/**************************************************************************/
/*  renderer_scene_cull.cpp                                               */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#include "renderer_scene_cull.h"

#include "core/config/project_settings.h"
#include "core/object/worker_thread_pool.h"
#include "core/os/os.h"
#include "rendering_light_culler.h"
#include "rendering_server_default.h"

#include <new>

/* HALTON SEQUENCE */

#ifndef _3D_DISABLED
static float get_halton_value(int p_index, int p_base) {
	float f = 1;
	float r = 0;
	while (p_index > 0) {
		f = f / static_cast<float>(p_base);
		r = r + f * (p_index % p_base);
		p_index = p_index / p_base;
	}
	return r * 2.0f - 1.0f;
}
#endif // _3D_DISABLED

/* CAMERA API */

RID RendererSceneCull::camera_allocate() {
	return camera_owner.allocate_rid();
}
void RendererSceneCull::camera_initialize(RID p_rid) {
	camera_owner.initialize_rid(p_rid);
}

void RendererSceneCull::camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->type = Camera::PERSPECTIVE;
	camera->fov = p_fovy_degrees;
	camera->znear = p_z_near;
	camera->zfar = p_z_far;
}

void RendererSceneCull::camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->type = Camera::ORTHOGONAL;
	camera->size = p_size;
	camera->znear = p_z_near;
	camera->zfar = p_z_far;
}

void RendererSceneCull::camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->type = Camera::FRUSTUM;
	camera->size = p_size;
	camera->offset = p_offset;
	camera->znear = p_z_near;
	camera->zfar = p_z_far;
}

void RendererSceneCull::camera_set_transform(RID p_camera, const Transform3D &p_transform) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->transform = p_transform.orthonormalized();
}

void RendererSceneCull::camera_set_cull_mask(RID p_camera, uint32_t p_layers) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);

	camera->visible_layers = p_layers;
}

void RendererSceneCull::camera_set_environment(RID p_camera, RID p_env) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->env = p_env;
}

void RendererSceneCull::camera_set_camera_attributes(RID p_camera, RID p_attributes) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->attributes = p_attributes;
}

void RendererSceneCull::camera_set_compositor(RID p_camera, RID p_compositor) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->compositor = p_compositor;
}

void RendererSceneCull::camera_set_use_vertical_aspect(RID p_camera, bool p_enable) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);
	camera->vaspect = p_enable;
}

bool RendererSceneCull::is_camera(RID p_camera) const {
	return camera_owner.owns(p_camera);
}

/* OCCLUDER API */

RID RendererSceneCull::occluder_allocate() {
	return RendererSceneOcclusionCull::get_singleton()->occluder_allocate();
}

void RendererSceneCull::occluder_initialize(RID p_rid) {
	RendererSceneOcclusionCull::get_singleton()->occluder_initialize(p_rid);
}

void RendererSceneCull::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) {
	RendererSceneOcclusionCull::get_singleton()->occluder_set_mesh(p_occluder, p_vertices, p_indices);
}

/* SCENARIO API */

void RendererSceneCull::_instance_pair(Instance *p_A, Instance *p_B) {
	RendererSceneCull *self = (RendererSceneCull *)singleton;
	Instance *A = p_A;
	Instance *B = p_B;

	//instance indices are designed so greater always contains lesser
	if (A->base_type > B->base_type) {
		SWAP(A, B); //lesser always first
	}

	if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->lights.insert(B);
		light->geometries.insert(A);

		if (geom->can_cast_shadows) {
			light->make_shadow_dirty();
		}

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_LIGHTING_DIRTY;
		}

		if (light->uses_projector) {
			geom->projector_count++;
			if (geom->projector_count == 1) {
				InstanceData &idata = A->scenario->instance_data[A->array_index];
				idata.flags |= InstanceData::FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY;
			}
		}

		if (light->uses_softshadow) {
			geom->softshadow_count++;
			if (geom->softshadow_count == 1) {
				InstanceData &idata = A->scenario->instance_data[A->array_index];
				idata.flags |= InstanceData::FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY;
			}
		}

	} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->reflection_probes.insert(B);
		reflection_probe->geometries.insert(A);

