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment ERR_FAIL_INDEX_V(p_accessor, state->accessors.size(), Vector()); const Ref a = state->accessors[p_accessor]; const int component_count_for_type[7] = { 1, 2, 3, 4, 4, 9, 16 }; const int component_count = component_count_for_type[a->type]; const int component_size = _get_component_type_size(a->component_type); ERR_FAIL_COND_V(component_size == 0, Vector()); int element_size = component_count * component_size; int skip_every = 0; int skip_bytes = 0; //special case of alignments, as described in spec switch (a->component_type) { case COMPONENT_TYPE_BYTE: case COMPONENT_TYPE_UNSIGNED_BYTE: { if (a->type == TYPE_MAT2) { skip_every = 2; skip_bytes = 2; element_size = 8; //override for this case } if (a->type == TYPE_MAT3) { skip_every = 3; skip_bytes = 1; element_size = 12; //override for this case } } break; case COMPONENT_TYPE_SHORT: case COMPONENT_TYPE_UNSIGNED_SHORT: { if (a->type == TYPE_MAT3) { skip_every = 6; skip_bytes = 4; element_size = 16; //override for this case } } break; default: { } } Vector dst_buffer; dst_buffer.resize(component_count * a->count); double *dst = dst_buffer.ptrw(); if (a->buffer_view >= 0) { ERR_FAIL_INDEX_V(a->buffer_view, state->buffer_views.size(), Vector()); const Error err = _decode_buffer_view(state, dst, a->buffer_view, skip_every, skip_bytes, element_size, a->count, a->type, component_count, a->component_type, component_size, a->normalized, a->byte_offset, p_for_vertex); if (err != OK) { return Vector(); } } else { //fill with zeros, as bufferview is not defined. for (int i = 0; i < (a->count * component_count); i++) { dst_buffer.write[i] = 0; } } if (a->sparse_count > 0) { // I could not find any file using this, so this code is so far untested Vector indices; indices.resize(a->sparse_count); const int indices_component_size = _get_component_type_size(a->sparse_indices_component_type); Error err = _decode_buffer_view(state, indices.ptrw(), a->sparse_indices_buffer_view, 0, 0, indices_component_size, a->sparse_count, TYPE_SCALAR, 1, a->sparse_indices_component_type, indices_component_size, false, a->sparse_indices_byte_offset, false); if (err != OK) { return Vector(); } Vector data; data.resize(component_count * a->sparse_count); err = _decode_buffer_view(state, data.ptrw(), a->sparse_values_buffer_view, skip_every, skip_bytes, element_size, a->sparse_count, a->type, component_count, a->component_type, component_size, a->normalized, a->sparse_values_byte_offset, p_for_vertex); if (err != OK) { return Vector(); } for (int i = 0; i < indices.size(); i++) { const int write_offset = int(indices[i]) * component_count; for (int j = 0; j < component_count; j++) { dst[write_offset + j] = data[i * component_count + j]; } } } return dst_buffer; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_ints(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int element_count = 1; const int ret_size = p_attribs.size(); Vector attribs; attribs.resize(ret_size); Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { attribs.write[i] = Math::stepify(p_attribs[i], 1.0); if (i == 0) { for (int32_t type_i = 0; type_i < element_count; type_i++) { type_max.write[type_i] = attribs[(i * element_count) + type_i]; type_min.write[type_i] = attribs[(i * element_count) + type_i]; } } for (int32_t type_i = 0; type_i < element_count; type_i++) { type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]); type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]); type_max.write[type_i] = _filter_number(type_max.write[type_i]); type_min.write[type_i] = _filter_number(type_min.write[type_i]); } } ERR_FAIL_COND_V(attribs.size() == 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR; const int component_type = GLTFDocument::COMPONENT_TYPE_INT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = ret_size; accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } Vector GLTFDocument::_decode_accessor_as_ints(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size(); ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = int(attribs_ptr[i]); } } return ret; } Vector GLTFDocument::_decode_accessor_as_floats(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size(); ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = float(attribs_ptr[i]); } } return ret; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec2(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int element_count = 2; const int ret_size = p_attribs.size() * element_count; Vector attribs; attribs.resize(ret_size); Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { Vector2 attrib = p_attribs[i]; attribs.write[(i * element_count) + 0] = Math::stepify(attrib.x, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 1] = Math::stepify(attrib.y, CMP_NORMALIZE_TOLERANCE); _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC2; const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = p_attribs.size(); accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_color(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int ret_size = p_attribs.size() * 4; Vector attribs; attribs.resize(ret_size); const int element_count = 4; Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { Color attrib = p_attribs[i]; attribs.write[(i * element_count) + 0] = Math::stepify(attrib.r, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 1] = Math::stepify(attrib.g, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 2] = Math::stepify(attrib.b, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 3] = Math::stepify(attrib.a, CMP_NORMALIZE_TOLERANCE); _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = p_attribs.size(); accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } void GLTFDocument::_calc_accessor_min_max(int i, const int element_count, Vector &type_max, Vector attribs, Vector &type_min) { if (i == 0) { for (int32_t type_i = 0; type_i < element_count; type_i++) { type_max.write[type_i] = attribs[(i * element_count) + type_i]; type_min.write[type_i] = attribs[(i * element_count) + type_i]; } } for (int32_t type_i = 0; type_i < element_count; type_i++) { type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]); type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]); type_max.write[type_i] = _filter_number(type_max.write[type_i]); type_min.write[type_i] = _filter_number(type_min.write[type_i]); } } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_weights(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int ret_size = p_attribs.size() * 4; Vector attribs; attribs.resize(ret_size); const int element_count = 4; Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { Color attrib = p_attribs[i]; attribs.write[(i * element_count) + 0] = Math::stepify(attrib.r, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 1] = Math::stepify(attrib.g, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 2] = Math::stepify(attrib.b, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 3] = Math::stepify(attrib.a, CMP_NORMALIZE_TOLERANCE); _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = p_attribs.size(); accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_joints(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int element_count = 4; const int ret_size = p_attribs.size() * element_count; Vector attribs; attribs.resize(ret_size); Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { Color attrib = p_attribs[i]; attribs.write[(i * element_count) + 0] = Math::stepify(attrib.r, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 1] = Math::stepify(attrib.g, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 2] = Math::stepify(attrib.b, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 3] = Math::stepify(attrib.a, CMP_NORMALIZE_TOLERANCE); _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; const int component_type = GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = p_attribs.size(); accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_quats(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int element_count = 4; const int ret_size = p_attribs.size() * element_count; Vector attribs; attribs.resize(ret_size); Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { Quat quat = p_attribs[i]; attribs.write[(i * element_count) + 0] = Math::stepify(quat.x, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 1] = Math::stepify(quat.y, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 2] = Math::stepify(quat.z, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 3] = Math::stepify(quat.w, CMP_NORMALIZE_TOLERANCE); _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4; const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = p_attribs.size(); accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } Vector GLTFDocument::_decode_accessor_as_vec2(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / 2; ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]); } } return ret; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_floats(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int element_count = 1; const int ret_size = p_attribs.size(); Vector attribs; attribs.resize(ret_size); Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { attribs.write[i] = Math::stepify(p_attribs[i], CMP_NORMALIZE_TOLERANCE); _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(!attribs.size(), -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR; const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = ret_size; accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec3(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int element_count = 3; const int ret_size = p_attribs.size() * element_count; Vector attribs; attribs.resize(ret_size); Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { Vector3 attrib = p_attribs[i]; attribs.write[(i * element_count) + 0] = Math::stepify(attrib.x, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 1] = Math::stepify(attrib.y, CMP_NORMALIZE_TOLERANCE); attribs.write[(i * element_count) + 2] = Math::stepify(attrib.z, CMP_NORMALIZE_TOLERANCE); _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC3; const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = p_attribs.size(); accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } GLTFAccessorIndex GLTFDocument::_encode_accessor_as_xform(Ref state, const Vector p_attribs, const bool p_for_vertex) { if (p_attribs.size() == 0) { return -1; } const int element_count = 16; const int ret_size = p_attribs.size() * element_count; Vector attribs; attribs.resize(ret_size); Vector type_max; type_max.resize(element_count); Vector type_min; type_min.resize(element_count); for (int i = 0; i < p_attribs.size(); i++) { Transform attrib = p_attribs[i]; Basis basis = attrib.get_basis(); Vector3 axis_0 = basis.get_axis(Vector3::AXIS_X); attribs.write[i * element_count + 0] = Math::stepify(axis_0.x, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 1] = Math::stepify(axis_0.y, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 2] = Math::stepify(axis_0.z, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 3] = 0.0; Vector3 axis_1 = basis.get_axis(Vector3::AXIS_Y); attribs.write[i * element_count + 4] = Math::stepify(axis_1.x, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 5] = Math::stepify(axis_1.y, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 6] = Math::stepify(axis_1.z, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 7] = 0.0; Vector3 axis_2 = basis.get_axis(Vector3::AXIS_Z); attribs.write[i * element_count + 8] = Math::stepify(axis_2.x, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 9] = Math::stepify(axis_2.y, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 10] = Math::stepify(axis_2.z, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 11] = 0.0; Vector3 origin = attrib.get_origin(); attribs.write[i * element_count + 12] = Math::stepify(origin.x, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 13] = Math::stepify(origin.y, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 14] = Math::stepify(origin.z, CMP_NORMALIZE_TOLERANCE); attribs.write[i * element_count + 15] = 1.0; _calc_accessor_min_max(i, element_count, type_max, attribs, type_min); } ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1); Ref accessor; accessor.instance(); GLTFBufferIndex buffer_view_i; int64_t size = state->buffers[0].size(); const GLTFDocument::GLTFType type = GLTFDocument::TYPE_MAT4; const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT; PoolVector max; max.resize(type_max.size()); PoolVector::Write write_max = max.write(); for (int32_t max_i = 0; max_i < max.size(); max_i++) { write_max[max_i] = type_max[max_i]; } accessor->max = max; PoolVector min; min.resize(type_min.size()); PoolVector::Write write_min = min.write(); for (int32_t min_i = 0; min_i < min.size(); min_i++) { write_min[min_i] = type_min[min_i]; } accessor->min = min; accessor->normalized = false; accessor->count = p_attribs.size(); accessor->type = type; accessor->component_type = component_type; accessor->byte_offset = 0; Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i); if (err != OK) { return -1; } accessor->buffer_view = buffer_view_i; state->accessors.push_back(accessor); return state->accessors.size() - 1; } Vector GLTFDocument::_decode_accessor_as_vec3(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / 3; ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]); } } return ret; } Vector GLTFDocument::_decode_accessor_as_color(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } const int type = state->accessors[p_accessor]->type; ERR_FAIL_COND_V(!(type == TYPE_VEC3 || type == TYPE_VEC4), ret); int vec_len = 3; if (type == TYPE_VEC4) { vec_len = 4; } ERR_FAIL_COND_V(attribs.size() % vec_len != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / vec_len; ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = Color(attribs_ptr[i * vec_len + 0], attribs_ptr[i * vec_len + 1], attribs_ptr[i * vec_len + 2], vec_len == 4 ? attribs_ptr[i * 4 + 3] : 1.0); } } return ret; } Vector GLTFDocument::_decode_accessor_as_quat(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / 4; ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized(); } } return ret; } Vector GLTFDocument::_decode_accessor_as_xform2d(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); ret.resize(attribs.size() / 4); for (int i = 0; i < ret.size(); i++) { ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]); ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]); } return ret; } Vector GLTFDocument::_decode_accessor_as_basis(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret); ret.resize(attribs.size() / 9); for (int i = 0; i < ret.size(); i++) { ret.write[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2])); ret.write[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5])); ret.write[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8])); } return ret; } Vector GLTFDocument::_decode_accessor_as_xform(Ref state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret); ret.resize(attribs.size() / 16); for (int i = 0; i < ret.size(); i++) { ret.write[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2])); ret.write[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6])); ret.write[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10])); ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14])); } return ret; } Error GLTFDocument::_serialize_meshes(Ref state) { Array meshes; for (GLTFMeshIndex gltf_mesh_i = 0; gltf_mesh_i < state->meshes.size(); gltf_mesh_i++) { print_verbose("glTF: Serializing mesh: " + itos(gltf_mesh_i)); Ref import_mesh = state->meshes.write[gltf_mesh_i]->get_mesh(); if (import_mesh.is_null()) { continue; } Array instance_materials = state->meshes.write[gltf_mesh_i]->get_instance_materials(); Array primitives; Dictionary gltf_mesh; Array target_names; Array weights; for (int morph_i = 0; morph_i < import_mesh->get_blend_shape_count(); morph_i++) { target_names.push_back(import_mesh->get_blend_shape_name(morph_i)); } for (int surface_i = 0; surface_i < import_mesh->get_surface_count(); surface_i++) { Array targets; Dictionary primitive; Mesh::PrimitiveType primitive_type = import_mesh->surface_get_primitive_type(surface_i); switch (primitive_type) { case Mesh::PRIMITIVE_POINTS: { primitive["mode"] = 0; break; } case Mesh::PRIMITIVE_LINES: { primitive["mode"] = 1; break; } // case Mesh::PRIMITIVE_LINE_LOOP: { // primitive["mode"] = 2; // break; // } case Mesh::PRIMITIVE_LINE_STRIP: { primitive["mode"] = 3; break; } case Mesh::PRIMITIVE_TRIANGLES: { primitive["mode"] = 4; break; } case Mesh::PRIMITIVE_TRIANGLE_STRIP: { primitive["mode"] = 5; break; } // case Mesh::PRIMITIVE_TRIANGLE_FAN: { // primitive["mode"] = 6; // break; // } default: { ERR_FAIL_V(FAILED); } } Array array = import_mesh->surface_get_arrays(surface_i); Dictionary attributes; { Vector a = array[Mesh::ARRAY_VERTEX]; ERR_FAIL_COND_V(!a.size(), ERR_INVALID_DATA); attributes["POSITION"] = _encode_accessor_as_vec3(state, a, true); } { Vector a = array[Mesh::ARRAY_TANGENT]; if (a.size()) { const int ret_size = a.size() / 4; Vector attribs; attribs.resize(ret_size); for (int i = 0; i < ret_size; i++) { Color out; out.r = a[(i * 4) + 0]; out.g = a[(i * 4) + 1]; out.b = a[(i * 4) + 2]; out.a = a[(i * 4) + 3]; attribs.write[i] = out; } attributes["TANGENT"] = _encode_accessor_as_color(state, attribs, true); } } { Vector a = array[Mesh::ARRAY_NORMAL]; if (a.size()) { const int ret_size = a.size(); Vector attribs; attribs.resize(ret_size); for (int i = 0; i < ret_size; i++) { attribs.write[i] = Vector3(a[i]).normalized(); } attributes["NORMAL"] = _encode_accessor_as_vec3(state, attribs, true); } } { Vector a = array[Mesh::ARRAY_TEX_UV]; if (a.size()) { attributes["TEXCOORD_0"] = _encode_accessor_as_vec2(state, a, true); } } { Vector a = array[Mesh::ARRAY_TEX_UV2]; if (a.size()) { attributes["TEXCOORD_1"] = _encode_accessor_as_vec2(state, a, true); } } { Vector a = array[Mesh::ARRAY_COLOR]; if (a.size()) { attributes["COLOR_0"] = _encode_accessor_as_color(state, a, true); } } Map joint_i_to_bone_i; for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) { GLTFSkinIndex skin_i = -1; if (state->nodes[node_i]->mesh == gltf_mesh_i) { skin_i = state->nodes[node_i]->skin; } if (skin_i != -1) { joint_i_to_bone_i = state->skins[skin_i]->joint_i_to_bone_i; break; } } { const Array &a = array[Mesh::ARRAY_BONES]; const Vector &vertex_array = array[Mesh::ARRAY_VERTEX]; if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) { const int ret_size = a.size() / JOINT_GROUP_SIZE; Vector attribs; attribs.resize(ret_size); { for (int array_i = 0; array_i < attribs.size(); array_i++) { int32_t joint_0 = a[(array_i * JOINT_GROUP_SIZE) + 0]; int32_t joint_1 = a[(array_i * JOINT_GROUP_SIZE) + 1]; int32_t joint_2 = a[(array_i * JOINT_GROUP_SIZE) + 2]; int32_t joint_3 = a[(array_i * JOINT_GROUP_SIZE) + 3]; attribs.write[array_i] = Color(joint_0, joint_1, joint_2, joint_3); } } attributes["JOINTS_0"] = _encode_accessor_as_joints(state, attribs, true); } ERR_FAIL_COND_V((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size(), FAILED); } { const Array &a = array[Mesh::ARRAY_WEIGHTS]; const Vector &vertex_array = array[Mesh::ARRAY_VERTEX]; if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) { int32_t vertex_count = vertex_array.size(); Vector attribs; attribs.resize(vertex_count); for (int i = 0; i < vertex_count; i++) { attribs.write[i] = Color(a[(i * JOINT_GROUP_SIZE) + 0], a[(i * JOINT_GROUP_SIZE) + 1], a[(i * JOINT_GROUP_SIZE) + 2], a[(i * JOINT_GROUP_SIZE) + 3]); } attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, attribs, true); } else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) { int32_t