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_REFLECTION_DIRTY;
		}

	} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->decals.insert(B);
		decal->geometries.insert(A);

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_DECAL_DIRTY;
		}

	} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		if (A->dynamic_gi) {
			geom->lightmap_captures.insert(B);
			lightmap_data->geometries.insert(A);

			if (A->scenario && A->array_index >= 0) {
				InstanceData &idata = A->scenario->instance_data[A->array_index];
				idata.flags |= InstanceData::FLAG_LIGHTMAP_CAPTURE;
			}
			((RendererSceneCull *)self)->_instance_queue_update(A, false, false); //need to update capture
		}

	} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_VOXEL_GI) && B->base_type == RS::INSTANCE_VOXEL_GI && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->voxel_gi_instances.insert(B);

		if (A->dynamic_gi) {
			voxel_gi->dynamic_geometries.insert(A);
		} else {
			voxel_gi->geometries.insert(A);
		}

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_VOXEL_GI_DIRTY;
		}

	} else if (B->base_type == RS::INSTANCE_VOXEL_GI && A->base_type == RS::INSTANCE_LIGHT) {
		InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(B->base_data);
		voxel_gi->lights.insert(A);
	} else if (B->base_type == RS::INSTANCE_PARTICLES_COLLISION && A->base_type == RS::INSTANCE_PARTICLES) {
		InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(B->base_data);
		RSG::particles_storage->particles_add_collision(A->base, collision->instance);
	}
}

void RendererSceneCull::_instance_unpair(Instance *p_A, Instance *p_B) {
	RendererSceneCull *self = (RendererSceneCull *)singleton;
	Instance *A = p_A;
	Instance *B = p_B;

	//instance indices are designed so greater always contains lesser
	if (A->base_type > B->base_type) {
		SWAP(A, B); //lesser always first
	}

	if (B->base_type == RS::INSTANCE_LIGHT && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceLightData *light = static_cast<InstanceLightData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->lights.erase(B);
		light->geometries.erase(A);

		if (geom->can_cast_shadows) {
			light->make_shadow_dirty();
		}

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_LIGHTING_DIRTY;
		}

		if (light->uses_projector) {
#ifdef DEBUG_ENABLED
			if (geom->projector_count == 0) {
				ERR_PRINT("geom->projector_count==0 - BUG!");
			}
#endif
			geom->projector_count--;
			if (geom->projector_count == 0) {
				InstanceData &idata = A->scenario->instance_data[A->array_index];
				idata.flags |= InstanceData::FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY;
			}
		}

		if (light->uses_softshadow) {
#ifdef DEBUG_ENABLED
			if (geom->softshadow_count == 0) {
				ERR_PRINT("geom->softshadow_count==0 - BUG!");
			}
#endif
			geom->softshadow_count--;
			if (geom->softshadow_count == 0) {
				InstanceData &idata = A->scenario->instance_data[A->array_index];
				idata.flags |= InstanceData::FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY;
			}
		}

	} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && B->base_type == RS::INSTANCE_REFLECTION_PROBE && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->reflection_probes.erase(B);
		reflection_probe->geometries.erase(A);

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_REFLECTION_DIRTY;
		}

	} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && B->base_type == RS::INSTANCE_DECAL && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceDecalData *decal = static_cast<InstanceDecalData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->decals.erase(B);
		decal->geometries.erase(A);

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_DECAL_DIRTY;
		}

	} else if (B->base_type == RS::INSTANCE_LIGHTMAP && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);
		if (A->dynamic_gi) {
			geom->lightmap_captures.erase(B);

			if (geom->lightmap_captures.is_empty() && A->scenario && A->array_index >= 0) {
				InstanceData &idata = A->scenario->instance_data[A->array_index];
				idata.flags &= ~uint32_t(InstanceData::FLAG_LIGHTMAP_CAPTURE);
			}

			lightmap_data->geometries.erase(A);
			((RendererSceneCull *)self)->_instance_queue_update(A, false, false); //need to update capture
		}

	} else if (self->geometry_instance_pair_mask & (1 << RS::INSTANCE_VOXEL_GI) && B->base_type == RS::INSTANCE_VOXEL_GI && ((1 << A->base_type) & RS::INSTANCE_GEOMETRY_MASK)) {
		InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(B->base_data);
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(A->base_data);

		geom->voxel_gi_instances.erase(B);
		if (A->dynamic_gi) {
			voxel_gi->dynamic_geometries.erase(A);
		} else {
			voxel_gi->geometries.erase(A);
		}

		if (A->scenario && A->array_index >= 0) {
			InstanceData &idata = A->scenario->instance_data[A->array_index];
			idata.flags |= InstanceData::FLAG_GEOM_VOXEL_GI_DIRTY;
		}

	} else if (B->base_type == RS::INSTANCE_VOXEL_GI && A->base_type == RS::INSTANCE_LIGHT) {
		InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(B->base_data);
		voxel_gi->lights.erase(A);
	} else if (B->base_type == RS::INSTANCE_PARTICLES_COLLISION && A->base_type == RS::INSTANCE_PARTICLES) {
		InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(B->base_data);
		RSG::particles_storage->particles_remove_collision(A->base, collision->instance);
	}
}

RID RendererSceneCull::scenario_allocate() {
	return scenario_owner.allocate_rid();
}
void RendererSceneCull::scenario_initialize(RID p_rid) {
	scenario_owner.initialize_rid(p_rid);

	Scenario *scenario = scenario_owner.get_or_null(p_rid);
	scenario->self = p_rid;

	scenario->reflection_probe_shadow_atlas = RSG::light_storage->shadow_atlas_create();
	RSG::light_storage->shadow_atlas_set_size(scenario->reflection_probe_shadow_atlas, 1024); //make enough shadows for close distance, don't bother with rest
	RSG::light_storage->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 0, 4);
	RSG::light_storage->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 1, 4);
	RSG::light_storage->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 2, 4);
	RSG::light_storage->shadow_atlas_set_quadrant_subdivision(scenario->reflection_probe_shadow_atlas, 3, 8);

	scenario->reflection_atlas = RSG::light_storage->reflection_atlas_create();

	scenario->instance_aabbs.set_page_pool(&instance_aabb_page_pool);
	scenario->instance_data.set_page_pool(&instance_data_page_pool);
	scenario->instance_visibility.set_page_pool(&instance_visibility_data_page_pool);

	RendererSceneOcclusionCull::get_singleton()->add_scenario(p_rid);
}

void RendererSceneCull::scenario_set_environment(RID p_scenario, RID p_environment) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL(scenario);
	scenario->environment = p_environment;
}

void RendererSceneCull::scenario_set_camera_attributes(RID p_scenario, RID p_camera_attributes) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL(scenario);
	scenario->camera_attributes = p_camera_attributes;
}

void RendererSceneCull::scenario_set_compositor(RID p_scenario, RID p_compositor) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL(scenario);
	scenario->compositor = p_compositor;
}

void RendererSceneCull::scenario_set_fallback_environment(RID p_scenario, RID p_environment) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL(scenario);
	scenario->fallback_environment = p_environment;
}

void RendererSceneCull::scenario_set_reflection_atlas_size(RID p_scenario, int p_reflection_size, int p_reflection_count) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL(scenario);
	RSG::light_storage->reflection_atlas_set_size(scenario->reflection_atlas, p_reflection_size, p_reflection_count);
}

bool RendererSceneCull::is_scenario(RID p_scenario) const {
	return scenario_owner.owns(p_scenario);
}

RID RendererSceneCull::scenario_get_environment(RID p_scenario) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL_V(scenario, RID());
	return scenario->environment;
}

void RendererSceneCull::scenario_remove_viewport_visibility_mask(RID p_scenario, RID p_viewport) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL(scenario);
	if (!scenario->viewport_visibility_masks.has(p_viewport)) {
		return;
	}

	uint64_t mask = scenario->viewport_visibility_masks[p_viewport];
	scenario->used_viewport_visibility_bits &= ~mask;
	scenario->viewport_visibility_masks.erase(p_viewport);
}

void RendererSceneCull::scenario_add_viewport_visibility_mask(RID p_scenario, RID p_viewport) {
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL(scenario);
	ERR_FAIL_COND(scenario->viewport_visibility_masks.has(p_viewport));

	uint64_t new_mask = 1;
	while (new_mask & scenario->used_viewport_visibility_bits) {
		new_mask <<= 1;
	}

	if (new_mask == 0) {
		ERR_PRINT("Only 64 viewports per scenario allowed when using visibility ranges.");
		new_mask = ((uint64_t)1) << 63;
	}

	scenario->viewport_visibility_masks[p_viewport] = new_mask;
	scenario->used_viewport_visibility_bits |= new_mask;
}