vertex_count = vertex_array.size(); Vector weights_0; weights_0.resize(vertex_count); Vector weights_1; weights_1.resize(vertex_count); int32_t weights_8_count = JOINT_GROUP_SIZE * 2; for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) { Color weight_0; weight_0.r = a[vertex_i * weights_8_count + 0]; weight_0.g = a[vertex_i * weights_8_count + 1]; weight_0.b = a[vertex_i * weights_8_count + 2]; weight_0.a = a[vertex_i * weights_8_count + 3]; weights_0.write[vertex_i] = weight_0; Color weight_1; weight_1.r = a[vertex_i * weights_8_count + 4]; weight_1.g = a[vertex_i * weights_8_count + 5]; weight_1.b = a[vertex_i * weights_8_count + 6]; weight_1.a = a[vertex_i * weights_8_count + 7]; weights_1.write[vertex_i] = weight_1; } attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, weights_0, true); attributes["WEIGHTS_1"] = _encode_accessor_as_weights(state, weights_1, true); } } { Vector mesh_indices = array[Mesh::ARRAY_INDEX]; if (mesh_indices.size()) { if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) { //swap around indices, convert ccw to cw for front face const int is = mesh_indices.size(); for (int k = 0; k < is; k += 3) { SWAP(mesh_indices.write[k + 0], mesh_indices.write[k + 2]); } } primitive["indices"] = _encode_accessor_as_ints(state, mesh_indices, true); } else { if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) { //generate indices because they need to be swapped for CW/CCW const Vector &vertices = array[Mesh::ARRAY_VERTEX]; Ref st; st.instance(); st->create_from_triangle_arrays(array); st->index(); Vector generated_indices = st->commit_to_arrays()[Mesh::ARRAY_INDEX]; const int vs = vertices.size(); generated_indices.resize(vs); { for (int k = 0; k < vs; k += 3) { generated_indices.write[k] = k; generated_indices.write[k + 1] = k + 2; generated_indices.write[k + 2] = k + 1; } } primitive["indices"] = _encode_accessor_as_ints(state, generated_indices, true); } } } primitive["attributes"] = attributes; //blend shapes print_verbose("glTF: Mesh has targets"); if (import_mesh->get_blend_shape_count()) { ArrayMesh::BlendShapeMode shape_mode = import_mesh->get_blend_shape_mode(); Array array_morphs = import_mesh->surface_get_blend_shape_arrays(surface_i); for (int morph_i = 0; morph_i < array_morphs.size(); morph_i++) { Array array_morph = array_morphs[morph_i]; Dictionary t; Vector varr = array_morph[Mesh::ARRAY_VERTEX]; Array mesh_arrays = import_mesh->surface_get_arrays(surface_i); if (varr.size()) { Vector src_varr = array[Mesh::ARRAY_VERTEX]; if (shape_mode == ArrayMesh::BlendShapeMode::BLEND_SHAPE_MODE_NORMALIZED) { const int max_idx = src_varr.size(); for (int blend_i = 0; blend_i < max_idx; blend_i++) { varr.write[blend_i] = Vector3(varr[blend_i]) - src_varr[blend_i]; } } t["POSITION"] = _encode_accessor_as_vec3(state, varr, true); } Vector narr = array_morph[Mesh::ARRAY_NORMAL]; if (narr.size()) { t["NORMAL"] = _encode_accessor_as_vec3(state, narr, true); } Vector tarr = array_morph[Mesh::ARRAY_TANGENT]; if (tarr.size()) { const int ret_size = tarr.size() / 4; Vector attribs; attribs.resize(ret_size); for (int i = 0; i < ret_size; i++) { Vector3 vec3; vec3.x = tarr[(i * 4) + 0]; vec3.y = tarr[(i * 4) + 1]; vec3.z = tarr[(i * 4) + 2]; } t["TANGENT"] = _encode_accessor_as_vec3(state, attribs, true); } targets.push_back(t); } } Variant v; if (surface_i < instance_materials.size()) { v = instance_materials.get(surface_i); } Ref mat = v; if (!mat.is_valid()) { mat = import_mesh->surface_get_material(surface_i); } if (mat.is_valid()) { Map, GLTFMaterialIndex>::Element *material_cache_i = state->material_cache.find(mat); if (material_cache_i && material_cache_i->get() != -1) { primitive["material"] = material_cache_i->get(); } else { GLTFMaterialIndex mat_i = state->materials.size(); state->materials.push_back(mat); primitive["material"] = mat_i; state->material_cache.insert(mat, mat_i); } } if (targets.size()) { primitive["targets"] = targets; } primitives.push_back(primitive); } Dictionary e; e["targetNames"] = target_names; weights.resize(target_names.size()); for (int name_i = 0; name_i < target_names.size(); name_i++) { real_t weight = 0.0; if (name_i < state->meshes.write[gltf_mesh_i]->get_blend_weights().size()) { weight = state->meshes.write[gltf_mesh_i]->get_blend_weights()[name_i]; } weights[name_i] = weight; } if (weights.size()) { gltf_mesh["weights"] = weights; } ERR_FAIL_COND_V(target_names.size() != weights.size(), FAILED); gltf_mesh["extras"] = e; gltf_mesh["primitives"] = primitives; meshes.push_back(gltf_mesh); } if (!meshes.size()) { return OK; } state->json["meshes"] = meshes; print_verbose("glTF: Total meshes: " + itos(meshes.size())); return OK; } Error GLTFDocument::_parse_meshes(Ref state) { if (!state->json.has("meshes")) { return OK; } Array meshes = state->json["meshes"]; for (GLTFMeshIndex i = 0; i < meshes.size(); i++) { print_verbose("glTF: Parsing mesh: " + itos(i)); Dictionary d = meshes[i]; Ref mesh; mesh.instance(); bool has_vertex_color = false; ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR); Array primitives = d["primitives"]; const Dictionary &extras = d.has("extras") ? (Dictionary)d["extras"] : Dictionary(); Ref import_mesh; import_mesh.instance(); String mesh_name = "mesh"; if (d.has("name") && !String(d["name"]).empty()) { mesh_name = d["name"]; } import_mesh->set_name(_gen_unique_name(state, vformat("%s_%s", state->scene_name, mesh_name))); for (int j = 0; j < primitives.size(); j++) { Dictionary p = primitives[j]; Array array; array.resize(Mesh::ARRAY_MAX); ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR); Dictionary a = p["attributes"]; Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; if (p.has("mode")) { const int mode = p["mode"]; ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT); static const Mesh::PrimitiveType primitives2[7] = { Mesh::PRIMITIVE_POINTS, Mesh::PRIMITIVE_LINES, Mesh::PRIMITIVE_LINES, //loop not supported, should ce converted Mesh::PRIMITIVE_LINES, Mesh::PRIMITIVE_TRIANGLES, Mesh::PRIMITIVE_TRIANGLE_STRIP, Mesh::PRIMITIVE_TRIANGLES, //fan not supported, should be converted #ifndef _MSC_VER // #warning line loop and triangle fan are not supported and need to be converted to lines and triangles #endif }; primitive = primitives2[mode]; } ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR); if (a.has("POSITION")) { array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true); } if (a.has("NORMAL")) { array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true); } if (a.has("TANGENT")) { array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true); } if (a.has("TEXCOORD_0")) { array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true); } if (a.has("TEXCOORD_1")) { array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true); } if (a.has("COLOR_0")) { array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true); has_vertex_color = true; } if (a.has("JOINTS_0") && !a.has("JOINTS_1")) { array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true); } ERR_CONTINUE(a.has("JOINTS_0") && a.has("JOINTS_1")); if (a.has("WEIGHTS_0") && !a.has("WEIGHTS_1")) { Vector weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true); { //gltf does not seem to normalize the weights for some reason.. int wc = weights.size(); float *w = weights.ptrw(); for (int k = 0; k < wc; k += 4) { float total = 0.0; total += w[k + 0]; total += w[k + 1]; total += w[k + 2]; total += w[k + 3]; if (total > 0.0) { w[k + 0] /= total; w[k + 1] /= total; w[k + 2] /= total; w[k + 3] /= total; } } } array[Mesh::ARRAY_WEIGHTS] = weights; } ERR_CONTINUE(a.has("WEIGHTS_0") && a.has("WEIGHTS_1")); if (p.has("indices")) { Vector indices = _decode_accessor_as_ints(state, p["indices"], false); if (primitive == Mesh::PRIMITIVE_TRIANGLES) { //swap around indices, convert ccw to cw for front face const int is = indices.size(); int *w = indices.ptrw(); for (int k = 0; k < is; k += 3) { SWAP(w[k + 1], w[k + 2]); } } array[Mesh::ARRAY_INDEX] = indices; } else if (primitive == Mesh::PRIMITIVE_TRIANGLES) { //generate indices because they need to be swapped for CW/CCW const Vector &vertices = array[Mesh::ARRAY_VERTEX]; ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR); Vector indices; const int vs = vertices.size(); indices.resize(vs); { int *w = indices.ptrw(); for (int k = 0; k < vs; k += 3) { w[k] = k; w[k + 1] = k + 2; w[k + 2] = k + 1; } } array[Mesh::ARRAY_INDEX] = indices; } bool generate_tangents = (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL")); if (generate_tangents) { //must generate mikktspace tangents.. ergh.. Ref st; st.instance(); st->create_from_triangle_arrays(array); st->generate_tangents(); array = st->commit_to_arrays(); } Array morphs; //blend shapes if (p.has("targets")) { print_verbose("glTF: Mesh has targets"); const Array &targets = p["targets"]; //ideally BLEND_SHAPE_MODE_RELATIVE since gltf2 stores in displacement //but it could require a larger refactor? import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); if (j == 0) { const Array &target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array(); for (int k = 0; k < targets.size(); k++) { const String name = k < target_names.size() ? (String)target_names[k] : String("morph_") + itos(k); import_mesh->add_blend_shape(name); } } for (int k = 0; k < targets.size(); k++) { const Dictionary &t = targets[k]; Array array_copy; array_copy.resize(Mesh::ARRAY_MAX); for (int l = 0; l < Mesh::ARRAY_MAX; l++) { array_copy[l] = array[l]; } array_copy[Mesh::ARRAY_INDEX] = Variant(); if (t.has("POSITION")) { Vector varr = _decode_accessor_as_vec3(state, t["POSITION"], true); const Vector src_varr = array[Mesh::ARRAY_VERTEX]; const int size = src_varr.size(); ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); { const int max_idx = varr.size(); varr.resize(size); Vector3 *w_varr = varr.ptrw(); const Vector3 *r_varr = varr.ptr(); const Vector3 *r_src_varr = src_varr.ptr(); for (int l = 0; l < size; l++) { if (l < max_idx) { w_varr[l] = r_varr[l] + r_src_varr[l]; } else { w_varr[l] = r_src_varr[l]; } } } array_copy[Mesh::ARRAY_VERTEX] = varr; } if (t.has("NORMAL")) { Vector narr = _decode_accessor_as_vec3(state, t["NORMAL"], true); const Vector src_narr = array[Mesh::ARRAY_NORMAL]; int size = src_narr.size(); ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); { int max_idx = narr.size(); narr.resize(size); Vector3 *w_narr = narr.ptrw(); const Vector3 *r_narr = narr.ptr(); const Vector3 *r_src_narr = src_narr.ptr(); for (int l = 0; l < size; l++) { if (l < max_idx) { w_narr[l] = r_narr[l] + r_src_narr[l]; } else { w_narr[l] = r_src_narr[l]; } } } array_copy[Mesh::ARRAY_NORMAL] = narr; } if (t.has("TANGENT")) { const Vector tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true); const Vector src_tangents = array[Mesh::ARRAY_TANGENT]; ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR); Vector tangents_v4; { int max_idx = tangents_v3.size(); int size4 = src_tangents.size(); tangents_v4.resize(size4); float *w4 = tangents_v4.ptrw(); const Vector3 *r3 = tangents_v3.ptr(); const float *r4 = src_tangents.ptr(); for (int l = 0; l < size4 / 4; l++) { if (l < max_idx) { w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0]; w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1]; w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2]; } else { w4[l * 4 + 0] = r4[l * 4 + 0]; w4[l * 4 + 1] = r4[l * 4 + 1]; w4[l * 4 + 2] = r4[l * 4 + 2]; } w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value } } array_copy[Mesh::ARRAY_TANGENT] = tangents_v4; } if (generate_tangents) { Ref st; st.instance(); st->create_from_triangle_arrays(array_copy); st->deindex(); st->generate_tangents(); array_copy = st->commit_to_arrays(); } morphs.push_back(array_copy); } } //just add it Ref mat; if (p.has("material")) { const int material = p["material"]; ERR_FAIL_INDEX_V(material, state->materials.size(), ERR_FILE_CORRUPT); Ref mat3d = state->materials[material]; if (has_vertex_color) { mat3d->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); } mat = mat3d; } else if (has_vertex_color) { Ref mat3d; mat3d.instance(); mat3d->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); mat = mat3d; } int32_t mat_idx = import_mesh->get_surface_count(); import_mesh->add_surface_from_arrays(primitive, array, morphs, state->compress_flags); import_mesh->surface_set_material(mat_idx, mat); } Vector blend_weights; blend_weights.resize(import_mesh->get_blend_shape_count()); for (int32_t weight_i = 0; weight_i < blend_weights.size(); weight_i++) { blend_weights.write[weight_i] = 0.0f; } if (d.has("weights")) { const Array &weights = d["weights"]; for (int j = 0; j < weights.size(); j++) { if (j >= blend_weights.size()) { break; } blend_weights.write[j] = weights[j]; } } mesh->set_blend_weights(blend_weights); mesh->set_mesh(import_mesh); state->meshes.push_back(mesh); } print_verbose("glTF: Total meshes: " + itos(state->meshes.size())); return OK; } Error GLTFDocument::_serialize_images(Ref state, const String &p_path) { Array images; for (int i = 0; i < state->images.size(); i++) { Dictionary d; ERR_CONTINUE(state->images[i].is_null()); Ref image = state->images[i]->get_data(); ERR_CONTINUE(image.is_null()); if (p_path.to_lower().ends_with("glb")) { GLTFBufferViewIndex bvi; Ref bv; bv.instance(); const GLTFBufferIndex bi = 0; bv->buffer = bi; bv->byte_offset = state->buffers[bi].size(); ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR); PoolVector buffer; Ref img_tex = image; if (img_tex.is_valid()) { image = img_tex->get_data(); } Error err = PNGDriverCommon::image_to_png(image, buffer); ERR_FAIL_COND_V_MSG(err, err, "Can't convert image to PNG."); bv->byte_length = buffer.size(); state->buffers.write[bi].resize(state->buffers[bi].size() + bv->byte_length); memcpy(&state->buffers.write[bi].write[bv->byte_offset], buffer.read().ptr(), buffer.size()); ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT); state->buffer_views.push_back(bv); bvi = state->buffer_views.size() - 1; d["bufferView"] = bvi; d["mimeType"] = "image/png"; } else { String name = state->images[i]->get_name(); if (name.empty()) { name = itos(i); } name = _gen_unique_name(state, name); name = name.pad_zeros(3); Ref<_Directory> dir; dir.instance(); String texture_dir = "textures"; String new_texture_dir = p_path.get_base_dir() + "/" + texture_dir; dir->open(p_path.get_base_dir()); if (!dir->dir_exists(new_texture_dir)) { dir->make_dir(new_texture_dir); } name = name + ".png"; image->save_png(new_texture_dir.plus_file(name)); d["uri"] = texture_dir.plus_file(name); } images.push_back(d); } print_verbose("Total images: " + itos(state->images.size())); if (!images.size()) { return OK; } state->json["images"] = images; return OK; } Error GLTFDocument::_parse_images(Ref state, const String &p_base_path) { if (!state->json.has("images")) { return OK; } // Ref: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#images const Array &images = state->json["images"]; for (int i = 0; i < images.size(); i++) { const Dictionary &d = images[i]; // glTF 2.0 supports PNG and JPEG types, which can be specified as (from spec): // "- a URI to an external file in one of the supported images formats, or // - a URI with embedded base64-encoded data, or // - a reference to a bufferView; in that case mimeType must be defined." // Since mimeType is optional for external files and base64 data, we'll have to // fall back on letting Godot parse the data to figure out if it's PNG or JPEG. // We'll assume that we use either URI or bufferView, so let's warn the user // if their image somehow uses both. And fail if it has neither. ERR_CONTINUE_MSG(!d.has("uri") && !d.has("bufferView"), "Invalid image definition in glTF file, it should specific an 'uri' or 'bufferView'."); if (d.has("uri") && d.has("bufferView")) { WARN_PRINT("Invalid image definition in glTF file using both 'uri' and 'bufferView'. 'bufferView' will take precedence."); } String mimetype; if (d.has("mimeType")) { // Should be "image/png" or "image/jpeg". mimetype = d["mimeType"]; } Vector data; const uint8_t *data_ptr = nullptr; int data_size = 0; if (d.has("uri")) { // Handles the first two bullet points from the spec (embedded data, or external file). String uri = d["uri"]; if (uri.begins_with("data:")) { // Embedded data using base64. // Validate data MIME types and throw a warning if it's one we don't know/support. if (!uri.begins_with("data:application/octet-stream;base64") && !uri.begins_with("data:application/gltf-buffer;base64") && !uri.begins_with("data:image/png;base64") && !uri.begins_with("data:image/jpeg;base64")) { WARN_PRINT(vformat("glTF: Image index '%d' uses an unsupported URI data type: %s. Skipping it.", i, uri)); state->images.push_back(Ref()); // Placeholder to keep count. continue; } data = _parse_base64_uri(uri); data_ptr = data.ptr(); data_size = data.size(); // mimeType is optional, but if we have it defined in the URI, let's use it. if (mimetype.empty()) { if (uri.begins_with("data:image/png;base64")) { mimetype = "image/png"; } else if (uri.begins_with("data:image/jpeg;base64")) { mimetype = "image/jpeg"; } } } else { // Relative path to an external image file. uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows. // ResourceLoader will rely on the file extension to use the relevant loader. // The spec says that if mimeType is defined, it should take precedence (e.g. // there could be a `.png` image which is actually JPEG), but there's no easy // API for that in Godot, so we'd have to load as a buffer (i.e. embedded in // the material), so we do this only as fallback. Ref texture = ResourceLoader::load(uri); if (texture.is_valid()) { state->images.push_back(texture); continue; } else if (mimetype == "image/png" || mimetype == "image/jpeg") { // Fallback to loading as byte array. // This enables us to support the spec's requirement that we honor mimetype // regardless of file URI. data = FileAccess::get_file_as_array(uri); if (data.size() == 0) { WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded as a buffer of MIME type '%s' from URI: %s. Skipping it.", i, mimetype, uri)); state->images.push_back(Ref()); // Placeholder to keep count. continue; } data_ptr = data.ptr(); data_size = data.size(); } else { WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded from URI: %s. Skipping it.", i, uri)); state->images.push_back(Ref()); // Placeholder to keep count. continue; } } } else if (d.has("bufferView")) { // Handles the third bullet point from the spec (bufferView). ERR_FAIL_COND_V_MSG(mimetype.empty(), ERR_FILE_CORRUPT, vformat("glTF: Image index '%d' specifies 'bufferView' but no 'mimeType', which is invalid.", i)); const GLTFBufferViewIndex bvi = d["bufferView"]; ERR_FAIL_INDEX_V(bvi, state->buffer_views.size(), ERR_PARAMETER_RANGE_ERROR); Ref bv = state->buffer_views[bvi]; const GLTFBufferIndex bi = bv->buffer; ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR); ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT); data_ptr = &state->buffers[bi][bv->byte_offset]; data_size = bv->byte_length; } Ref img; // First we honor the mime types if they were defined. if (mimetype == "image/png") { // Load buffer as PNG. ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_png_mem_loader_func(data_ptr, data_size); } else if (mimetype == "image/jpeg") { // Loader buffer as JPEG. ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_jpg_mem_loader_func(data_ptr, data_size); } // If we didn't pass the above tests, we attempt loading as PNG and then // JPEG directly. // This covers URIs with base64-encoded data with application/* type but // no optional mimeType property, or bufferViews with a bogus mimeType // (e.g. `image/jpeg` but the data is actually PNG). // That's not *exactly* what the spec mandates but this lets us be // lenient with bogus glb files which do exist in production. if (img.is_null()) { // Try PNG first. ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_png_mem_loader_func(data_ptr, data_size); } if (img.is_null()) { // And then JPEG. ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_jpg_mem_loader_func(data_ptr, data_size); } // Now we've done our best, fix your scenes. if (img.is_null()) { ERR_PRINT(vformat("glTF: Couldn't load image index '%d' with its given mimetype: %s.", i, mimetype)); state->images.push_back(Ref()); continue; } Ref t; t.instance(); t->create_from_image(img); state->images.push_back(t); } print_verbose("glTF: Total images: " + itos(state->images.size())); return OK; } Error GLTFDocument::_serialize_textures(Ref state) { if (!state->textures.size()) { return OK; } Array textures; for (int32_t i = 0; i < state->textures.size(); i++) { Dictionary d; Ref t = state->textures[i]; ERR_CONTINUE(t->get_src_image() == -1); d["source"] = t->get_src_image(); textures.push_back(d); } state->json["textures"] = textures; return OK; } Error GLTFDocument::_parse_textures(Ref state) { if (!state->json.has("textures")) { return OK; } const Array &textures = state->json["textures"]; for (GLTFTextureIndex i = 0; i < textures.size(); i++) { const Dictionary &d = textures[i]; ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR); Ref t; t.instance(); t->set_src_image(d["source"]); state->textures.push_back(t); } return OK; } GLTFTextureIndex GLTFDocument::_set_texture(Ref state, Ref p_texture) { ERR_FAIL_COND_V(p_texture.is_null(), -1); Ref gltf_texture; gltf_texture.instance(); ERR_FAIL_COND_V(p_texture->get_data().is_null(), -1); GLTFImageIndex gltf_src_image_i = state->images.size(); state->images.push_back(p_texture); gltf_texture->set_src_image(gltf_src_image_i); GLTFTextureIndex gltf_texture_i = state->textures.size(); state->textures.push_back(gltf_texture); return gltf_texture_i; } Ref GLTFDocument::_get_texture(Ref state, const GLTFTextureIndex p_texture) { ERR_FAIL_INDEX_V(p_texture, state->textures.size(), Ref()); const GLTFImageIndex image = state->textures[p_texture]->get_src_image(); ERR_FAIL_INDEX_V(image, state->images.size(), Ref()); return state->images[image]; } Error GLTFDocument::_serialize_materials(Ref state) { Array materials; for (int32_t i = 0; i < state->materials.size(); i++) { Dictionary d; Ref material = state->materials[i]; if (material.is_null()) { materials.push_back(d); continue; } if (!material->get_name().empty()) { d["name"] = _gen_unique_name(state, material->get_name()); } { Dictionary mr; { Array arr; const Color c = material->get_albedo().to_linear(); arr.push_back(c.r); arr.push_back(c.g); arr.push_back(c.b); arr.push_back(c.a); mr["baseColorFactor"] = arr; } { Dictionary bct; Ref albedo_texture = material->get_texture(SpatialMaterial::TEXTURE_ALBEDO); GLTFTextureIndex gltf_texture_index = -1; if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) { albedo_texture->set_name(material->get_name() + "_albedo"); gltf_texture_index = _set_texture(state, albedo_texture); } if (gltf_texture_index != -1) { bct["index"] = gltf_texture_index; bct["extensions"] = _serialize_texture_transform_uv1(material); mr["baseColorTexture"] = bct; } } mr["metallicFactor"] = material->get_metallic(); mr["roughnessFactor"] = material->get_roughness(); bool has_roughness = material->get_texture(SpatialMaterial::TEXTURE_ROUGHNESS).is_valid() && material->get_texture(SpatialMaterial::TEXTURE_ROUGHNESS)->get_data().is_valid(); bool has_ao = material->get_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION) && material->get_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION).is_valid(); bool has_metalness = material->get_texture(SpatialMaterial::TEXTURE_METALLIC).is_valid() && material->get_texture(SpatialMaterial::TEXTURE_METALLIC)->get_data().is_valid(); if (has_ao || has_roughness || has_metalness) { Dictionary mrt; Ref roughness_texture = material->get_texture(SpatialMaterial::TEXTURE_ROUGHNESS); SpatialMaterial::TextureChannel roughness_channel = material->get_roughness_texture_channel(); Ref metallic_texture = material->get_texture(SpatialMaterial::TEXTURE_METALLIC); SpatialMaterial::TextureChannel metalness_channel = material->get_metallic_texture_channel(); Ref ao_texture = material->get_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION); SpatialMaterial::TextureChannel ao_channel = material->get_ao_texture_channel(); Ref orm_texture; orm_texture.instance(); Ref orm_image; orm_image.instance(); int32_t height = 0; int32_t width = 0; Ref ao_image; if (has_ao) { height = ao_texture->get_height(); width = ao_texture->get_width(); ao_image = ao_texture->get_data(); Ref img_tex = ao_image; if (img_tex.is_valid()) { ao_image = img_tex->get_data(); } if (ao_image->is_compressed()) { ao_image->decompress(); } } Ref roughness_image; if (has_roughness) { height = roughness_texture->get_height(); width = roughness_texture->get_width(); roughness_image = roughness_texture->get_data(); Ref img_tex = roughness_image; if (img_tex.is_valid()) { roughness_image = img_tex->get_data(); } if (roughness_image->is_compressed()) { roughness_image->decompress(); } } Ref metallness_image; if (has_metalness) { height = metallic_texture->get_height(); width = metallic_texture->get_width(); metallness_image = metallic_texture->get_data(); Ref img_tex = metallness_image; if (img_tex.is_valid()) { metallness_image = img_tex->get_data(); } if (metallness_image->is_compressed()) { metallness_image->decompress(); } } Ref albedo_texture = material->get_texture(SpatialMaterial::TEXTURE_ALBEDO); if (albedo_texture.is_valid() && albedo_texture->get_data().is_valid()) { height = albedo_texture->get_height(); width = albedo_texture->get_width(); } orm_image->create(width, height, false, Image::FORMAT_RGBA8); if (ao_image.is_valid() && ao_image->get_size() != Vector2(width, height)) { ao_image->resize(width, height, Image::INTERPOLATE_LANCZOS); } if (roughness_image.is_valid() && roughness_image->get_size() != Vector2(width, height)) { roughness_image->resize(width, height, Image::INTERPOLATE_LANCZOS); } if (metallness_image.is_valid() && metallness_image->get_size() != Vector2(width, height)) { metallness_image->resize(width, height, Image::INTERPOLATE_LANCZOS); } orm_image->lock(); for (int32_t h = 0; h < height; h++) { for (int32_t w = 0; w < width; w++) { Color c = Color(1.0f, 1.0f, 1.0f); if (has_ao) { ao_image->lock(); if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_RED == ao_channel) { c.r = ao_image->get_pixel(w, h).r; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_GREEN == ao_channel) { c.r = ao_image->get_pixel(w, h).g; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_BLUE == ao_channel) { c.r = ao_image->get_pixel(w, h).b; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_ALPHA == ao_channel) { c.r = ao_image->get_pixel(w, h).a; } ao_image->lock(); } if (has_roughness) { roughness_image->lock(); if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_RED == roughness_channel) { c.g = roughness_image->get_pixel(w, h).r; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_GREEN == roughness_channel) { c.g = roughness_image->get_pixel(w, h).g; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_BLUE == roughness_channel) { c.g = roughness_image->get_pixel(w, h).b; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_ALPHA == roughness_channel) { c.g = roughness_image->get_pixel(w, h).a; } roughness_image->unlock(); } if (has_metalness) { metallness_image->lock(); if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_RED == metalness_channel) { c.b = metallness_image->get_pixel(w, h).r; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_GREEN == metalness_channel) { c.b = metallness_image->get_pixel(w, h).g; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_BLUE == metalness_channel) { c.b = metallness_image->get_pixel(w, h).b; } else if (SpatialMaterial::TextureChannel::TEXTURE_CHANNEL_ALPHA == metalness_channel) { c.b = metallness_image->get_pixel(w, h).a; } metallness_image->unlock(); } orm_image->set_pixel(w, h, c); } } orm_image->unlock(); orm_image->generate_mipmaps(); orm_texture->create_from_image(orm_image); GLTFTextureIndex orm_texture_index = -1; if (has_ao || has_roughness || has_metalness) { orm_texture->set_name(material->get_name() + "_orm"); orm_texture_index = _set_texture(state, orm_texture); } if (has_ao) { Dictionary ot; ot["index"] = orm_texture_index; d["occlusionTexture"] = ot; } if (has_roughness || has_metalness) { mrt["index"] = orm_texture_index; mrt["extensions"] = _serialize_texture_transform_uv1(material); mr["metallicRoughnessTexture"] = mrt; } } d["pbrMetallicRoughness"] = mr; } if (material->get_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING)) { Dictionary nt; Ref tex; tex.instance(); { Ref normal_texture = material->get_texture(SpatialMaterial::TEXTURE_NORMAL); // Code for uncompressing RG normal maps Ref img = normal_texture->get_data(); Ref img_tex = img; if (img_tex.is_valid()) { img = img_tex->get_data(); } img->decompress(); img->convert(Image::FORMAT_RGBA8); img->lock(); for (int32_t y = 0; y < img->get_height(); y++) { for (int32_t x = 0; x < img->get_width(); x++) { Color c = img->get_pixel(x, y); Vector2 red_green = Vector2(c.r, c.g); red_green = red_green * Vector2(2.0f, 2.0f) - Vector2(1.0f, 1.0f); float blue = 1.0f - red_green.dot(red_green); blue = MAX(0.0f, blue); c.b = Math::sqrt(blue); img->set_pixel(x, y, c); } } img->unlock(); tex->create_from_image(img); } Ref normal_texture = material->get_texture(SpatialMaterial::TEXTURE_NORMAL); GLTFTextureIndex gltf_texture_index = -1; if (tex.is_valid() && tex->get_data().is_valid()) { tex->set_name(material->get_name() + "_normal"); gltf_texture_index = _set_texture(state, tex); } nt["scale"] = material->get_normal_scale(); if (gltf_texture_index != -1) { nt["index"] = gltf_texture_index; d["normalTexture"] = nt; } } if (material->get_feature(SpatialMaterial::FEATURE_EMISSION)) { const Color c = material->get_emission().to_srgb(); Array arr; arr.push_back(c.r); arr.push_back(c.g); arr.push_back(c.b); d["emissiveFactor"] = arr; } if (material->get_feature(SpatialMaterial::FEATURE_EMISSION)) { Dictionary et; Ref emission_texture = material->get_texture(SpatialMaterial::TEXTURE_EMISSION); GLTFTextureIndex gltf_texture_index = -1; if (emission_texture.is_valid() && emission_texture->get_data().is_valid()) { emission_texture->set_name(material->get_name() + "_emission"); gltf_texture_index = _set_texture(state, emission_texture); } if (gltf_texture_index != -1) { et["index"] = gltf_texture_index; d["emissiveTexture"] = et; } } const bool ds = material->get_cull_mode() == SpatialMaterial::CULL_DISABLED; if (ds) { d["doubleSided"] = ds; } if (material->get_feature(SpatialMaterial::FEATURE_TRANSPARENT)) { if (material->get_flag(SpatialMaterial::FLAG_USE_ALPHA_SCISSOR)) { d["alphaMode"] = "MASK"; d["alphaCutoff"] = material->get_alpha_scissor_threshold(); } else { d["alphaMode"] = "BLEND"; } } materials.push_back(d); } if (!materials.size()) { return OK; } state->json["materials"] = materials; print_verbose("Total materials: " + itos(state->materials.size())); return OK; } Error GLTFDocument::_parse_materials(Ref state) { if (!state->json.has("materials")) { return OK; } const Array &materials = state->json["materials"]; for (GLTFMaterialIndex i = 0; i < materials.size(); i++) { const Dictionary &d = materials[i]; Ref material; material.instance(); if (d.has("name") && !String(d["name"]).empty()) { material->set_name(d["name"]); } else { material->set_name(vformat("material_%s", itos(i))); } material->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); Dictionary pbr_spec_gloss_extensions; if (d.has("extensions")) { pbr_spec_gloss_extensions = d["extensions"]; } if (pbr_spec_gloss_extensions.has("KHR_materials_pbrSpecularGlossiness")) { WARN_PRINT("Material uses a specular and glossiness workflow. Textures will be converted to roughness and metallic workflow, which may not be 100% accurate."); Dictionary sgm = pbr_spec_gloss_extensions["KHR_materials_pbrSpecularGlossiness"]; Ref spec_gloss; spec_gloss.instance(); if (sgm.has("diffuseTexture")) { const Dictionary &diffuse_texture_dict = sgm["diffuseTexture"]; if (diffuse_texture_dict.has("index")) { Ref diffuse_texture = _get_texture(state, diffuse_texture_dict["index"]); if (diffuse_texture.is_valid()) { spec_gloss->diffuse_img = diffuse_texture->get_data(); material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, diffuse_texture); } } } if (sgm.has("diffuseFactor")) { const Array &arr = sgm["diffuseFactor"]; ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR); const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb(); spec_gloss->diffuse_factor = c; material->set_albedo(spec_gloss->diffuse_factor); } if (sgm.has("specularFactor")) { const Array &arr = sgm["specularFactor"]; ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); spec_gloss->specular_factor = Color(arr[0], arr[1], arr[2]); } if (sgm.has("glossinessFactor")) { spec_gloss->gloss_factor = sgm["glossinessFactor"]; material->set_roughness(1.0f - CLAMP(spec_gloss->gloss_factor, 0.0f, 1.0f)); } if (sgm.has("specularGlossinessTexture")) { const Dictionary &spec_gloss_texture = sgm["specularGlossinessTexture"]; if (spec_gloss_texture.has("index")) { const Ref orig_texture = _get_texture(state, spec_gloss_texture["index"]); if (orig_texture.is_valid()) { spec_gloss->spec_gloss_img = orig_texture->get_data(); } } } spec_gloss_to_rough_metal(spec_gloss, material); } else if (d.has("pbrMetallicRoughness")) { const Dictionary &mr = d["pbrMetallicRoughness"]; if (mr.has("baseColorFactor")) { const Array &arr = mr["baseColorFactor"]; ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR); const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb(); material->set_albedo(c); } if (mr.has("baseColorTexture")) { const Dictionary &bct = mr["baseColorTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, _get_texture(state, bct["index"])); } if (!mr.has("baseColorFactor")) { material->set_albedo(Color(1, 1, 1)); } _set_texture_transform_uv1(bct, material); } if (mr.has("metallicFactor")) { material->set_metallic(mr["metallicFactor"]); } else { material->set_metallic(1.0); } if (mr.has("roughnessFactor")) { material->set_roughness(mr["roughnessFactor"]); } else { material->set_roughness(1.0); } if (mr.has("metallicRoughnessTexture")) { const Dictionary &bct = mr["metallicRoughnessTexture"]; if (bct.has("index")) { const Ref t = _get_texture(state, bct["index"]); material->set_texture(SpatialMaterial::TEXTURE_METALLIC, t); material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE); material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, t); material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN); if (!mr.has("metallicFactor")) { material->set_metallic(1); } if (!mr.has("roughnessFactor")) { material->set_roughness(1); } } } } if (d.has("normalTexture")) { const Dictionary &bct = d["normalTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_NORMAL, _get_texture(state, bct["index"])); material->set_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING, true); } if (bct.has("scale")) { material->set_normal_scale(bct["scale"]); } } if (d.has("occlusionTexture")) { const Dictionary &bct = d["occlusionTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"])); material->set_ao_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_RED); material->set_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION, true); } } if (d.has("emissiveFactor")) { const Array &arr = d["emissiveFactor"]; ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); const Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); material->set_emission(c); } if (d.has("emissiveTexture")) { const Dictionary &bct = d["emissiveTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_EMISSION, _get_texture(state, bct["index"])); material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); material->set_emission(Color(0, 0, 0)); } } if (d.has("doubleSided")) { const bool ds = d["doubleSided"]; if (ds) { material->set_cull_mode(SpatialMaterial::CULL_DISABLED); } } if (d.has("alphaMode")) { const String &am = d["alphaMode"]; if (am == "BLEND") { material->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); material->set_depth_draw_mode(SpatialMaterial::DEPTH_DRAW_ALPHA_OPAQUE_PREPASS); } else if (am == "MASK") { material->set_flag(SpatialMaterial::FLAG_USE_ALPHA_SCISSOR, true); if (d.has("alphaCutoff")) { material->set_alpha_scissor_threshold(d["alphaCutoff"]); } else { material->set_alpha_scissor_threshold(0.5f); } } } state->materials.push_back(material); } print_verbose("Total materials: " + itos(state->materials.size())); return OK; } void GLTFDocument::_set_texture_transform_uv1(const Dictionary &d, Ref material) { if (d.has("extensions")) { const Dictionary &extensions = d["extensions"]; if (extensions.has("KHR_texture_transform")) { const Dictionary &texture_transform = extensions["KHR_texture_transform"]; const Array &offset_arr = texture_transform["offset"]; if (offset_arr.size() == 2) { const Vector3 offset_vector3 = Vector3(offset_arr[0], offset_arr[1], 0.0f); material->set_uv1_offset(offset_vector3); } const Array &scale_arr = texture_transform["scale"]; if (scale_arr.size() == 2) { const Vector3 scale_vector3 = Vector3(scale_arr[0], scale_arr[1], 1.0f); material->set_uv1_scale(scale_vector3); } } } } void GLTFDocument::spec_gloss_to_rough_metal(Ref r_spec_gloss, Ref p_material) { if (r_spec_gloss->spec_gloss_img.is_null()) { return; } if (r_spec_gloss->diffuse_img.is_null()) { return; } Ref rm_img; rm_img.instance(); bool has_roughness = false; bool has_metal = false; p_material->set_roughness(1.0f); p_material->set_metallic(1.0f); rm_img->create(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), false, Image::FORMAT_RGBA8); rm_img->lock(); r_spec_gloss->spec_gloss_img->decompress(); if (r_spec_gloss->diffuse_img.is_valid()) { r_spec_gloss->diffuse_img->decompress(); r_spec_gloss->diffuse_img->resize(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), Image::INTERPOLATE_LANCZOS); r_spec_gloss->spec_gloss_img->resize(r_spec_gloss->diffuse_img->get_width(), r_spec_gloss->diffuse_img->get_height(), Image::INTERPOLATE_LANCZOS); } for (int32_t y = 0; y < r_spec_gloss->spec_gloss_img->get_height(); y++) { for (int32_t x = 0; x < r_spec_gloss->spec_gloss_img->get_width(); x++) { const Color specular_pixel = r_spec_gloss->spec_gloss_img->get_pixel(x, y).to_linear(); Color specular = Color(specular_pixel.r, specular_pixel.g, specular_pixel.b); specular *= r_spec_gloss->specular_factor; Color diffuse = Color(1.0f, 1.0f, 1.0f); r_spec_gloss->diffuse_img->lock(); diffuse *= r_spec_gloss->diffuse_img->get_pixel(x, y).to_linear(); float metallic = 0.0f; Color base_color; spec_gloss_to_metal_base_color(specular, diffuse, base_color, metallic); Color mr = Color(1.0f, 1.0f, 1.0f); mr.g = specular_pixel.a; mr.b = metallic; if (!Math::is_equal_approx(mr.g, 1.0f)) { has_roughness = true; } if (!Math::is_equal_approx(mr.b, 0.0f)) { has_metal = true; } mr.g *= r_spec_gloss->gloss_factor; mr.g = 1.0f - mr.g; rm_img->set_pixel(x, y, mr); r_spec_gloss->diffuse_img->set_pixel(x, y, base_color.to_srgb()); r_spec_gloss->diffuse_img->unlock(); } } rm_img->unlock(); rm_img->generate_mipmaps(); r_spec_gloss->diffuse_img->generate_mipmaps(); Ref