/* INSTANCING API */

void RendererSceneCull::_instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_dependencies) {
	if (p_update_aabb) {
		p_instance->update_aabb = true;
	}
	if (p_update_dependencies) {
		p_instance->update_dependencies = true;
	}

	if (p_instance->update_item.in_list()) {
		return;
	}

	_instance_update_list.add(&p_instance->update_item);
}

RID RendererSceneCull::instance_allocate() {
	return instance_owner.allocate_rid();
}
void RendererSceneCull::instance_initialize(RID p_rid) {
	instance_owner.initialize_rid(p_rid);
	Instance *instance = instance_owner.get_or_null(p_rid);
	instance->self = p_rid;
}

void RendererSceneCull::_instance_update_mesh_instance(Instance *p_instance) {
	bool needs_instance = RSG::mesh_storage->mesh_needs_instance(p_instance->base, p_instance->skeleton.is_valid());
	if (needs_instance != p_instance->mesh_instance.is_valid()) {
		if (needs_instance) {
			p_instance->mesh_instance = RSG::mesh_storage->mesh_instance_create(p_instance->base);

		} else {
			RSG::mesh_storage->mesh_instance_free(p_instance->mesh_instance);
			p_instance->mesh_instance = RID();
		}

		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
		geom->geometry_instance->set_mesh_instance(p_instance->mesh_instance);

		if (p_instance->scenario && p_instance->array_index >= 0) {
			InstanceData &idata = p_instance->scenario->instance_data[p_instance->array_index];
			if (p_instance->mesh_instance.is_valid()) {
				idata.flags |= InstanceData::FLAG_USES_MESH_INSTANCE;
			} else {
				idata.flags &= ~uint32_t(InstanceData::FLAG_USES_MESH_INSTANCE);
			}
		}
	}

	if (p_instance->mesh_instance.is_valid()) {
		RSG::mesh_storage->mesh_instance_set_skeleton(p_instance->mesh_instance, p_instance->skeleton);
	}
}

void RendererSceneCull::instance_set_base(RID p_instance, RID p_base) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	Scenario *scenario = instance->scenario;

	if (instance->base_type != RS::INSTANCE_NONE) {
		//free anything related to that base

		if (scenario && instance->indexer_id.is_valid()) {
			_unpair_instance(instance);
		}

		if (instance->mesh_instance.is_valid()) {
			RSG::mesh_storage->mesh_instance_free(instance->mesh_instance);
			instance->mesh_instance = RID();
			// no need to set instance data flag here, as it was freed above
		}

		switch (instance->base_type) {
			case RS::INSTANCE_MESH:
			case RS::INSTANCE_MULTIMESH:
			case RS::INSTANCE_PARTICLES: {
				InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
				scene_render->geometry_instance_free(geom->geometry_instance);
			} break;
			case RS::INSTANCE_LIGHT: {
				InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);

				if (scenario && instance->visible && RSG::light_storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
					scenario->dynamic_lights.erase(light->instance);
				}

#ifdef DEBUG_ENABLED
				if (light->geometries.size()) {
					ERR_PRINT("BUG, indexing did not unpair geometries from light.");
				}
#endif
				if (scenario && light->D) {
					scenario->directional_lights.erase(light->D);
					light->D = nullptr;
				}
				RSG::light_storage->light_instance_free(light->instance);
			} break;
			case RS::INSTANCE_PARTICLES_COLLISION: {
				InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(instance->base_data);
				RSG::utilities->free(collision->instance);
			} break;
			case RS::INSTANCE_FOG_VOLUME: {
				InstanceFogVolumeData *volume = static_cast<InstanceFogVolumeData *>(instance->base_data);
				scene_render->free(volume->instance);
			} break;
			case RS::INSTANCE_VISIBLITY_NOTIFIER: {
				//none
			} break;
			case RS::INSTANCE_REFLECTION_PROBE: {
				InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
				RSG::light_storage->reflection_probe_instance_free(reflection_probe->instance);
				if (reflection_probe->update_list.in_list()) {
					reflection_probe_render_list.remove(&reflection_probe->update_list);
				}
			} break;
			case RS::INSTANCE_DECAL: {
				InstanceDecalData *decal = static_cast<InstanceDecalData *>(instance->base_data);
				RSG::texture_storage->decal_instance_free(decal->instance);

			} break;
			case RS::INSTANCE_LIGHTMAP: {
				InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(instance->base_data);
				//erase dependencies, since no longer a lightmap
				while (lightmap_data->users.begin()) {
					instance_geometry_set_lightmap((*lightmap_data->users.begin())->self, RID(), Rect2(), 0);
				}
				RSG::light_storage->lightmap_instance_free(lightmap_data->instance);
			} break;
			case RS::INSTANCE_VOXEL_GI: {
				InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(instance->base_data);
#ifdef DEBUG_ENABLED
				if (voxel_gi->geometries.size()) {
					ERR_PRINT("BUG, indexing did not unpair geometries from VoxelGI.");
				}
#endif
#ifdef DEBUG_ENABLED
				if (voxel_gi->lights.size()) {
					ERR_PRINT("BUG, indexing did not unpair lights from VoxelGI.");
				}
#endif
				if (voxel_gi->update_element.in_list()) {
					voxel_gi_update_list.remove(&voxel_gi->update_element);
				}

				scene_render->free(voxel_gi->probe_instance);

			} break;
			case RS::INSTANCE_OCCLUDER: {
				if (scenario && instance->visible) {
					RendererSceneOcclusionCull::get_singleton()->scenario_remove_instance(instance->scenario->self, p_instance);
				}
			} break;
			default: {
			}
		}

		if (instance->base_data) {
			memdelete(instance->base_data);
			instance->base_data = nullptr;
		}

		instance->materials.clear();
	}

	instance->base_type = RS::INSTANCE_NONE;
	instance->base = RID();

	if (p_base.is_valid()) {
		instance->base_type = RSG::utilities->get_base_type(p_base);

		// fix up a specific malfunctioning case before the switch, so it can be handled
		if (instance->base_type == RS::INSTANCE_NONE && RendererSceneOcclusionCull::get_singleton()->is_occluder(p_base)) {
			instance->base_type = RS::INSTANCE_OCCLUDER;
		}

		switch (instance->base_type) {
			case RS::INSTANCE_NONE: {
				ERR_PRINT_ONCE("unimplemented base type encountered in renderer scene cull");
				return;
			}
			case RS::INSTANCE_LIGHT: {
				InstanceLightData *light = memnew(InstanceLightData);

				if (scenario && RSG::light_storage->light_get_type(p_base) == RS::LIGHT_DIRECTIONAL) {
					light->D = scenario->directional_lights.push_back(instance);
				}

				light->instance = RSG::light_storage->light_instance_create(p_base);

				instance->base_data = light;
			} break;
			case RS::INSTANCE_MESH:
			case RS::INSTANCE_MULTIMESH:
			case RS::INSTANCE_PARTICLES: {
				InstanceGeometryData *geom = memnew(InstanceGeometryData);
				instance->base_data = geom;
				geom->geometry_instance = scene_render->geometry_instance_create(p_base);

				ERR_FAIL_NULL(geom->geometry_instance);