diffuse_image_texture; diffuse_image_texture.instance(); diffuse_image_texture->create_from_image(r_spec_gloss->diffuse_img); p_material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, diffuse_image_texture); Ref rm_image_texture; rm_image_texture.instance(); rm_image_texture->create_from_image(rm_img); if (has_roughness) { p_material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, rm_image_texture); p_material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN); } if (has_metal) { p_material->set_texture(SpatialMaterial::TEXTURE_METALLIC, rm_image_texture); p_material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE); } } void GLTFDocument::spec_gloss_to_metal_base_color(const Color &p_specular_factor, const Color &p_diffuse, Color &r_base_color, float &r_metallic) { const Color DIELECTRIC_SPECULAR = Color(0.04f, 0.04f, 0.04f); Color specular = Color(p_specular_factor.r, p_specular_factor.g, p_specular_factor.b); const float one_minus_specular_strength = 1.0f - get_max_component(specular); const float dielectric_specular_red = DIELECTRIC_SPECULAR.r; float brightness_diffuse = get_perceived_brightness(p_diffuse); const float brightness_specular = get_perceived_brightness(specular); r_metallic = solve_metallic(dielectric_specular_red, brightness_diffuse, brightness_specular, one_minus_specular_strength); const float one_minus_metallic = 1.0f - r_metallic; const Color base_color_from_diffuse = p_diffuse * (one_minus_specular_strength / (1.0f - dielectric_specular_red) / MAX(one_minus_metallic, CMP_EPSILON)); const Color base_color_from_specular = (specular - (DIELECTRIC_SPECULAR * (one_minus_metallic))) * (1.0f / MAX(r_metallic, CMP_EPSILON)); r_base_color.r = Math::lerp(base_color_from_diffuse.r, base_color_from_specular.r, r_metallic * r_metallic); r_base_color.g = Math::lerp(base_color_from_diffuse.g, base_color_from_specular.g, r_metallic * r_metallic); r_base_color.b = Math::lerp(base_color_from_diffuse.b, base_color_from_specular.b, r_metallic * r_metallic); r_base_color.a = p_diffuse.a; r_base_color.r = CLAMP(r_base_color.r, 0.0f, 1.0f); r_base_color.g = CLAMP(r_base_color.g, 0.0f, 1.0f); r_base_color.b = CLAMP(r_base_color.b, 0.0f, 1.0f); r_base_color.a = CLAMP(r_base_color.a, 0.0f, 1.0f); } GLTFNodeIndex GLTFDocument::_find_highest_node(Ref state, const Vector &subset) { int highest = -1; GLTFNodeIndex best_node = -1; for (int i = 0; i < subset.size(); ++i) { const GLTFNodeIndex node_i = subset[i]; const Ref node = state->nodes[node_i]; if (highest == -1 || node->height < highest) { highest = node->height; best_node = node_i; } } return best_node; } bool GLTFDocument::_capture_nodes_in_skin(Ref state, Ref skin, const GLTFNodeIndex node_index) { bool found_joint = false; for (int i = 0; i < state->nodes[node_index]->children.size(); ++i) { found_joint |= _capture_nodes_in_skin(state, skin, state->nodes[node_index]->children[i]); } if (found_joint) { // Mark it if we happen to find another skins joint... if (state->nodes[node_index]->joint && skin->joints.find(node_index) < 0) { skin->joints.push_back(node_index); } else if (skin->non_joints.find(node_index) < 0) { skin->non_joints.push_back(node_index); } } if (skin->joints.find(node_index) > 0) { return true; } return false; } void GLTFDocument::_capture_nodes_for_multirooted_skin(Ref state, Ref skin) { DisjointSet disjoint_set; for (int i = 0; i < skin->joints.size(); ++i) { const GLTFNodeIndex node_index = skin->joints[i]; const GLTFNodeIndex parent = state->nodes[node_index]->parent; disjoint_set.insert(node_index); if (skin->joints.find(parent) >= 0) { disjoint_set.create_union(parent, node_index); } } Vector roots; disjoint_set.get_representatives(roots); if (roots.size() <= 1) { return; } int maxHeight = -1; // Determine the max height rooted tree for (int i = 0; i < roots.size(); ++i) { const GLTFNodeIndex root = roots[i]; if (maxHeight == -1 || state->nodes[root]->height < maxHeight) { maxHeight = state->nodes[root]->height; } } // Go up the tree till all of the multiple roots of the skin are at the same hierarchy level. // This sucks, but 99% of all game engines (not just Godot) would have this same issue. for (int i = 0; i < roots.size(); ++i) { GLTFNodeIndex current_node = roots[i]; while (state->nodes[current_node]->height > maxHeight) { GLTFNodeIndex parent = state->nodes[current_node]->parent; if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) { skin->joints.push_back(parent); } else if (skin->non_joints.find(parent) < 0) { skin->non_joints.push_back(parent); } current_node = parent; } // replace the roots roots.write[i] = current_node; } // Climb up the tree until they all have the same parent bool all_same; do { all_same = true; const GLTFNodeIndex first_parent = state->nodes[roots[0]]->parent; for (int i = 1; i < roots.size(); ++i) { all_same &= (first_parent == state->nodes[roots[i]]->parent); } if (!all_same) { for (int i = 0; i < roots.size(); ++i) { const GLTFNodeIndex current_node = roots[i]; const GLTFNodeIndex parent = state->nodes[current_node]->parent; if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) { skin->joints.push_back(parent); } else if (skin->non_joints.find(parent) < 0) { skin->non_joints.push_back(parent); } roots.write[i] = parent; } } } while (!all_same); } Error GLTFDocument::_expand_skin(Ref state, Ref skin) { _capture_nodes_for_multirooted_skin(state, skin); // Grab all nodes that lay in between skin joints/nodes DisjointSet disjoint_set; Vector all_skin_nodes; all_skin_nodes.append_array(skin->joints); all_skin_nodes.append_array(skin->non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const GLTFNodeIndex node_index = all_skin_nodes[i]; const GLTFNodeIndex parent = state->nodes[node_index]->parent; disjoint_set.insert(node_index); if (all_skin_nodes.find(parent) >= 0) { disjoint_set.create_union(parent, node_index); } } Vector out_owners; disjoint_set.get_representatives(out_owners); Vector out_roots; for (int i = 0; i < out_owners.size(); ++i) { Vector set; disjoint_set.get_members(set, out_owners[i]); const GLTFNodeIndex root = _find_highest_node(state, set); ERR_FAIL_COND_V(root < 0, FAILED); out_roots.push_back(root); } out_roots.sort(); for (int i = 0; i < out_roots.size(); ++i) { _capture_nodes_in_skin(state, skin, out_roots[i]); } skin->roots = out_roots; return OK; } Error GLTFDocument::_verify_skin(Ref state, Ref skin) { // This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is) // In case additional interpolating logic is added to the skins, this will help ensure that you // do not cause it to self implode into a fiery blaze // We are going to re-calculate the root nodes and compare them to the ones saved in the skin, // then ensure the multiple trees (if they exist) are on the same sublevel // Grab all nodes that lay in between skin joints/nodes DisjointSet disjoint_set; Vector all_skin_nodes; all_skin_nodes.append_array(skin->joints); all_skin_nodes.append_array(skin->non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const GLTFNodeIndex node_index = all_skin_nodes[i]; const GLTFNodeIndex parent = state->nodes[node_index]->parent; disjoint_set.insert(node_index); if (all_skin_nodes.find(parent) >= 0) { disjoint_set.create_union(parent, node_index); } } Vector out_owners; disjoint_set.get_representatives(out_owners); Vector out_roots; for (int i = 0; i < out_owners.size(); ++i) { Vector set; disjoint_set.get_members(set, out_owners[i]); const GLTFNodeIndex root = _find_highest_node(state, set); ERR_FAIL_COND_V(root < 0, FAILED); out_roots.push_back(root); } out_roots.sort(); ERR_FAIL_COND_V(out_roots.size() == 0, FAILED); // Make sure the roots are the exact same (they better be) ERR_FAIL_COND_V(out_roots.size() != skin->roots.size(), FAILED); for (int i = 0; i < out_roots.size(); ++i) { ERR_FAIL_COND_V(out_roots[i] != skin->roots[i], FAILED); } // Single rooted skin? Perfectly ok! if (out_roots.size() == 1) { return OK; } // Make sure all parents of a multi-rooted skin are the SAME const GLTFNodeIndex parent = state->nodes[out_roots[0]]->parent; for (int i = 1; i < out_roots.size(); ++i) { if (state->nodes[out_roots[i]]->parent != parent) { return FAILED; } } return OK; } Error GLTFDocument::_parse_skins(Ref state) { if (!state->json.has("skins")) { return OK; } const Array &skins = state->json["skins"]; // Create the base skins, and mark nodes that are joints for (int i = 0; i < skins.size(); i++) { const Dictionary &d = skins[i]; Ref skin; skin.instance(); ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR); const Array &joints = d["joints"]; if (d.has("inverseBindMatrices")) { skin->inverse_binds = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false); ERR_FAIL_COND_V(skin->inverse_binds.size() != joints.size(), ERR_PARSE_ERROR); } for (int j = 0; j < joints.size(); j++) { const GLTFNodeIndex node = joints[j]; ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR); skin->joints.push_back(node); skin->joints_original.push_back(node); state->nodes.write[node]->joint = true; } if (d.has("name") && !String(d["name"]).empty()) { skin->set_name(d["name"]); } else { skin->set_name(vformat("skin_%s", itos(i))); } if (d.has("skeleton")) { skin->skin_root = d["skeleton"]; } state->skins.push_back(skin); } for (GLTFSkinIndex i = 0; i < state->skins.size(); ++i) { Ref skin = state->skins.write[i]; // Expand the skin to capture all the extra non-joints that lie in between the actual joints, // and expand the hierarchy to ensure multi-rooted trees lie on the same height level ERR_FAIL_COND_V(_expand_skin(state, skin), ERR_PARSE_ERROR); ERR_FAIL_COND_V(_verify_skin(state, skin), ERR_PARSE_ERROR); } print_verbose("glTF: Total skins: " + itos(state->skins.size())); return OK; } Error GLTFDocument::_determine_skeletons(Ref state) { // Using a disjoint set, we are going to potentially combine all skins that are actually branches // of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton. // This is another unclear issue caused by the current glTF specification. DisjointSet skeleton_sets; for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { const Ref skin = state->skins[skin_i]; Vector all_skin_nodes; all_skin_nodes.append_array(skin->joints); all_skin_nodes.append_array(skin->non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const GLTFNodeIndex node_index = all_skin_nodes[i]; const GLTFNodeIndex parent = state->nodes[node_index]->parent; skeleton_sets.insert(node_index); if (all_skin_nodes.find(parent) >= 0) { skeleton_sets.create_union(parent, node_index); } } // We are going to connect the separate skin subtrees in each skin together // so that the final roots are entire sets of valid skin trees for (int i = 1; i < skin->roots.size(); ++i) { skeleton_sets.create_union(skin->roots[0], skin->roots[i]); } } { // attempt to joint all touching subsets (siblings/parent are part of another skin) Vector groups_representatives; skeleton_sets.get_representatives(groups_representatives); Vector highest_group_members; Vector> groups; for (int i = 0; i < groups_representatives.size(); ++i) { Vector group; skeleton_sets.get_members(group, groups_representatives[i]); highest_group_members.push_back(_find_highest_node(state, group)); groups.push_back(group); } for (int i = 0; i < highest_group_members.size(); ++i) { const GLTFNodeIndex node_i = highest_group_members[i]; // Attach any siblings together (this needs to be done n^2/2 times) for (int j = i + 1; j < highest_group_members.size(); ++j) { const GLTFNodeIndex node_j = highest_group_members[j]; // Even if they are siblings under the root! :) if (state->nodes[node_i]->parent == state->nodes[node_j]->parent) { skeleton_sets.create_union(node_i, node_j); } } // Attach any parenting going on together (we need to do this n^2 times) const GLTFNodeIndex node_i_parent = state->nodes[node_i]->parent; if (node_i_parent >= 0) { for (int j = 0; j < groups.size() && i != j; ++j) { const Vector &group = groups[j]; if (group.find(node_i_parent) >= 0) { const GLTFNodeIndex node_j = highest_group_members[j]; skeleton_sets.create_union(node_i, node_j); } } } } } // At this point, the skeleton groups should be finalized Vector skeleton_owners; skeleton_sets.get_representatives(skeleton_owners); // Mark all the skins actual skeletons, after we have merged them for (GLTFSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) { const GLTFNodeIndex skeleton_owner = skeleton_owners[skel_i]; Ref skeleton; skeleton.instance(); Vector skeleton_nodes; skeleton_sets.get_members(skeleton_nodes, skeleton_owner); for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { Ref skin = state->skins.write[skin_i]; // If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton for (int i = 0; i < skeleton_nodes.size(); ++i) { GLTFNodeIndex skel_node_i = skeleton_nodes[i]; if (skin->joints.find(skel_node_i) >= 0 || skin->non_joints.find(skel_node_i) >= 0) { skin->skeleton = skel_i; continue; } } } Vector non_joints; for (int i = 0; i < skeleton_nodes.size(); ++i) { const GLTFNodeIndex node_i = skeleton_nodes[i]; if (state->nodes[node_i]->joint) { skeleton->joints.push_back(node_i); } else { non_joints.push_back(node_i); } } state->skeletons.push_back(skeleton); _reparent_non_joint_skeleton_subtrees(state, state->skeletons.write[skel_i], non_joints); } for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) { Ref skeleton = state->skeletons.write[skel_i]; for (int i = 0; i < skeleton->joints.size(); ++i) { const GLTFNodeIndex node_i = skeleton->joints[i]; Ref node = state->nodes[node_i]; ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR); ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR); node->skeleton = skel_i; } ERR_FAIL_COND_V(_determine_skeleton_roots(state, skel_i), ERR_PARSE_ERROR); } return OK; } Error GLTFDocument::_reparent_non_joint_skeleton_subtrees(Ref state, Ref skeleton, const Vector &non_joints) { DisjointSet subtree_set; // Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector) // This way we can find any joints that lie in between joints, as the current glTF specification // mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we // can remove this code. // skinD depicted here explains this issue: // https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin for (int i = 0; i < non_joints.size(); ++i) { const GLTFNodeIndex node_i = non_joints[i]; subtree_set.insert(node_i); const GLTFNodeIndex parent_i = state->nodes[node_i]->parent; if (parent_i >= 0 && non_joints.find(parent_i) >= 0 && !state->nodes[parent_i]->joint) { subtree_set.create_union(parent_i, node_i); } } // Find all the non joint subtrees and re-parent them to a new "fake" joint Vector non_joint_subtree_roots; subtree_set.get_representatives(non_joint_subtree_roots); for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) { const GLTFNodeIndex subtree_root = non_joint_subtree_roots[root_i]; Vector subtree_nodes; subtree_set.get_members(subtree_nodes, subtree_root); for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) { Ref node = state->nodes[subtree_nodes[subtree_i]]; node->joint = true; // Add the joint to the skeletons joints skeleton->joints.push_back(subtree_nodes[subtree_i]); } } return OK; } Error GLTFDocument::_determine_skeleton_roots(Ref state, const GLTFSkeletonIndex skel_i) { DisjointSet disjoint_set; for (GLTFNodeIndex i = 0; i < state->nodes.size(); ++i) { const Ref node = state->nodes[i]; if (node->skeleton != skel_i) { continue; } disjoint_set.insert(i); if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) { disjoint_set.create_union(node->parent, i); } } Ref skeleton = state->skeletons.write[skel_i]; Vector owners; disjoint_set.get_representatives(owners); Vector roots; for (int i = 0; i < owners.size(); ++i) { Vector set; disjoint_set.get_members(set, owners[i]); const GLTFNodeIndex root = _find_highest_node(state, set); ERR_FAIL_COND_V(root < 0, FAILED); roots.push_back(root); } roots.sort(); PoolVector roots_array; roots_array.resize(roots.size()); PoolVector::Write write_roots = roots_array.write(); for (int32_t root_i = 0; root_i < roots_array.size(); root_i++) { write_roots[root_i] = roots[root_i]; } skeleton->roots = roots_array; if (roots.size() == 0) { return FAILED; } else if (roots.size() == 1) { return OK; } // Check that the subtrees have the same parent root const GLTFNodeIndex parent = state->nodes[roots[0]]->parent; for (int i = 1; i < roots.size(); ++i) { if (state->nodes[roots[i]]->parent != parent) { return FAILED; } } return OK; } Error GLTFDocument::_create_skeletons(Ref state) { for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) { Ref gltf_skeleton = state->skeletons.write[skel_i]; Skeleton *skeleton = memnew(Skeleton); gltf_skeleton->godot_skeleton = skeleton; state->skeleton3d_to_gltf_skeleton[skeleton->get_instance_id()] = skel_i; // Make a unique name, no gltf node represents this skeleton skeleton->set_name(_gen_unique_name(state, "Skeleton")); List bones; for (int i = 0; i < gltf_skeleton->roots.size(); ++i) { bones.push_back(gltf_skeleton->roots[i]); } // Make the skeleton creation deterministic by going through the roots in // a sorted order, and DEPTH FIRST bones.sort(); while (!bones.empty()) { const GLTFNodeIndex node_i = bones.front()->get(); bones.pop_front(); Ref node = state->nodes[node_i]; ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED); { // Add all child nodes to the stack (deterministically) Vector child_nodes; for (int i = 0; i < node->children.size(); ++i) { const GLTFNodeIndex child_i = node->children[i]; if (state->nodes[child_i]->skeleton == skel_i) { child_nodes.push_back(child_i); } } // Depth first insertion child_nodes.sort(); for (int i = child_nodes.size() - 1; i >= 0; --i) { bones.push_front(child_nodes[i]); } } const int bone_index = skeleton->get_bone_count(); if (node->get_name().empty()) { node->set_name("bone"); } node->set_name(_gen_unique_bone_name(state, skel_i, node->get_name())); skeleton->add_bone(node->get_name()); skeleton->set_bone_rest(bone_index, node->xform); if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) { const int bone_parent = skeleton->find_bone(state->nodes[node->parent]->get_name()); ERR_FAIL_COND_V(bone_parent < 0, FAILED); skeleton->set_bone_parent(bone_index, skeleton->find_bone(state->nodes[node->parent]->get_name())); } state->scene_nodes.insert(node_i, skeleton); } } ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(state), ERR_PARSE_ERROR); return OK; } Error GLTFDocument::_map_skin_joints_indices_to_skeleton_bone_indices(Ref state) { for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { Ref skin = state->skins.write[skin_i]; Ref skeleton = state->skeletons[skin->skeleton]; for (int joint_index = 0; joint_index < skin->joints_original.size(); ++joint_index) { const GLTFNodeIndex node_i = skin->joints_original[joint_index]; const Ref node = state->nodes[node_i]; const int bone_index = skeleton->godot_skeleton->find_bone(node->get_name()); ERR_FAIL_COND_V(bone_index < 0, FAILED); skin->joint_i_to_bone_i.insert(joint_index, bone_index); } } return OK; } Error GLTFDocument::_serialize_skins(Ref state) { _remove_duplicate_skins(state); Array json_skins; for (int skin_i = 0; skin_i < state->skins.size(); skin_i++) { Ref gltf_skin = state->skins[skin_i]; Dictionary json_skin; json_skin["inverseBindMatrices"] = _encode_accessor_as_xform(state, gltf_skin->inverse_binds, false); json_skin["joints"] = gltf_skin->get_joints(); json_skin["name"] = gltf_skin->get_name(); json_skins.push_back(json_skin); } if (!state->skins.size()) { return OK; } state->json["skins"] = json_skins; return OK; } Error