				geom->geometry_instance->set_skeleton(instance->skeleton);
				geom->geometry_instance->set_material_override(instance->material_override);
				geom->geometry_instance->set_material_overlay(instance->material_overlay);
				geom->geometry_instance->set_surface_materials(instance->materials);
				geom->geometry_instance->set_transform(instance->transform, instance->aabb, instance->transformed_aabb);
				geom->geometry_instance->set_layer_mask(instance->layer_mask);
				geom->geometry_instance->set_pivot_data(instance->sorting_offset, instance->use_aabb_center);
				geom->geometry_instance->set_lod_bias(instance->lod_bias);
				geom->geometry_instance->set_transparency(instance->transparency);
				geom->geometry_instance->set_use_baked_light(instance->baked_light);
				geom->geometry_instance->set_use_dynamic_gi(instance->dynamic_gi);
				geom->geometry_instance->set_use_lightmap(RID(), instance->lightmap_uv_scale, instance->lightmap_slice_index);
				geom->geometry_instance->set_instance_shader_uniforms_offset(instance->instance_allocated_shader_uniforms_offset);
				geom->geometry_instance->set_cast_double_sided_shadows(instance->cast_shadows == RS::SHADOW_CASTING_SETTING_DOUBLE_SIDED);
				if (instance->lightmap_sh.size() == 9) {
					geom->geometry_instance->set_lightmap_capture(instance->lightmap_sh.ptr());
				}

				for (Instance *E : instance->visibility_dependencies) {
					Instance *dep_instance = E;
					ERR_CONTINUE(dep_instance->array_index == -1);
					ERR_CONTINUE(dep_instance->scenario->instance_data[dep_instance->array_index].parent_array_index != -1);
					dep_instance->scenario->instance_data[dep_instance->array_index].parent_array_index = instance->array_index;
				}
			} break;
			case RS::INSTANCE_PARTICLES_COLLISION: {
				InstanceParticlesCollisionData *collision = memnew(InstanceParticlesCollisionData);
				collision->instance = RSG::particles_storage->particles_collision_instance_create(p_base);
				RSG::particles_storage->particles_collision_instance_set_active(collision->instance, instance->visible);
				instance->base_data = collision;
			} break;
			case RS::INSTANCE_FOG_VOLUME: {
				InstanceFogVolumeData *volume = memnew(InstanceFogVolumeData);
				volume->instance = scene_render->fog_volume_instance_create(p_base);
				scene_render->fog_volume_instance_set_active(volume->instance, instance->visible);
				instance->base_data = volume;
			} break;
			case RS::INSTANCE_VISIBLITY_NOTIFIER: {
				InstanceVisibilityNotifierData *vnd = memnew(InstanceVisibilityNotifierData);
				vnd->base = p_base;
				instance->base_data = vnd;
			} break;
			case RS::INSTANCE_REFLECTION_PROBE: {
				InstanceReflectionProbeData *reflection_probe = memnew(InstanceReflectionProbeData);
				reflection_probe->owner = instance;
				instance->base_data = reflection_probe;

				reflection_probe->instance = RSG::light_storage->reflection_probe_instance_create(p_base);
			} break;
			case RS::INSTANCE_DECAL: {
				InstanceDecalData *decal = memnew(InstanceDecalData);
				decal->owner = instance;
				instance->base_data = decal;

				decal->instance = RSG::texture_storage->decal_instance_create(p_base);
				RSG::texture_storage->decal_instance_set_sorting_offset(decal->instance, instance->sorting_offset);
			} break;
			case RS::INSTANCE_LIGHTMAP: {
				InstanceLightmapData *lightmap_data = memnew(InstanceLightmapData);
				instance->base_data = lightmap_data;
				lightmap_data->instance = RSG::light_storage->lightmap_instance_create(p_base);
			} break;
			case RS::INSTANCE_VOXEL_GI: {
				InstanceVoxelGIData *voxel_gi = memnew(InstanceVoxelGIData);
				instance->base_data = voxel_gi;
				voxel_gi->owner = instance;

				if (scenario && !voxel_gi->update_element.in_list()) {
					voxel_gi_update_list.add(&voxel_gi->update_element);
				}

				voxel_gi->probe_instance = scene_render->voxel_gi_instance_create(p_base);

			} break;
			case RS::INSTANCE_OCCLUDER: {
				if (scenario) {
					RendererSceneOcclusionCull::get_singleton()->scenario_set_instance(scenario->self, p_instance, p_base, instance->transform, instance->visible);
				}
			} break;
			default: {
			}
		}

		instance->base = p_base;

		if (instance->base_type == RS::INSTANCE_MESH) {
			_instance_update_mesh_instance(instance);
		}

		//forcefully update the dependency now, so if for some reason it gets removed, we can immediately clear it
		RSG::utilities->base_update_dependency(p_base, &instance->dependency_tracker);
	}