GLTFDocument::_create_skins(Ref state) { for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { Ref gltf_skin = state->skins.write[skin_i]; Ref skin; skin.instance(); // Some skins don't have IBM's! What absolute monsters! const bool has_ibms = !gltf_skin->inverse_binds.empty(); for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) { GLTFNodeIndex node = gltf_skin->joints_original[joint_i]; String bone_name = state->nodes[node]->get_name(); Transform xform; if (has_ibms) { xform = gltf_skin->inverse_binds[joint_i]; } if (state->use_named_skin_binds) { skin->add_named_bind(bone_name, xform); } else { int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i]; skin->add_bind(bone_i, xform); } } gltf_skin->godot_skin = skin; } // Purge the duplicates! _remove_duplicate_skins(state); // Create unique names now, after removing duplicates for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) { Ref skin = state->skins.write[skin_i]->godot_skin; if (skin->get_name().empty()) { // Make a unique name, no gltf node represents this skin skin->set_name(_gen_unique_name(state, "Skin")); } } return OK; } bool GLTFDocument::_skins_are_same(const Ref skin_a, const Ref skin_b) { if (skin_a->get_bind_count() != skin_b->get_bind_count()) { return false; } for (int i = 0; i < skin_a->get_bind_count(); ++i) { if (skin_a->get_bind_bone(i) != skin_b->get_bind_bone(i)) { return false; } if (skin_a->get_bind_name(i) != skin_b->get_bind_name(i)) { return false; } Transform a_xform = skin_a->get_bind_pose(i); Transform b_xform = skin_b->get_bind_pose(i); if (a_xform != b_xform) { return false; } } return true; } void GLTFDocument::_remove_duplicate_skins(Ref state) { for (int i = 0; i < state->skins.size(); ++i) { for (int j = i + 1; j < state->skins.size(); ++j) { const Ref skin_i = state->skins[i]->godot_skin; const Ref skin_j = state->skins[j]->godot_skin; if (_skins_are_same(skin_i, skin_j)) { // replace it and delete the old state->skins.write[j]->godot_skin = skin_i; } } } } Error GLTFDocument::_serialize_lights(Ref state) { Array lights; for (GLTFLightIndex i = 0; i < state->lights.size(); i++) { Dictionary d; Ref light = state->lights[i]; Array color; color.resize(3); color[0] = light->color.r; color[1] = light->color.g; color[2] = light->color.b; d["color"] = color; d["type"] = light->type; if (light->type == "spot") { Dictionary s; float inner_cone_angle = light->inner_cone_angle; s["innerConeAngle"] = inner_cone_angle; float outer_cone_angle = light->outer_cone_angle; s["outerConeAngle"] = outer_cone_angle; d["spot"] = s; } float intensity = light->intensity; d["intensity"] = intensity; float range = light->range; d["range"] = range; lights.push_back(d); } if (!state->lights.size()) { return OK; } Dictionary extensions; if (state->json.has("extensions")) { extensions = state->json["extensions"]; } else { state->json["extensions"] = extensions; } Dictionary lights_punctual; extensions["KHR_lights_punctual"] = lights_punctual; lights_punctual["lights"] = lights; print_verbose("glTF: Total lights: " + itos(state->lights.size())); return OK; } Error GLTFDocument::_serialize_cameras(Ref state) { Array cameras; cameras.resize(state->cameras.size()); for (GLTFCameraIndex i = 0; i < state->cameras.size(); i++) { Dictionary d; Ref camera = state->cameras[i]; if (camera->get_perspective() == false) { Dictionary og; og["ymag"] = Math::deg2rad(camera->get_fov_size()); og["xmag"] = Math::deg2rad(camera->get_fov_size()); og["zfar"] = camera->get_zfar(); og["znear"] = camera->get_znear(); d["orthographic"] = og; d["type"] = "orthographic"; } else if (camera->get_perspective()) { Dictionary ppt; // GLTF spec is in radians, Godot's camera is in degrees. ppt["yfov"] = Math::deg2rad(camera->get_fov_size()); ppt["zfar"] = camera->get_zfar(); ppt["znear"] = camera->get_znear(); d["perspective"] = ppt; d["type"] = "perspective"; } cameras[i] = d; } if (!state->cameras.size()) { return OK; } state->json["cameras"] = cameras; print_verbose("glTF: Total cameras: " + itos(state->cameras.size())); return OK; } Error GLTFDocument::_parse_lights(Ref state) { if (!state->json.has("extensions")) { return OK; } Dictionary extensions = state->json["extensions"]; if (!extensions.has("KHR_lights_punctual")) { return OK; } Dictionary lights_punctual = extensions["KHR_lights_punctual"]; if (!lights_punctual.has("lights")) { return OK; } const Array &lights = lights_punctual["lights"]; for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) { const Dictionary &d = lights[light_i]; Ref light; light.instance(); ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); const String &type = d["type"]; light->type = type; if (d.has("color")) { const Array &arr = d["color"]; ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); const Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); light->color = c; } if (d.has("intensity")) { light->intensity = d["intensity"]; } if (d.has("range")) { light->range = d["range"]; } if (type == "spot") { const Dictionary &spot = d["spot"]; light->inner_cone_angle = spot["innerConeAngle"]; light->outer_cone_angle = spot["outerConeAngle"]; ERR_CONTINUE_MSG(light->inner_cone_angle >= light->outer_cone_angle, "The inner angle must be smaller than the outer angle."); } else if (type != "point" && type != "directional") { ERR_CONTINUE_MSG(ERR_PARSE_ERROR, "Light type is unknown."); } state->lights.push_back(light); } print_verbose("glTF: Total lights: " + itos(state->lights.size())); return OK; } Error GLTFDocument::_parse_cameras(Ref state) { if (!state->json.has("cameras")) { return OK; } const Array cameras = state->json["cameras"]; for (GLTFCameraIndex i = 0; i < cameras.size(); i++) { const Dictionary &d = cameras[i]; Ref camera; camera.instance(); ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); const String &type = d["type"]; if (type == "orthographic") { camera->set_perspective(false); if (d.has("orthographic")) { const Dictionary &og = d["orthographic"]; // GLTF spec is in radians, Godot's camera is in degrees. camera->set_fov_size(Math::rad2deg(real_t(og["ymag"]))); camera->set_zfar(og["zfar"]); camera->set_znear(og["znear"]); } else { camera->set_fov_size(10); } } else if (type == "perspective") { camera->set_perspective(true); if (d.has("perspective")) { const Dictionary &ppt = d["perspective"]; // GLTF spec is in radians, Godot's camera is in degrees. camera->set_fov_size(Math::rad2deg(real_t(ppt["yfov"]))); camera->set_zfar(ppt["zfar"]); camera->set_znear(ppt["znear"]); } else { camera->set_fov_size(10); } } else { ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Camera should be in 'orthographic' or 'perspective'"); } state->cameras.push_back(camera); } print_verbose("glTF: Total cameras: " + itos(state->cameras.size())); return OK; } String GLTFDocument::interpolation_to_string(const GLTFAnimation::Interpolation p_interp) { String interp = "LINEAR"; if (p_interp == GLTFAnimation::INTERP_STEP) { interp = "STEP"; } else if (p_interp == GLTFAnimation::INTERP_LINEAR) { interp = "LINEAR"; } else if (p_interp == GLTFAnimation::INTERP_CATMULLROMSPLINE) { interp = "CATMULLROMSPLINE"; } else if (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE) { interp = "CUBICSPLINE"; } return interp; } Error GLTFDocument::_serialize_animations(Ref state) { if (!state->animation_players.size()) { return OK; } for (int32_t player_i = 0; player_i < state->animation_players.size(); player_i++) { List animation_names; AnimationPlayer *animation_player = state->animation_players[player_i]; animation_player->get_animation_list(&animation_names); if (animation_names.size()) { for (int animation_name_i = 0; animation_name_i < animation_names.size(); animation_name_i++) { _convert_animation(state, animation_player, animation_names[animation_name_i]); } } } Array animations; for (GLTFAnimationIndex animation_i = 0; animation_i < state->animations.size(); animation_i++) { Dictionary d; Ref gltf_animation = state->animations[animation_i]; if (!gltf_animation->get_tracks().size()) { continue; } if (!gltf_animation->get_name().empty()) { d["name"] = gltf_animation->get_name(); } Array channels; Array samplers; for (Map::Element *track_i = gltf_animation->get_tracks().front(); track_i; track_i = track_i->next()) { GLTFAnimation::Track track = track_i->get(); if (track.translation_track.times.size()) { Dictionary t; t["sampler"] = samplers.size(); Dictionary s; s["interpolation"] = interpolation_to_string(track.translation_track.interpolation); Vector times = Variant(track.translation_track.times); s["input"] = _encode_accessor_as_floats(state, times, false); Vector values = Variant(track.translation_track.values); s["output"] = _encode_accessor_as_vec3(state, values, false); samplers.push_back(s); Dictionary target; target["path"] = "translation"; target["node"] = track_i->key(); t["target"] = target; channels.push_back(t); } if (track.rotation_track.times.size()) { Dictionary t; t["sampler"] = samplers.size(); Dictionary s; s["interpolation"] = interpolation_to_string(track.rotation_track.interpolation); Vector times = Variant(track.rotation_track.times); s["input"] = _encode_accessor_as_floats(state, times, false); Vector values = track.rotation_track.values; s["output"] = _encode_accessor_as_quats(state, values, false); samplers.push_back(s); Dictionary target; target["path"] = "rotation"; target["node"] = track_i->key(); t["target"] = target; channels.push_back(t); } if (track.scale_track.times.size()) { Dictionary t; t["sampler"] = samplers.size(); Dictionary s; s["interpolation"] = interpolation_to_string(track.scale_track.interpolation); Vector times = Variant(track.scale_track.times); s["input"] = _encode_accessor_as_floats(state, times, false); Vector values = Variant(track.scale_track.values); s["output"] = _encode_accessor_as_vec3(state, values, false); samplers.push_back(s); Dictionary target; target["path"] = "scale"; target["node"] = track_i->key(); t["target"] = target; channels.push_back(t); } if (track.weight_tracks.size()) { double length = 0.0f; for (int32_t track_idx = 0; track_idx < track.weight_tracks.size(); track_idx++) { int32_t last_time_index = track.weight_tracks[track_idx].times.size() - 1; length = MAX(length, track.weight_tracks[track_idx].times[last_time_index]); } Dictionary t; t["sampler"] = samplers.size(); Dictionary s; Vector times; const double increment = 1.0 / BAKE_FPS; { double time = 0.0; bool last = false; while (true) { times.push_back(time); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } } for (int32_t track_idx = 0; track_idx < track.weight_tracks.size(); track_idx++) { double time = 0.0; bool last = false; Vector weight_track; while (true) { float weight = _interpolate_track(track.weight_tracks[track_idx].times, track.weight_tracks[track_idx].values, time, track.weight_tracks[track_idx].interpolation); weight_track.push_back(weight); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } track.weight_tracks.write[track_idx].times = times; track.weight_tracks.write[track_idx].values = weight_track; } Vector all_track_times = times; Vector all_track_values; int32_t values_size = track.weight_tracks[0].values.size(); int32_t weight_tracks_size = track.weight_tracks.size(); all_track_values.resize(weight_tracks_size * values_size); for (int k = 0; k < track.weight_tracks.size(); k++) { Vector wdata = track.weight_tracks[k].values; for (int l = 0; l < wdata.size(); l++) { int32_t index = l * weight_tracks_size + k; ERR_BREAK(index >= all_track_values.size()); all_track_values.write[index] = wdata.write[l]; } } s["interpolation"] = interpolation_to_string(track.weight_tracks[track.weight_tracks.size() - 1].interpolation); s["input"] = _encode_accessor_as_floats(state, all_track_times, false); s["output"] = _encode_accessor_as_floats(state, all_track_values, false); samplers.push_back(s); Dictionary target; target["path"] = "weights"; target["node"] = track_i->key(); t["target"] = target; channels.push_back(t); } } if (channels.size() && samplers.size()) { d["channels"] = channels; d["samplers"] = samplers; animations.push_back(d); } } if (!animations.size()) { return OK; } state->json["animations"] = animations; print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'."); return OK; } Error GLTFDocument::_parse_animations(Ref state) { if (!state->json.has("animations")) { return OK; } const Array &animations = state->json["animations"]; for (GLTFAnimationIndex i = 0; i < animations.size(); i++) { const Dictionary &d = animations[i]; Ref animation; animation.instance(); if (!d.has("channels") || !d.has("samplers")) { continue; } Array channels = d["channels"]; Array samplers = d["samplers"]; if (d.has("name")) { const String name = d["name"]; if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) { animation->set_loop(true); } if (state->use_legacy_names) { animation->set_name(_sanitize_scene_name(state, name)); } else { animation->set_name(_gen_unique_animation_name(state, name)); } } for (int j = 0; j < channels.size(); j++) { const Dictionary &c = channels[j]; if (!c.has("target")) { continue; } const Dictionary &t = c["target"]; if (!t.has("node") || !t.has("path")) { continue; } ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR); const int sampler = c["sampler"]; ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR); GLTFNodeIndex node = t["node"]; String path = t["path"]; ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR); GLTFAnimation::Track *track = nullptr; if (!animation->get_tracks().has(node)) { animation->get_tracks()[node] = GLTFAnimation::Track(); } track = &animation->get_tracks()[node]; const Dictionary &s = samplers[sampler]; ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR); ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR); const int input = s["input"]; const int output = s["output"]; GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR; int output_count = 1; if (s.has("interpolation")) { const String &in = s["interpolation"]; if (in == "STEP") { interp = GLTFAnimation::INTERP_STEP; } else if (in == "LINEAR") { interp = GLTFAnimation::INTERP_LINEAR; } else if (in == "CATMULLROMSPLINE") { interp = GLTFAnimation::INTERP_CATMULLROMSPLINE; output_count = 3; } else if (in == "CUBICSPLINE") { interp = GLTFAnimation::INTERP_CUBIC_SPLINE; output_count = 3; } } const Vector times = _decode_accessor_as_floats(state, input, false); if (path == "translation") { const Vector translations = _decode_accessor_as_vec3(state, output, false); track->translation_track.interpolation = interp; track->translation_track.times = Variant(times); //convert via variant track->translation_track.values = Variant(translations); //convert via variant } else if (path == "rotation") { const Vector rotations = _decode_accessor_as_quat(state, output, false); track->rotation_track.interpolation = interp; track->rotation_track.times = Variant(times); //convert via variant track->rotation_track.values = rotations; } else if (path == "scale") { const Vector scales = _decode_accessor_as_vec3(state, output, false); track->scale_track.interpolation = interp; track->scale_track.times = Variant(times); //convert via variant track->scale_track.values = Variant(scales); //convert via variant } else if (path == "weights") { const Vector weights = _decode_accessor_as_floats(state, output, false); ERR_FAIL_INDEX_V(state->nodes[node]->mesh, state->meshes.size(), ERR_PARSE_ERROR); Ref mesh = state->meshes[state->nodes[node]->mesh]; ERR_CONTINUE(!mesh->get_blend_weights().size()); const int wc = mesh->get_blend_weights().size(); track->weight_tracks.resize(wc); const int expected_value_count = times.size() * output_count * wc; ERR_CONTINUE_MSG(weights.size() != expected_value_count, "Invalid weight data, expected " + itos(expected_value_count) + " weight values, got " + itos(weights.size()) + " instead."); const int wlen = weights.size() / wc; for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea GLTFAnimation::Channel cf; cf.interpolation = interp; cf.times = Variant(times); Vector wdata; wdata.resize(wlen); for (int l = 0; l < wlen; l++) { wdata.write[l] = weights[l * wc + k]; } cf.values = wdata; track->weight_tracks.write[k] = cf; } } else { WARN_PRINT("Invalid path '" + path + "'."); } } state->animations.push_back(animation); } print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'."); return OK; } void GLTFDocument::_assign_scene_names(Ref state) { for (int i = 0; i < state->nodes.size(); i++) { Ref n = state->nodes[i]; // Any joints get unique names generated when the skeleton is made, unique to the skeleton if (n->skeleton >= 0) { continue; } if (n->get_name().empty()) { if (n->mesh >= 0) { n->set_name(_gen_unique_name(state, "Mesh")); } else if (n->camera >= 0) { n->set_name(_gen_unique_name(state, "Camera")); } else { n->set_name(_gen_unique_name(state, "Node")); } } n->set_name(_gen_unique_name(state, n->get_name())); } // Assign a unique name to the scene last to avoid naming conflicts with the root state->scene_name = _gen_unique_name(state, state->scene_name); } BoneAttachment *GLTFDocument::_generate_bone_attachment(Ref state, Skeleton *skeleton, const GLTFNodeIndex node_index, const GLTFNodeIndex bone_index) { Ref gltf_node = state->nodes[node_index]; Ref bone_node = state->nodes[bone_index]; BoneAttachment *bone_attachment = memnew(BoneAttachment); print_verbose("glTF: Creating bone attachment for: " + gltf_node->get_name()); ERR_FAIL_COND_V(!bone_node->joint, nullptr); bone_attachment->set_bone_name(bone_node->get_name()); return bone_attachment; } GLTFMeshIndex GLTFDocument::_convert_mesh_to_gltf(Ref state, MeshInstance *p_mesh_instance) { ERR_FAIL_NULL_V(p_mesh_instance, -1); if (p_mesh_instance->get_mesh().is_null()) { return -1; } Ref import_mesh; import_mesh.instance(); Ref godot_mesh = p_mesh_instance->get_mesh(); if (godot_mesh.is_null()) { return -1; } int32_t blend_count = godot_mesh->get_blend_shape_count(); Vector blend_weights; blend_weights.resize(blend_count); Ref am = godot_mesh; if (am != nullptr) { import_mesh = am; } else { for (int32_t surface_i = 0; surface_i < godot_mesh->get_surface_count(); surface_i++) { Mesh::PrimitiveType primitive_type = godot_mesh->surface_get_primitive_type(surface_i); Array arrays = godot_mesh->surface_get_arrays(surface_i); Ref mat = godot_mesh->surface_get_material(surface_i); Ref godot_array_mesh = godot_mesh; String surface_name; if (godot_array_mesh.is_valid()) { surface_name = godot_array_mesh->surface_get_name(surface_i); } if (p_mesh_instance->get_surface_material(surface_i).is_valid()) { mat = p_mesh_instance->get_surface_material(surface_i); } if (p_mesh_instance->get_material_override().is_valid()) { mat = p_mesh_instance->get_material_override(); } int32_t mat_idx = import_mesh->get_surface_count(); import_mesh->add_surface_from_arrays(primitive_type, arrays); import_mesh->surface_set_material(mat_idx, mat); } } for (int32_t blend_i = 0; blend_i < blend_count; blend_i++) { blend_weights.write[blend_i] = 0.0f; } Ref gltf_mesh; gltf_mesh.instance(); Array instance_materials; for (int32_t surface_i = 0; surface_i < import_mesh->get_surface_count(); surface_i++) { Ref mat = import_mesh->surface_get_material(surface_i); if (p_mesh_instance->get_surface_material(surface_i).is_valid()) { mat = p_mesh_instance->get_surface_material(surface_i); } if (p_mesh_instance->get_material_override().is_valid()) { mat = p_mesh_instance->get_material_override(); } instance_materials.append(mat); } gltf_mesh->set_instance_materials(instance_materials); gltf_mesh->set_mesh(import_mesh); gltf_mesh->set_blend_weights(blend_weights); GLTFMeshIndex mesh_i = state->meshes.size(); state->meshes.push_back(gltf_mesh); return mesh_i; } Spatial *GLTFDocument::_generate_mesh_instance(Ref state, Node *scene_parent, const GLTFNodeIndex node_index) { Ref gltf_node = state->nodes[node_index]; ERR_FAIL_INDEX_V(gltf_node->mesh, state->meshes.size(), nullptr); MeshInstance *mi = memnew(MeshInstance); print_verbose("glTF: Creating mesh for: " + gltf_node->get_name()); Ref mesh = state->meshes.write[gltf_node->mesh]; if (mesh.is_null()) { return mi; } Ref import_mesh = mesh->get_mesh(); if (import_mesh.is_null()) { return mi; } mi->set_mesh(import_mesh); for (int i = 0; i < mesh->get_blend_weights().size(); i++) { mi->set("blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i), mesh->get_blend_weights()[i]); } return mi; } Spatial *GLTFDocument::_generate_light(Ref state, Node *scene_parent, const GLTFNodeIndex node_index) { Ref gltf_node = state->nodes[node_index]; ERR_FAIL_INDEX_V(gltf_node->light, state->lights.size(), nullptr); print_verbose("glTF: Creating light for: " + gltf_node->get_name()); Ref l = state->lights[gltf_node->light]; float intensity = l->intensity; if (intensity > 10) { // GLTF spec has the default around 1, but Blender defaults lights to 100. // The only sane way to handle this is to check where it came from and // handle it accordingly. If it's over 10, it probably came from Blender. intensity /= 100; } if (l->type == "directional") { DirectionalLight *light = memnew(DirectionalLight); light->set_param(Light::PARAM_ENERGY, intensity); light->set_color(l->color); return light; } const float range = CLAMP(l->range, 0, 4096); // Doubling the range will double the effective brightness, so we need double attenuation (half brightness). // We want to have double intensity give double brightness, so we need half the attenuation. const float attenuation = range / intensity; if (l->type == "point") { OmniLight *light = memnew(OmniLight); light->set_param(OmniLight::PARAM_ATTENUATION, attenuation); light->set_param(OmniLight::PARAM_RANGE, range); light->set_color(l->color); return light; } if (l->type == "spot") { SpotLight *light = memnew(SpotLight); light->set_param(SpotLight::PARAM_ATTENUATION, attenuation); light->set_param(SpotLight::PARAM_RANGE, range); light->set_param(SpotLight::PARAM_SPOT_ANGLE, Math::rad2deg(l->outer_cone_angle)); light->set_color(l->color); // Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b // The points in desmos are not exact, except for (1, infinity). float angle_ratio = l->inner_cone_angle / l->outer_cone_angle; float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1; light->set_param(SpotLight::PARAM_SPOT_ATTENUATION, angle_attenuation); return light; } return memnew(Spatial); } Camera *GLTFDocument::_generate_camera(Ref state, Node *scene_parent, const GLTFNodeIndex node_index) { Ref gltf_node = state->nodes[node_index]; ERR_FAIL_INDEX_V(gltf_node->camera, state->cameras.size(), nullptr); Camera *camera = memnew(Camera); print_verbose("glTF: Creating camera for: " + gltf_node->get_name()); Ref c = state->cameras[gltf_node->camera]; if (c->get_perspective()) { camera->set_perspective(c->get_fov_size(), c->get_znear(), c->get_zfar()); } else { camera->set_orthogonal(c->get_fov_size(), c->get_znear(), c->get_zfar()); } return camera; } GLTFCameraIndex GLTFDocument::_convert_camera(Ref state, Camera *p_camera) { print_verbose("glTF: Converting camera: " + p_camera->get_name()); Ref c; c.instance(); if (p_camera->get_projection() == Camera::Projection::PROJECTION_PERSPECTIVE) { c->set_perspective(true); c->set_fov_size(p_camera->get_fov()); c->set_zfar(p_camera->get_zfar()); c->set_znear(p_camera->get_znear()); } else { c->set_fov_size(p_camera->get_fov()); c->set_zfar(p_camera->get_zfar()); c->set_znear(p_camera->get_znear()); } GLTFCameraIndex camera_index = state->cameras.size(); state->cameras.push_back(c); return camera_index; } GLTFLightIndex GLTFDocument::_convert_light(Ref state, Light *p_light) { print_verbose("glTF: Converting light: " + p_light->get_name()); Ref l; l.instance(); l->color = p_light->get_color(); if (cast_to(p_light)) { l->type = "directional"; DirectionalLight *light = cast_to(p_light); l->intensity = light->get_param(DirectionalLight::PARAM_ENERGY); l->range = FLT_MAX; // Range for directional lights is infinite in Godot. } else if (cast_to(p_light)) { l->type = "point"; OmniLight *light = cast_to(p_light); l->range = light->get_param(OmniLight::PARAM_RANGE); float attenuation = p_light->get_param(OmniLight::PARAM_ATTENUATION); l->intensity = l->range / attenuation; } else if (cast_to(p_light)) { l->type = "spot"; SpotLight *light = cast_to(p_light); l->range = light->get_param(SpotLight::PARAM_RANGE); float attenuation = light->get_param(SpotLight::PARAM_ATTENUATION); l->intensity = l->range / attenuation; l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight::PARAM_SPOT_ANGLE)); // This equation is the inverse of the import equation (which has a desmos link). float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight::PARAM_SPOT_ATTENUATION))); angle_ratio = MAX(0, angle_ratio); l->inner_cone_angle = l->outer_cone_angle * angle_ratio; } GLTFLightIndex light_index = state->lights.size(); state->lights.push_back(l); return light_index; } void GLTFDocument::_convert_spatial(Ref state, Spatial *p_spatial, Ref p_node) { Transform xform = p_spatial->get_transform(); p_node->scale = xform.basis.get_scale(); p_node->rotation = xform.basis.get_rotation_quat(); p_node->translation = xform.origin; } Spatial *GLTFDocument::_generate_spatial(Ref state, Node *scene_parent, const GLTFNodeIndex node_index) { Ref gltf_node = state->nodes[node_index]; Spatial *spatial = memnew(Spatial); print_verbose("glTF: Converting spatial: " + gltf_node->get_name()); return spatial; } void GLTFDocument::_convert_scene_node(Ref state, Node *p_current, const GLTFNodeIndex p_gltf_parent, const GLTFNodeIndex p_gltf_root) { bool retflag = true; _check_visibility(p_current, retflag); if (retflag) { return; } Ref gltf_node; gltf_node.instance(); gltf_node->set_name(_gen_unique_name(state, p_current->get_name())); if (cast_to(p_current)) { Spatial *spatial = cast_to(p_current); _convert_spatial(state, spatial, gltf_node); } if (cast_to(p_current)) { MeshInstance *mi = cast_to(p_current); _convert_mesh_instance_to_gltf(mi, state, gltf_node); } else if (cast_to(p_current)) { BoneAttachment *bone = cast_to(p_current); _convert_bone_attachment_to_gltf(bone, state, p_gltf_parent, p_gltf_root, gltf_node); return; } else if (cast_to(p_current)) { Skeleton *skel = cast_to(p_current); _convert_skeleton_to_gltf(skel, state, p_gltf_parent, p_gltf_root, gltf_node); // We ignore the Godot Engine node that is the skeleton. return; } else if (cast_to(p_current)) { MultiMeshInstance *multi = cast_to(p_current); _convert_mult_mesh_instance_to_gltf(multi, p_gltf_parent, p_gltf_root, gltf_node, state); #ifdef MODULE_CSG_ENABLED } else if (cast_to(p_current)) { CSGShape *shape = cast_to(p_current); if (shape->get_parent() && shape->is_root_shape()) { _convert_csg_shape_to_gltf(shape, p_gltf_parent, gltf_node, state); } #endif // MODULE_CSG_ENABLED #ifdef MODULE_GRIDMAP_ENABLED } else if (cast_to(p_current)) { GridMap *gridmap = Object::cast_to(p_current); _convert_grid_map_to_gltf(gridmap, p_gltf_parent, p_gltf_root, gltf_node, state); #endif // MODULE_GRIDMAP_ENABLED } else if (cast_to(p_current)) { Camera *camera = Object::cast_to(p_current); _convert_camera_to_gltf(camera, state, gltf_node); } else if (cast_to(p_current)) { Light *light = Object::cast_to(p_current); _convert_light_to_gltf(light, state, gltf_node); } else if (cast_to(p_current)) { AnimationPlayer *animation_player = Object::cast_to(p_current); _convert_animation_player_to_gltf(animation_player, state, p_gltf_parent, p_gltf_root, gltf_node, p_current); } GLTFNodeIndex current_node_i = state->nodes.size(); GLTFNodeIndex gltf_root = p_gltf_root; if (gltf_root == -1) { gltf_root = current_node_i; Array scenes; scenes.push_back(gltf_root); state->json["scene"] = scenes; } _create_gltf_node(state, p_current, current_node_i, p_gltf_parent, gltf_root, gltf_node); for (int node_i = 0; node_i < p_current->get_child_count(); node_i++) { _convert_scene_node(state, p_current->get_child(node_i), current_node_i, gltf_root); } } #ifdef MODULE_CSG_ENABLED void GLTFDocument::_convert_csg_shape_to_gltf(CSGShape *p_current, GLTFNodeIndex p_gltf_parent, Ref gltf_node, Ref state) { CSGShape *csg = p_current; csg->call("_update_shape"); Array meshes = csg->get_meshes(); if (meshes.size() != 2) { return; } Ref mat; if (csg->get_material_override().is_valid()) { mat = csg->get_material_override(); } Ref gltf_mesh; gltf_mesh.instance(); Ref import_mesh; import_mesh.instance(); Ref array_mesh = csg->get_meshes()[1]; for (int32_t surface_i = 0; surface_i < array_mesh->get_surface_count(); surface_i++) { import_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, array_mesh->surface_get_arrays(surface_i)); } gltf_mesh->set_mesh(import_mesh); GLTFMeshIndex mesh_i = state->meshes.size(); state->meshes.push_back(gltf_mesh); gltf_node->mesh = mesh_i; gltf_node->xform = csg->get_meshes()[0]; gltf_node->set_name(_gen_unique_name(state, csg->get_name())); } #endif // MODULE_CSG_ENABLED void GLTFDocument::_create_gltf_node(Ref state, Node *p_scene_parent, GLTFNodeIndex current_node_i, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_gltf_node, Ref gltf_node) { state->scene_nodes.insert(current_node_i, p_scene_parent); state->nodes.push_back(gltf_node); ERR_FAIL_COND(current_node_i == p_parent_node_index); state->nodes.write[current_node_i]->parent = p_parent_node_index; if (p_parent_node_index == -1) { return; } state->nodes.write[p_parent_node_index]->children.push_back(current_node_i); } void GLTFDocument::_convert_animation_player_to_gltf(AnimationPlayer *animation_player, Ref state, GLTFNodeIndex p_gltf_current, GLTFNodeIndex p_gltf_root_index, Ref p_gltf_node, Node *p_scene_parent) { ERR_FAIL_COND(!animation_player); state->animation_players.push_back(animation_player); print_verbose(String("glTF: Converting animation player: ") + animation_player->get_name()); } void GLTFDocument::_check_visibility(Node *p_node, bool &retflag) { retflag = true; Spatial *spatial = Object::cast_to(p_node); Node2D *node_2d = Object::cast_to(p_node); if (node_2d && !node_2d->is_visible()) { return; } if (spatial && !spatial->is_visible()) { return; } retflag = false; } void GLTFDocument::_convert_camera_to_gltf(Camera *camera, Ref state, Ref gltf_node) { ERR_FAIL_COND(!camera); GLTFCameraIndex camera_index = _convert_camera(state, camera); if (camera_index != -1) { gltf_node->camera = camera_index; } } void GLTFDocument::_convert_light_to_gltf(Light *light, Ref state, Ref gltf_node) { ERR_FAIL_COND(!light); GLTFLightIndex light_index = _convert_light(state, light); if (light_index != -1) { gltf_node->light = light_index; } } #ifdef MODULE_GRIDMAP_ENABLED void GLTFDocument::_convert_grid_map_to_gltf(GridMap *p_grid_map, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_node_index, Ref gltf_node, Ref state) { Array cells = p_grid_map->get_used_cells(); for (int32_t k = 0; k < cells.size(); k++) { GLTFNode *new_gltf_node = memnew(GLTFNode); gltf_node->children.push_back(state->nodes.size()); state->nodes.push_back(new_gltf_node); Vector3 cell_location = cells[k]; int32_t cell = p_grid_map->get_cell_item( Vector3(cell_location.x, cell_location.y, cell_location.z)); MeshInstance *import_mesh_node = memnew(MeshInstance); import_mesh_node->set_mesh(p_grid_map->get_mesh_library()->get_item_mesh(cell)); Transform cell_xform; cell_xform.basis.set_orthogonal_index( p_grid_map->get_cell_item_orientation( Vector3(cell_location.x, cell_location.y, cell_location.z))); cell_xform.basis.scale(Vector3(p_grid_map->get_cell_scale(), p_grid_map->get_cell_scale(), p_grid_map->get_cell_scale())); cell_xform.set_origin(p_grid_map->map_to_world( Vector3(cell_location.x, cell_location.y, cell_location.z))); Ref gltf_mesh; gltf_mesh.instance(); gltf_mesh = import_mesh_node; new_gltf_node->mesh = state->meshes.size(); state->meshes.push_back(gltf_mesh); new_gltf_node->xform = cell_xform * p_grid_map->get_transform(); new_gltf_node->set_name(_gen_unique_name(state, p_grid_map->get_mesh_library()->get_item_name(cell))); } } #endif // MODULE_GRIDMAP_ENABLED void GLTFDocument::_convert_mult_mesh_instance_to_gltf(MultiMeshInstance *p_multi_mesh_instance, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_node_index, Ref gltf_node, Ref state) { Ref multi_mesh = p_multi_mesh_instance->get_multimesh(); if (multi_mesh.is_valid()) { for (int32_t instance_i = 0; instance_i < multi_mesh->get_instance_count(); instance_i++) { GLTFNode *new_gltf_node = memnew(GLTFNode); Transform transform; if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_2D) { Transform2D xform_2d = multi_mesh->get_instance_transform_2d(instance_i); transform.origin = Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y); real_t rotation = xform_2d.get_rotation(); Quat quat(Vector3(0, 1, 0), rotation); Size2 scale = xform_2d.get_scale(); transform.basis.set_quat_scale(quat, Vector3(scale.x, 0, scale.y)); transform = p_multi_mesh_instance->get_transform() * transform; } else if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_3D) { transform = p_multi_mesh_instance->get_transform() * multi_mesh->get_instance_transform(instance_i); } Ref mm = multi_mesh->get_mesh(); if (mm.is_valid()) { Ref mesh; mesh.instance(); for (int32_t surface_i = 0; surface_i < mm->get_surface_count(); surface_i++) { Array surface = mm->surface_get_arrays(surface_i); mesh->add_surface_from_arrays(mm->surface_get_primitive_type(surface_i), surface); } Ref gltf_mesh; gltf_mesh.instance(); gltf_mesh->set_name(multi_mesh->get_name()); gltf_mesh->set_mesh(mesh); new_gltf_node->mesh = state->meshes.size(); state->meshes.push_back(gltf_mesh); } new_gltf_node->xform = transform; new_gltf_node->set_name(_gen_unique_name(state, p_multi_mesh_instance->get_name())); gltf_node->children.push_back(state->nodes.size()); state->nodes.push_back(new_gltf_node); } } } void GLTFDocument::_convert_skeleton_to_gltf(Skeleton *p_skeleton3d, Ref state, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_node_index, Ref gltf_node) { Skeleton *skeleton = p_skeleton3d; Ref gltf_skeleton; gltf_skeleton.instance(); // GLTFSkeleton is only used to hold internal state data. It will not be written to the document. // gltf_skeleton->godot_skeleton = skeleton; GLTFSkeletonIndex skeleton_i = state->skeletons.size(); state->skeleton3d_to_gltf_skeleton[skeleton->get_instance_id()] = skeleton_i; state->skeletons.push_back(gltf_skeleton); BoneId bone_count = skeleton->get_bone_count(); for (BoneId bone_i = 0; bone_i < bone_count; bone_i++) { Ref joint_node; joint_node.instance(); // Note that we cannot use _gen_unique_bone_name here, because glTF spec requires all node // names to be unique regardless of whether or not they are used as joints. joint_node->set_name(_gen_unique_name(state, skeleton->get_bone_name(bone_i))); Transform xform = skeleton->get_bone_rest(bone_i) * skeleton->get_bone_pose(bone_i); joint_node->scale = xform.basis.get_scale(); joint_node->rotation = xform.basis.get_rotation_quat(); joint_node->translation = xform.origin; joint_node->joint = true; GLTFNodeIndex current_node_i = state->nodes.size(); state->scene_nodes.insert(current_node_i, skeleton); state->nodes.push_back(joint_node); gltf_skeleton->joints.push_back(current_node_i); if (skeleton->get_bone_parent(bone_i) == -1) { gltf_skeleton->roots.push_back(current_node_i); } gltf_skeleton->godot_bone_node.insert(bone_i, current_node_i); } for (BoneId bone_i = 0; bone_i < bone_count; bone_i++) { GLTFNodeIndex current_node_i = gltf_skeleton->godot_bone_node[bone_i]; BoneId parent_bone_id = skeleton->get_bone_parent(bone_i); if (parent_bone_id == -1) { if (p_parent_node_index != -1) { state->nodes.write[current_node_i]->parent = p_parent_node_index; state->nodes.write[p_parent_node_index]->children.push_back(current_node_i); } } else { GLTFNodeIndex parent_node_i = gltf_skeleton->godot_bone_node[parent_bone_id]; state->nodes.write[current_node_i]->parent = parent_node_i; state->nodes.write[parent_node_i]->children.push_back(current_node_i); } } // Remove placeholder skeleton3d node by not creating the gltf node // Skins are per mesh for (int node_i = 0; node_i < skeleton->get_child_count(); node_i++) { _convert_scene_node(state, skeleton->get_child(node_i), p_parent_node_index, p_root_node_index); } } void GLTFDocument::_convert_bone_attachment_to_gltf(BoneAttachment *p_bone_attachment, Ref state, GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_node_index, Ref gltf_node) { Skeleton *skeleton; // Note that relative transforms to external skeletons and pose overrides are not supported. skeleton = cast_to(p_bone_attachment->get_parent()); GLTFSkeletonIndex skel_gltf_i = -1; if (skeleton != nullptr && state->skeleton3d_to_gltf_skeleton.has(skeleton->get_instance_id())) { skel_gltf_i = state->skeleton3d_to_gltf_skeleton[skeleton->get_instance_id()]; } int bone_idx = -1; if (skeleton != nullptr) { bone_idx = skeleton->find_bone(p_bone_attachment->get_bone_name()); } GLTFNodeIndex par_node_index = p_parent_node_index; if (skeleton != nullptr && bone_idx != -1 && skel_gltf_i != -1) { Ref gltf_skeleton = state->skeletons.write[skel_gltf_i]; gltf_skeleton->bone_attachments.push_back(p_bone_attachment); par_node_index = gltf_skeleton->joints[bone_idx]; } for (int node_i = 0; node_i < p_bone_attachment->get_child_count(); node_i++) { _convert_scene_node(state, p_bone_attachment->get_child(node_i), par_node_index, p_root_node_index); } } void GLTFDocument::_convert_mesh_instance_to_gltf(MeshInstance *p_scene_parent, Ref state, Ref gltf_node) { GLTFMeshIndex gltf_mesh_index = _convert_mesh_to_gltf(state, p_scene_parent); if (gltf_mesh_index != -1) { gltf_node->mesh = gltf_mesh_index; } } void GLTFDocument::_generate_scene_node(Ref state, Node *scene_parent, Spatial *scene_root, const GLTFNodeIndex node_index) { Ref gltf_node = state->nodes[node_index]; if (gltf_node->skeleton >= 0) { _generate_skeleton_bone_node(state, scene_parent, scene_root, node_index); return; } Spatial *current_node = nullptr; // Is our parent a skeleton Skeleton *active_skeleton = Object::cast_to(scene_parent); const bool non_bone_parented_to_skeleton = active_skeleton; // If we have an active skeleton, and the node is node skinned, we need to create a bone attachment if (non_bone_parented_to_skeleton && gltf_node->skin < 0) { // Bone Attachment - Parent Case BoneAttachment *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, gltf_node->parent); scene_parent->add_child(bone_attachment); bone_attachment->set_owner(scene_root); // There is no gltf_node that represent this, so just directly create a unique name bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment")); // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node // and attach it to the bone_attachment scene_parent = bone_attachment; } if (gltf_node->mesh >= 0) { current_node = _generate_mesh_instance(state, scene_parent, node_index); } else if (gltf_node->camera >= 0) { current_node = _generate_camera(state, scene_parent, node_index); } else if (gltf_node->light >= 0) { current_node = _generate_light(state, scene_parent, node_index); } // We still have not managed to make a node. if (!current_node) { current_node = _generate_spatial(state, scene_parent, node_index); } scene_parent->add_child(current_node); if (current_node != scene_root) { current_node->set_owner(scene_root); } current_node->set_transform(gltf_node->xform); current_node->set_name(gltf_node->get_name()); state->scene_nodes.insert(node_index, current_node); for (int i = 0; i < gltf_node->children.size(); ++i) { _generate_scene_node(state, current_node, scene_root, gltf_node->children[i]); } } void GLTFDocument::_generate_skeleton_bone_node(Ref state, Node *scene_parent, Spatial *scene_root, const GLTFNodeIndex node_index) { Ref gltf_node = state->nodes[node_index]; Spatial *current_node = nullptr; Skeleton *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton; // In this case, this node is already a bone in skeleton. const bool is_skinned_mesh = (gltf_node->skin >= 0 && gltf_node->mesh >= 0); const bool requires_extra_node = (gltf_node->mesh >= 0 || gltf_node->camera >= 0 || gltf_node->light >= 0); Skeleton *active_skeleton = Object::cast_to(scene_parent); if (active_skeleton != skeleton) { if (active_skeleton) { // Bone Attachment - Direct Parented Skeleton Case BoneAttachment *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, gltf_node->parent); scene_parent->add_child(bone_attachment); bone_attachment->set_owner(scene_root); // There is no gltf_node that represent this, so just directly create a unique name bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment")); // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node // and attach it to the bone_attachment scene_parent = bone_attachment; WARN_PRINT(vformat("glTF: Generating scene detected direct parented Skeletons at node %d", node_index)); } // Add it to the scene if it has not already been added if (skeleton->get_parent() == nullptr) { scene_parent->add_child(skeleton); skeleton->set_owner(scene_root); } } active_skeleton = skeleton; current_node = skeleton; if (requires_extra_node) { // skinned meshes must not be placed in a bone attachment. if (!is_skinned_mesh) { // Bone Attachment - Same Node Case BoneAttachment *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, node_index); scene_parent->add_child(bone_attachment); bone_attachment->set_owner(scene_root); // There is no gltf_node that represent this, so just directly create a unique name bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment")); // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node // and attach it to the bone_attachment scene_parent = bone_attachment; } // We still have not managed to make a node if (gltf_node->mesh >= 0) { current_node = _generate_mesh_instance(state, scene_parent, node_index); } else if (gltf_node->camera >= 0) { current_node = _generate_camera(state, scene_parent, node_index); } else if (gltf_node->light >= 0) { current_node = _generate_light(state, scene_parent, node_index); } scene_parent->add_child(current_node); if (current_node != scene_root) { current_node->set_owner(scene_root); } // Do not set transform here. Transform is already applied to our bone. if (state->use_legacy_names) { current_node->set_name(_legacy_validate_node_name(gltf_node->get_name())); } else { current_node->set_name(gltf_node->get_name()); } } state->scene_nodes.insert(node_index, current_node); for (int i = 0; i < gltf_node->children.size(); ++i) { _generate_scene_node(state, active_skeleton, scene_root, gltf_node->children[i]); } } template struct EditorSceneImporterGLTFInterpolate { T lerp(const T &a, const T &b, float c) const { return a + (b - a) * c; } T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) { const float t2 = t * t; const float t3 = t2 * t; return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); } T bezier(T start, T control_1, T control_2, T end, float t) { /* Formula from Wikipedia article on Bezier curves. */ const real_t omt = (1.0 - t); const real_t omt2 = omt * omt; const real_t omt3 = omt2 * omt; const real_t t2 = t * t; const real_t t3 = t2 * t; return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; } }; // thank you for existing, partial specialization template <> struct EditorSceneImporterGLTFInterpolate { Quat lerp(const Quat &a, const Quat &b, const float c) const { ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quat(), "The quaternion \"a\" must be normalized."); ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quat(), "The quaternion \"b\" must be normalized."); return a.slerp(b, c).normalized(); } Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, const float c) { ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quat(), "The quaternion \"p1\" must be normalized."); ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quat(), "The quaternion \"p2\" must be normalized."); return p1.slerp(p2, c).normalized(); } Quat bezier(const Quat start, const Quat control_1, const Quat control_2, const Quat end, const float t) { ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quat(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quat(), "The end quaternion must be normalized."); return start.slerp(end, t).normalized(); } }; template T GLTFDocument::_interpolate_track(const Vector &p_times, const Vector &p_values, const float p_time, const GLTFAnimation::Interpolation p_interp) { ERR_FAIL_COND_V(!p_values.size(), T()); if (p_times.size() != (p_values.size() / (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE ? 3 : 1))) { ERR_PRINT_ONCE("The interpolated values are not corresponding to its times."); return p_values[0]; } //could use binary search, worth it? int idx = -1; for (int i = 0; i < p_times.size(); i++) { if (p_times[i] > p_time) { break; } idx++; } EditorSceneImporterGLTFInterpolate interp; switch (p_interp) { case GLTFAnimation::INTERP_LINEAR: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.lerp(p_values[idx], p_values[idx + 1], c); } break; case GLTFAnimation::INTERP_STEP: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } return p_values[idx]; } break; case GLTFAnimation::INTERP_CATMULLROMSPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[1 + p_times.size() - 1]; } const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c); } break; case GLTFAnimation::INTERP_CUBIC_SPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[(p_times.size() - 1) * 3 + 1]; } const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); const T from = p_values[idx * 3 + 1]; const T c1 = from + p_values[idx * 3 + 2]; const T to = p_values[idx * 3 + 4]; const T c2 = to + p_values[idx * 3 + 3]; return interp.bezier(from, c1, c2, to, c); } break; } ERR_FAIL_V(p_values[0]); } void GLTFDocument::_import_animation(Ref state, AnimationPlayer *ap, const GLTFAnimationIndex index, const int bake_fps) { Ref anim = state->animations[index]; String name = anim->get_name(); if (name.empty()) { // No node represent these, and they are not in the hierarchy, so just make a unique name name = _gen_unique_name(state, "Animation"); } Ref animation; animation.instance(); animation->set_name(name); if (anim->get_loop()) { animation->set_loop(true); } float length = 0.0; for (Map::Element *track_i = anim->get_tracks().front(); track_i; track_i = track_i->next()) { const GLTFAnimation::Track &track = track_i->get(); //need to find the path: for skeletons, weight tracks will affect the mesh NodePath node_path; //for skeletons, transform tracks always affect bones NodePath transform_node_path; GLTFNodeIndex node_index = track_i->key(); const Ref gltf_node = state->nodes[track_i->key()]; Node *root = ap->get_parent(); ERR_FAIL_COND(root == nullptr); Map::Element *node_element = state->scene_nodes.find(node_index); ERR_CONTINUE_MSG(node_element == nullptr, vformat("Unable to find node %d for animation", node_index)); node_path = root->get_path_to(node_element->get()); if (gltf_node->skeleton >= 0) { const Skeleton *sk = state->skeletons[gltf_node->skeleton]->godot_skeleton; ERR_FAIL_COND(sk == nullptr); const String path = ap->get_parent()->get_path_to(sk); const String bone = gltf_node->get_name(); transform_node_path = path + ":" + bone; } else { transform_node_path = node_path; } for (int i = 0; i < track.rotation_track.times.size(); i++) { length = MAX(length, track.rotation_track.times[i]); } for (int i = 0; i < track.translation_track.times.size(); i++) { length = MAX(length, track.translation_track.times[i]); } for (int i = 0; i < track.scale_track.times.size(); i++) { length = MAX(length, track.scale_track.times[i]); } for (int i = 0; i < track.weight_tracks.size(); i++) { for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { length = MAX(length, track.weight_tracks[i].times[j]); } } // Animated TRS properties will not affect a skinned mesh. const bool transform_affects_skinned_mesh_instance = gltf_node->skeleton < 0 && gltf_node->skin >= 0; if ((track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) && !transform_affects_skinned_mesh_instance) { //make transform track int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_TRANSFORM); animation->track_set_path(track_idx, transform_node_path); //first determine animation length const double increment = 1.0 / bake_fps; double time = 0.0; Vector3 base_pos; Quat base_rot; Vector3 base_scale = Vector3(1, 1, 1); if (!track.rotation_track.values.size()) { base_rot = state->nodes[track_i->key()]->rotation.normalized(); } if (!track.translation_track.values.size()) { base_pos = state->nodes[track_i->key()]->translation; } if (!track.scale_track.values.size()) { base_scale = state->nodes[track_i->key()]->scale; } bool last = false; while (true) { Vector3 pos = base_pos; Quat rot = base_rot; Vector3 scale = base_scale; if (track.translation_track.times.size()) { pos = _interpolate_track(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation); } if (track.rotation_track.times.size()) { rot = _interpolate_track(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation); } if (track.scale_track.times.size()) { scale = _interpolate_track(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation); } if (gltf_node->skeleton >= 0) { Transform xform; xform.basis.set_quat_scale(rot, scale); xform.origin = pos; const Skeleton *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton; const int bone_idx = skeleton->find_bone(gltf_node->get_name()); xform = skeleton->get_bone_rest(bone_idx).affine_inverse() * xform; rot = xform.basis.get_rotation_quat(); rot.normalize(); scale = xform.basis.get_scale(); pos = xform.origin; } animation->transform_track_insert_key(track_idx, time, pos, rot, scale); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } } for (int i = 0; i < track.weight_tracks.size(); i++) { ERR_CONTINUE(gltf_node->mesh < 0 || gltf_node->mesh >= state->meshes.size()); Ref mesh = state->meshes[gltf_node->mesh]; ERR_CONTINUE(mesh.is_null()); ERR_CONTINUE(mesh->get_mesh().is_null()); const String prop = "blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i); const String blend_path = String(node_path) + ":" + prop; const int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_VALUE); animation->track_set_path(track_idx, blend_path); // Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation, // the other modes have to be baked. GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation; if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) { animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR); for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { const float t = track.weight_tracks[i].times[j]; const float attribs = track.weight_tracks[i].values[j]; animation->track_insert_key(track_idx, t, attribs); } } else { // CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies. const double increment = 1.0 / bake_fps; double time = 0.0; bool last = false; while (true) { _interpolate_track(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } } } } animation->set_length(length); ap->add_animation(name, animation); } void GLTFDocument::_convert_mesh_instances(Ref state) { for (GLTFNodeIndex mi_node_i = 0; mi_node_i < state->nodes.size(); ++mi_node_i) { Ref node = state->nodes[mi_node_i]; if (node->mesh < 0) { continue; } Map::Element *mi_element = state->scene_nodes.find(mi_node_i); if (!mi_element) { continue; } MeshInstance *mi = Object::cast_to(mi_element->get()); ERR_CONTINUE(!mi); Transform mi_xform = mi->get_transform(); node->scale = mi_xform.basis.get_scale(); node->rotation = mi_xform.basis.get_rotation_quat(); node->translation = mi_xform.origin; Skeleton *skeleton = Object::cast_to(mi->get_node(mi->get_skeleton_path())); if (!skeleton) { continue; } if (!skeleton->get_bone_count()) { continue; } Ref skin = mi->get_skin(); Ref gltf_skin; gltf_skin.instance(); Array json_joints; NodePath skeleton_path = mi->get_skeleton_path(); Node *skel_node = mi->get_node_or_null(skeleton_path); Skeleton *godot_skeleton = nullptr; if (skel_node != nullptr) { godot_skeleton = cast_to(skel_node); } if (godot_skeleton != nullptr && state->skeleton3d_to_gltf_skeleton.has(godot_skeleton->get_instance_id())) { // This is a skinned mesh. If the mesh has no ARRAY_WEIGHTS or ARRAY_BONES, it will be invisible. const GLTFSkeletonIndex skeleton_gltf_i = state->skeleton3d_to_gltf_skeleton[godot_skeleton->get_instance_id()]; Ref gltf_skeleton = state->skeletons[skeleton_gltf_i]; int bone_cnt = skeleton->get_bone_count(); ERR_FAIL_COND(bone_cnt != gltf_skeleton->joints.size()); ObjectID gltf_skin_key = skin->get_instance_id(); ObjectID gltf_skel_key = godot_skeleton->get_instance_id(); GLTFSkinIndex skin_gltf_i = -1; GLTFNodeIndex root_gltf_i = -1; if (!gltf_skeleton->roots.empty()) { root_gltf_i = gltf_skeleton->roots[0]; } if (state->skin_and_skeleton3d_to_gltf_skin.has(gltf_skin_key) && state->skin_and_skeleton3d_to_gltf_skin[gltf_skin_key].has(gltf_skel_key)) { skin_gltf_i = state->skin_and_skeleton3d_to_gltf_skin[gltf_skin_key][gltf_skel_key]; } else { if (skin.is_null()) { // Note that gltf_skin_key should remain null, so these can share a reference. skin = skeleton->register_skin(nullptr)->get_skin(); } gltf_skin.instance(); gltf_skin->godot_skin = skin; gltf_skin->set_name(skin->get_name()); gltf_skin->skeleton = skeleton_gltf_i; gltf_skin->skin_root = root_gltf_i; //gltf_state->godot_to_gltf_node[skel_node] HashMap bone_name_to_idx; for (int bone_i = 0; bone_i < bone_cnt; bone_i++) { bone_name_to_idx[skeleton->get_bone_name(bone_i)] = bone_i; } for (int bind_i = 0, cnt = skin->get_bind_count(); bind_i < cnt; bind_i++) { int bone_i = skin->get_bind_bone(bind_i); Transform bind_pose = skin->get_bind_pose(bind_i); StringName bind_name = skin->get_bind_name(bind_i); if (bind_name != StringName()) { bone_i = bone_name_to_idx[bind_name]; } ERR_CONTINUE(bone_i < 0 || bone_i >= bone_cnt); if (bind_name == StringName()) { bind_name = skeleton->get_bone_name(bone_i); } GLTFNodeIndex skeleton_bone_i = gltf_skeleton->joints[bone_i]; gltf_skin->joints_original.push_back(skeleton_bone_i); gltf_skin->joints.push_back(skeleton_bone_i); gltf_skin->inverse_binds.push_back(bind_pose); if (skeleton->get_bone_parent(bone_i) == -1) { gltf_skin->roots.push_back(skeleton_bone_i); } gltf_skin->joint_i_to_bone_i[bind_i] = bone_i; gltf_skin->joint_i_to_name[bind_i] = bind_name; } skin_gltf_i = state->skins.size(); state->skins.push_back(gltf_skin); state->skin_and_skeleton3d_to_gltf_skin[gltf_skin_key][gltf_skel_key] = skin_gltf_i; } node->skin = skin_gltf_i; node->skeleton = skeleton_gltf_i; } } } float GLTFDocument::solve_metallic(float p_dielectric_specular, float diffuse, float specular, float p_one_minus_specular_strength) { if (specular <= p_dielectric_specular) { return 0.0f; } const float a = p_dielectric_specular; const float b = diffuse * p_one_minus_specular_strength / (1.0f - p_dielectric_specular) + specular - 2.0f * p_dielectric_specular; const float c = p_dielectric_specular - specular; const float D = b * b - 4.0f * a * c; return CLAMP((-b + Math::sqrt(D)) / (2.0f * a), 0.0f, 1.0f); } float GLTFDocument::get_perceived_brightness(const Color p_color) { const Color coeff = Color(R_BRIGHTNESS_COEFF, G_BRIGHTNESS_COEFF, B_BRIGHTNESS_COEFF); const Color value = coeff * (p_color * p_color); const float r = value.r; const float g = value.g; const float b = value.b; return Math::sqrt(r + g + b); } float GLTFDocument::get_max_component(const Color &p_color) { const float r = p_color.r; const float g = p_color.g; const float b = p_color.b; return MAX(MAX(r, g), b); } void GLTFDocument::_process_mesh_instances(Ref state, Node *scene_root) { for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) { Ref node = state->nodes[node_i]; if (node->skin >= 0 && node->mesh >= 0) { const GLTFSkinIndex skin_i = node->skin; Map::Element *mi_element = state->scene_nodes.find(node_i); ERR_CONTINUE_MSG(mi_element == nullptr, vformat("Unable to find node %d", node_i)); MeshInstance *mi = Object::cast_to(mi_element->get()); ERR_CONTINUE_MSG(mi == nullptr, vformat("Unable to cast node %d of type %s to MeshInstance", node_i, mi_element->get()->get_class_name())); const GLTFSkeletonIndex skel_i = state->skins.write[node->skin]->skeleton; Ref gltf_skeleton = state->skeletons.write[skel_i]; Skeleton *skeleton = gltf_skeleton->godot_skeleton; ERR_CONTINUE_MSG(skeleton == nullptr, vformat("Unable to find Skeleton for node %d skin %d", node_i, skin_i)); mi->get_parent()->remove_child(mi); skeleton->add_child(mi); mi->set_owner(skeleton->get_owner()); mi->set_skin(state->skins.write[skin_i]->godot_skin); mi->set_skeleton_path(mi->get_path_to(skeleton)); mi->set_transform(Transform()); } } } GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref state, GLTFAnimation::Track p_track, Ref p_animation, Transform p_bone_rest, int32_t p_track_i, GLTFNodeIndex p_node_i) { Animation::InterpolationType interpolation = p_animation->track_get_interpolation_type(p_track_i); GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR; if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) { gltf_interpolation = GLTFAnimation::INTERP_LINEAR; } else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) { gltf_interpolation = GLTFAnimation::INTERP_STEP; } else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) { gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE; } Animation::TrackType track_type = p_animation->track_get_type(p_track_i); int32_t key_count = p_animation->track_get_key_count(p_track_i); Vector times; times.resize(key_count); String path = p_animation->track_get_path(p_track_i); for (int32_t key_i = 0; key_i < key_count; key_i++) { times.write[key_i] = p_animation->track_get_key_time(p_track_i, key_i); } if (track_type == Animation::TYPE_TRANSFORM) { p_track.translation_track.times = times; p_track.translation_track.interpolation = gltf_interpolation; p_track.rotation_track.times = times; p_track.rotation_track.interpolation = gltf_interpolation; p_track.scale_track.times = times; p_track.scale_track.interpolation = gltf_interpolation; p_track.scale_track.values.resize(key_count); p_track.scale_track.interpolation = gltf_interpolation; p_track.translation_track.values.resize(key_count); p_track.translation_track.interpolation = gltf_interpolation; p_track.rotation_track.values.resize(key_count); p_track.rotation_track.interpolation = gltf_interpolation; for (int32_t key_i = 0; key_i < key_count; key_i++) { Vector3 translation; Quat rotation; Vector3 scale; Error err = p_animation->transform_track_get_key(p_track_i, key_i, &translation, &rotation, &scale); ERR_CONTINUE(err != OK); Transform xform; xform.basis.set_quat_scale(rotation, scale); xform.origin = translation; xform = p_bone_rest * xform; p_track.translation_track.values.write[key_i] = xform.get_origin(); p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat(); p_track.scale_track.values.write[key_i] = xform.basis.get_scale(); } } else if (path.find(":transform") != -1) { p_track.translation_track.times = times; p_track.translation_track.interpolation = gltf_interpolation; p_track.rotation_track.times = times; p_track.rotation_track.interpolation = gltf_interpolation; p_track.scale_track.times = times; p_track.scale_track.interpolation = gltf_interpolation; p_track.scale_track.values.resize(key_count); p_track.scale_track.interpolation = gltf_interpolation; p_track.translation_track.values.resize(key_count); p_track.translation_track.interpolation = gltf_interpolation; p_track.rotation_track.values.resize(key_count); p_track.rotation_track.interpolation = gltf_interpolation; for (int32_t key_i = 0; key_i < key_count; key_i++) { Transform xform = p_animation->track_get_key_value(p_track_i, key_i); p_track.translation_track.values.write[key_i] = xform.get_origin(); p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quat(); p_track.scale_track.values.write[key_i] = xform.basis.get_scale(); } } else if (track_type == Animation::TYPE_VALUE) { if (path.find("/rotation_quat") != -1) { p_track.rotation_track.times = times; p_track.rotation_track.interpolation = gltf_interpolation; p_track.rotation_track.values.resize(key_count); p_track.rotation_track.interpolation = gltf_interpolation; for (int32_t key_i = 0; key_i < key_count; key_i++) { Quat rotation_track = p_animation->track_get_key_value(p_track_i, key_i); p_track.rotation_track.values.write[key_i] = rotation_track; } } else if (path.find(":translation") != -1) { p_track.translation_track.times = times; p_track.translation_track.interpolation = gltf_interpolation; p_track.translation_track.values.resize(key_count); p_track.translation_track.interpolation = gltf_interpolation; for (int32_t key_i = 0; key_i < key_count; key_i++) { Vector3 translation = p_animation->track_get_key_value(p_track_i, key_i); p_track.translation_track.values.write[key_i] = translation; } } else if (path.find(":rotation_degrees") != -1) { p_track.rotation_track.times = times; p_track.rotation_track.interpolation = gltf_interpolation; p_track.rotation_track.values.resize(key_count); p_track.rotation_track.interpolation = gltf_interpolation; for (int32_t key_i = 0; key_i < key_count; key_i++) { Vector3 rotation_degrees = p_animation->track_get_key_value(p_track_i, key_i); Vector3 rotation_radian; rotation_radian.x = Math::deg2rad(rotation_degrees.x); rotation_radian.y = Math::deg2rad(rotation_degrees.y); rotation_radian.z = Math::deg2rad(rotation_degrees.z); p_track.rotation_track.values.write[key_i] = Quat(rotation_radian); } } else if (path.find(":scale") != -1) { p_track.scale_track.times = times; p_track.scale_track.interpolation = gltf_interpolation; p_track.scale_track.values.resize(key_count); p_track.scale_track.interpolation = gltf_interpolation; for (int32_t key_i = 0; key_i < key_count; key_i++) { Vector3 scale_track = p_animation->track_get_key_value(p_track_i, key_i); p_track.scale_track.values.write[key_i] = scale_track; } } } else if (track_type == Animation::TYPE_BEZIER) { if (path.find("/scale") != -1) { const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS; if (!p_track.scale_track.times.size()) { Vector new_times; new_times.resize(keys); for (int32_t key_i = 0; key_i < keys; key_i++) { new_times.write[key_i] = key_i / BAKE_FPS; } p_track.scale_track.times = new_times; p_track.scale_track.interpolation = gltf_interpolation; p_track.scale_track.values.resize(keys); for (int32_t key_i = 0; key_i < keys; key_i++) { p_track.scale_track.values.write[key_i] = Vector3(1.0f, 1.0f, 1.0f); } p_track.scale_track.interpolation = gltf_interpolation; } for (int32_t key_i = 0; key_i < keys; key_i++) { Vector3 bezier_track = p_track.scale_track.values[key_i]; if (path.find("/scale:x") != -1) { bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); bezier_track.x = p_bone_rest.affine_inverse().basis.get_scale().x * bezier_track.x; } else if (path.find("/scale:y") != -1) { bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); bezier_track.y = p_bone_rest.affine_inverse().basis.get_scale().y * bezier_track.y; } else if (path.find("/scale:z") != -1) { bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); bezier_track.z = p_bone_rest.affine_inverse().basis.get_scale().z * bezier_track.z; } p_track.scale_track.values.write[key_i] = bezier_track; } } else if (path.find("/translation") != -1) { const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS; if (!p_track.translation_track.times.size()) { Vector new_times; new_times.resize(keys); for (int32_t key_i = 0; key_i < keys; key_i++) { new_times.write[key_i] = key_i / BAKE_FPS; } p_track.translation_track.times = new_times; p_track.translation_track.interpolation = gltf_interpolation; p_track.translation_track.values.resize(keys); p_track.translation_track.interpolation = gltf_interpolation; } for (int32_t key_i = 0; key_i < keys; key_i++) { Vector3 bezier_track = p_track.translation_track.values[key_i]; if (path.find("/translation:x") != -1) { bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); bezier_track.x = p_bone_rest.affine_inverse().origin.x * bezier_track.x; } else if (path.find("/translation:y") != -1) { bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); bezier_track.y = p_bone_rest.affine_inverse().origin.y * bezier_track.y; } else if (path.find("/translation:z") != -1) { bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS); bezier_track.z = p_bone_rest.affine_inverse().origin.z * bezier_track.z; } p_track.translation_track.values.write[key_i] = bezier_track; } } } return p_track; } void GLTFDocument::_convert_animation(Ref state, AnimationPlayer *ap, String p_animation_track_name) { Ref animation = ap->get_animation(p_animation_track_name); Ref gltf_animation; gltf_animation.instance(); gltf_animation->set_name(_gen_unique_name(state, p_animation_track_name)); for (int32_t track_i = 0; track_i < animation->get_track_count(); track_i++) { if (!animation->track_is_enabled(track_i)) { continue; } String orig_track_path = animation->track_get_path(track_i); if (String(orig_track_path).find(":translation") != -1) { const Vector node_suffix = String(orig_track_path).split(":translation"); const NodePath path = node_suffix[0]; const Node *node = ap->get_parent()->get_node_or_null(path); for (Map::Element *translation_scene_node_i = state->scene_nodes.front(); translation_scene_node_i; translation_scene_node_i = translation_scene_node_i->next()) { if (translation_scene_node_i->get() == node) { GLTFNodeIndex node_index = translation_scene_node_i->key(); Map::Element *translation_track_i = gltf_animation->get_tracks().find(node_index); GLTFAnimation::Track track; if (translation_track_i) { track = translation_track_i->get(); } track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); gltf_animation->get_tracks().insert(node_index, track); } } } else if (String(orig_track_path).find(":rotation_degrees") != -1) { const Vector node_suffix = String(orig_track_path).split(":rotation_degrees"); const NodePath path = node_suffix[0]; const Node *node = ap->get_parent()->get_node_or_null(path); for (Map::Element *rotation_degree_scene_node_i = state->scene_nodes.front(); rotation_degree_scene_node_i; rotation_degree_scene_node_i = rotation_degree_scene_node_i->next()) { if (rotation_degree_scene_node_i->get() == node) { GLTFNodeIndex node_index = rotation_degree_scene_node_i->key(); Map::Element *rotation_degree_track_i = gltf_animation->get_tracks().find(node_index); GLTFAnimation::Track track; if (rotation_degree_track_i) { track = rotation_degree_track_i->get(); } track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); gltf_animation->get_tracks().insert(node_index, track); } } } else if (String(orig_track_path).find(":scale") != -1) { const Vector node_suffix = String(orig_track_path).split(":scale"); const NodePath path = node_suffix[0]; const Node *node = ap->get_parent()->get_node_or_null(path); for (Map::Element *scale_scene_node_i = state->scene_nodes.front(); scale_scene_node_i; scale_scene_node_i = scale_scene_node_i->next()) { if (scale_scene_node_i->get() == node) { GLTFNodeIndex node_index = scale_scene_node_i->key(); Map::Element *scale_track_i = gltf_animation->get_tracks().find(node_index); GLTFAnimation::Track track; if (scale_track_i) { track = scale_track_i->get(); } track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); gltf_animation->get_tracks().insert(node_index, track); } } } else if (String(orig_track_path).find(":transform") != -1) { const Vector node_suffix = String(orig_track_path).split(":transform"); const NodePath path = node_suffix[0]; const Node *node = ap->get_parent()->get_node_or_null(path); for (Map::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) { if (transform_track_i->get() == node) { GLTFAnimation::Track track; track = _convert_animation_track(state, track, animation, Transform(), track_i, transform_track_i->key()); gltf_animation->get_tracks().insert(transform_track_i->key(), track); } } } else if (String(orig_track_path).find(":blend_shapes/") != -1) { const Vector node_suffix = String(orig_track_path).split(":blend_shapes/"); const NodePath path = node_suffix[0]; const String suffix = node_suffix[1]; Node *node = ap->get_parent()->get_node_or_null(path); MeshInstance *mi = cast_to(node); Ref mesh = mi->get_mesh(); ERR_CONTINUE(mesh.is_null()); int32_t mesh_index = -1; for (Map::Element *mesh_track_i = state->scene_nodes.front(); mesh_track_i; mesh_track_i = mesh_track_i->next()) { if (mesh_track_i->get() == node) { mesh_index = mesh_track_i->key(); } } ERR_CONTINUE(mesh_index == -1); Map &tracks = gltf_animation->get_tracks(); GLTFAnimation::Track track = gltf_animation->get_tracks().has(mesh_index) ? gltf_animation->get_tracks()[mesh_index] : GLTFAnimation::Track(); if (!tracks.has(mesh_index)) { for (int32_t shape_i = 0; shape_i < mesh->get_blend_shape_count(); shape_i++) { String shape_name = mesh->get_blend_shape_name(shape_i); NodePath shape_path = String(path) + ":blend_shapes/" + shape_name; int32_t shape_track_i = animation->find_track(shape_path); if (shape_track_i == -1) { GLTFAnimation::Channel weight; weight.interpolation = GLTFAnimation::INTERP_LINEAR; weight.times.push_back(0.0f); weight.times.push_back(0.0f); weight.values.push_back(0.0f); weight.values.push_back(0.0f); track.weight_tracks.push_back(weight); continue; } Animation::InterpolationType interpolation = animation->track_get_interpolation_type(track_i); GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR; if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) { gltf_interpolation = GLTFAnimation::INTERP_LINEAR; } else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) { gltf_interpolation = GLTFAnimation::INTERP_STEP; } else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) { gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE; } int32_t key_count = animation->track_get_key_count(shape_track_i); GLTFAnimation::Channel weight; weight.interpolation = gltf_interpolation; weight.times.resize(key_count); for (int32_t time_i = 0; time_i < key_count; time_i++) { weight.times.write[time_i] = animation->track_get_key_time(shape_track_i, time_i); } weight.values.resize(key_count); for (int32_t value_i = 0; value_i < key_count; value_i++) { weight.values.write[value_i] = animation->track_get_key_value(shape_track_i, value_i); } track.weight_tracks.push_back(weight); } tracks[mesh_index] = track; } } else if (String(orig_track_path).find(":") != -1) { //Process skeleton const Vector node_suffix = String(orig_track_path).split(":"); const String node = node_suffix[0]; const NodePath node_path = node; const String suffix = node_suffix[1]; Node *godot_node = ap->get_parent()->get_node_or_null(node_path); Skeleton *skeleton = nullptr; GLTFSkeletonIndex skeleton_gltf_i = -1; for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) { if (state->skeletons[skeleton_i]->godot_skeleton == cast_to(godot_node)) { skeleton = state->skeletons[skeleton_i]->godot_skeleton; skeleton_gltf_i = skeleton_i; ERR_CONTINUE(!skeleton); Ref skeleton_gltf = state->skeletons[skeleton_gltf_i]; int32_t bone = skeleton->find_bone(suffix); ERR_CONTINUE(bone == -1); Transform xform = skeleton->get_bone_rest(bone); if (!skeleton_gltf->godot_bone_node.has(bone)) { continue; } GLTFNodeIndex node_i = skeleton_gltf->godot_bone_node[bone]; Map::Element *property_track_i = gltf_animation->get_tracks().find(node_i); GLTFAnimation::Track track; if (property_track_i) { track = property_track_i->get(); } track = _convert_animation_track(state, track, animation, xform, track_i, node_i); gltf_animation->get_tracks()[node_i] = track; } } } else if (String(orig_track_path).find(":") == -1) { ERR_CONTINUE(!ap->get_parent()); for (int32_t node_i = 0; node_i < ap->get_parent()->get_child_count(); node_i++) { const Node *child = ap->get_parent()->get_child(node_i); const Node *node = child->get_node_or_null(orig_track_path); for (Map::Element *scene_node_i = state->scene_nodes.front(); scene_node_i; scene_node_i = scene_node_i->next()) { if (scene_node_i->get() == node) { GLTFNodeIndex node_index = scene_node_i->key(); Map::Element *node_track_i = gltf_animation->get_tracks().find(node_index); GLTFAnimation::Track track; if (node_track_i) { track = node_track_i->get(); } track = _convert_animation_track(state, track, animation, Transform(), track_i, node_index); gltf_animation->get_tracks().insert(node_index, track); break; } } } } } if (gltf_animation->get_tracks().size()) { state->animations.push_back(gltf_animation); } } Error GLTFDocument::parse(Ref state, String p_path, bool p_read_binary) { Error err; FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) { return err; } uint32_t magic = f->get_32(); if (magic == 0x46546C67) { //binary file //text file err = _parse_glb(p_path, state); if (err) { return FAILED; } } else { //text file err = _parse_json(p_path, state); if (err) { return FAILED; } } f->close(); // get file's name, use for scene name if none state->filename = p_path.get_file().get_slice(".", 0); ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED); Dictionary asset = state->json["asset"]; ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED); String version = asset["version"]; state->major_version = version.get_slice(".", 0).to_int(); state->minor_version = version.get_slice(".", 1).to_int(); /* STEP 0 PARSE SCENE */ err = _parse_scenes(state); if (err != OK) { return Error::FAILED; } /* STEP 1 PARSE NODES */ err = _parse_nodes(state); if (err != OK) { return Error::FAILED; } /* STEP 2 PARSE BUFFERS */ err = _parse_buffers(state, p_path.get_base_dir()); if (err != OK) { return Error::FAILED; } /* STEP 3 PARSE BUFFER VIEWS */ err = _parse_buffer_views(state); if (err != OK) { return Error::FAILED; } /* STEP 4 PARSE ACCESSORS */ err = _parse_accessors(state); if (err != OK) { return Error::FAILED; } /* STEP 5 PARSE IMAGES */ err = _parse_images(state, p_path.get_base_dir()); if (err != OK) { return Error::FAILED; } /* STEP 6 PARSE TEXTURES */ err = _parse_textures(state); if (err != OK) { return Error::FAILED; } /* STEP 7 PARSE TEXTURES */ err = _parse_materials(state); if (err != OK) { return Error::FAILED; } /* STEP 9 PARSE SKINS */ err = _parse_skins(state); if (err != OK) { return Error::FAILED; } /* STEP 10 DETERMINE SKELETONS */ err = _determine_skeletons(state); if (err != OK) { return Error::FAILED; } /* STEP 11 CREATE SKELETONS */ err = _create_skeletons(state); if (err != OK) { return Error::FAILED; } /* STEP 12 CREATE SKINS */ err = _create_skins(state); if (err != OK) { return Error::FAILED; } /* STEP 13 PARSE MESHES (we have enough info now) */ err = _parse_meshes(state); if (err != OK) { return Error::FAILED; } /* STEP 14 PARSE LIGHTS */ err = _parse_lights(state); if (err != OK) { return Error::FAILED; } /* STEP 15 PARSE CAMERAS */ err = _parse_cameras(state); if (err != OK) { return Error::FAILED; } /* STEP 16 PARSE ANIMATIONS */ err = _parse_animations(state); if (err != OK) { return Error::FAILED; } /* STEP 17 ASSIGN SCENE NAMES */ _assign_scene_names(state); return OK; } Dictionary GLTFDocument::_serialize_texture_transform_uv2(Ref p_material) { Dictionary extension; Ref mat = p_material; if (mat.is_valid()) { Dictionary texture_transform; Array offset; offset.resize(2); offset[0] = mat->get_uv2_offset().x; offset[1] = mat->get_uv2_offset().y; texture_transform["offset"] = offset; Array scale; scale.resize(2); scale[0] = mat->get_uv2_scale().x; scale[1] = mat->get_uv2_scale().y; texture_transform["scale"] = scale; // Godot doesn't support texture rotation extension["KHR_texture_transform"] = texture_transform; } return extension; } Dictionary GLTFDocument::_serialize_texture_transform_uv1(Ref p_material) { Dictionary extension; if (p_material.is_valid()) { Dictionary texture_transform; Array offset; offset.resize(2); offset[0] = p_material->get_uv1_offset().x; offset[1] = p_material->get_uv1_offset().y; texture_transform["offset"] = offset; Array scale; scale.resize(2); scale[0] = p_material->get_uv1_scale().x; scale[1] = p_material->get_uv1_scale().y; texture_transform["scale"] = scale; // Godot doesn't support texture rotation extension["KHR_texture_transform"] = texture_transform; } return extension; } Error GLTFDocument::_serialize_version(Ref state) { const String version = "2.0"; state->major_version = version.get_slice(".", 0).to_int(); state->minor_version = version.get_slice(".", 1).to_int(); Dictionary asset; asset["version"] = version; String hash = VERSION_HASH; asset["generator"] = String(VERSION_FULL_NAME) + String("@") + (hash.length() == 0 ? String("unknown") : hash); state->json["asset"] = asset; ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED); ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED); return OK; } Error GLTFDocument::_serialize_file(Ref state, const String p_path) { Error err = FAILED; if (p_path.to_lower().ends_with("glb")) { err = _encode_buffer_glb(state, p_path); ERR_FAIL_COND_V(err != OK, err); FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err); ERR_FAIL_COND_V(!f, FAILED); String json = JSON::print(state->json); const uint32_t magic = 0x46546C67; // GLTF const int32_t header_size = 12; const int32_t chunk_header_size = 8; CharString cs = json.utf8(); const uint32_t text_data_length = cs.length(); const uint32_t text_chunk_length = ((text_data_length + 3) & (~3)); const uint32_t text_chunk_type = 0x4E4F534A; //JSON uint32_t binary_data_length = 0; if (state->buffers.size()) { binary_data_length = state->buffers[0].size(); } const uint32_t binary_chunk_length = ((binary_data_length + 3) & (~3)); const uint32_t binary_chunk_type = 0x004E4942; //BIN f->create(FileAccess::ACCESS_RESOURCES); f->store_32(magic); f->store_32(state->major_version); // version f->store_32(header_size + chunk_header_size + text_chunk_length + chunk_header_size + binary_chunk_length); // length f->store_32(text_chunk_length); f->store_32(text_chunk_type); f->store_buffer((uint8_t *)&cs[0], cs.length()); for (uint32_t pad_i = text_data_length; pad_i < text_chunk_length; pad_i++) { f->store_8(' '); } if (binary_chunk_length) { f->store_32(binary_chunk_length); f->store_32(binary_chunk_type); f->store_buffer(state->buffers[0].ptr(), binary_data_length); } for (uint32_t pad_i = binary_data_length; pad_i < binary_chunk_length; pad_i++) { f->store_8(0); } f->close(); } else { err = _encode_buffer_bins(state, p_path); ERR_FAIL_COND_V(err != OK, err); FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err); ERR_FAIL_COND_V(!f, FAILED); f->create(FileAccess::ACCESS_RESOURCES); String json = JSON::print(state->json); f->store_string(json); f->close(); } return err; }