	_instance_queue_update(instance, true, true);
}

void RendererSceneCull::instance_set_scenario(RID p_instance, RID p_scenario) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->scenario) {
		instance->scenario->instances.remove(&instance->scenario_item);

		if (instance->indexer_id.is_valid()) {
			_unpair_instance(instance);
		}

		switch (instance->base_type) {
			case RS::INSTANCE_LIGHT: {
				InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
				if (instance->visible && RSG::light_storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
					instance->scenario->dynamic_lights.erase(light->instance);
				}

#ifdef DEBUG_ENABLED
				if (light->geometries.size()) {
					ERR_PRINT("BUG, indexing did not unpair geometries from light.");
				}
#endif
				if (light->D) {
					instance->scenario->directional_lights.erase(light->D);
					light->D = nullptr;
				}
			} break;
			case RS::INSTANCE_REFLECTION_PROBE: {
				InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(instance->base_data);
				RSG::light_storage->reflection_probe_release_atlas_index(reflection_probe->instance);

			} break;
			case RS::INSTANCE_PARTICLES_COLLISION: {
				heightfield_particle_colliders_update_list.erase(instance);
			} break;
			case RS::INSTANCE_VOXEL_GI: {
				InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(instance->base_data);

#ifdef DEBUG_ENABLED
				if (voxel_gi->geometries.size()) {
					ERR_PRINT("BUG, indexing did not unpair geometries from VoxelGI.");
				}
#endif
#ifdef DEBUG_ENABLED
				if (voxel_gi->lights.size()) {
					ERR_PRINT("BUG, indexing did not unpair lights from VoxelGI.");
				}
#endif

				if (voxel_gi->update_element.in_list()) {
					voxel_gi_update_list.remove(&voxel_gi->update_element);
				}
			} break;
			case RS::INSTANCE_OCCLUDER: {
				if (instance->visible) {
					RendererSceneOcclusionCull::get_singleton()->scenario_remove_instance(instance->scenario->self, p_instance);
				}
			} break;
			default: {
			}
		}

		instance->scenario = nullptr;
	}

	if (p_scenario.is_valid()) {
		Scenario *scenario = scenario_owner.get_or_null(p_scenario);
		ERR_FAIL_NULL(scenario);

		instance->scenario = scenario;

		scenario->instances.add(&instance->scenario_item);

		switch (instance->base_type) {
			case RS::INSTANCE_LIGHT: {
				InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);

				if (RSG::light_storage->light_get_type(instance->base) == RS::LIGHT_DIRECTIONAL) {
					light->D = scenario->directional_lights.push_back(instance);
				}
			} break;
			case RS::INSTANCE_VOXEL_GI: {
				InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(instance->base_data);
				if (!voxel_gi->update_element.in_list()) {
					voxel_gi_update_list.add(&voxel_gi->update_element);
				}
			} break;
			case RS::INSTANCE_OCCLUDER: {
				RendererSceneOcclusionCull::get_singleton()->scenario_set_instance(scenario->self, p_instance, instance->base, instance->transform, instance->visible);
			} break;
			default: {
			}
		}

		_instance_queue_update(instance, true, true);
	}
}

void RendererSceneCull::instance_set_layer_mask(RID p_instance, uint32_t p_mask) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->layer_mask == p_mask) {
		return;
	}

	instance->layer_mask = p_mask;
	if (instance->scenario && instance->array_index >= 0) {
		instance->scenario->instance_data[instance->array_index].layer_mask = p_mask;
	}

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_layer_mask(p_mask);

		if (geom->can_cast_shadows) {
			for (HashSet<RendererSceneCull::Instance *>::Iterator I = geom->lights.begin(); I != geom->lights.end(); ++I) {
				InstanceLightData *light = static_cast<InstanceLightData *>((*I)->base_data);
				light->make_shadow_dirty();
			}
		}
	}
}

void RendererSceneCull::instance_set_pivot_data(RID p_instance, float p_sorting_offset, bool p_use_aabb_center) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->sorting_offset = p_sorting_offset;
	instance->use_aabb_center = p_use_aabb_center;

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_pivot_data(p_sorting_offset, p_use_aabb_center);
	} else if (instance->base_type == RS::INSTANCE_DECAL && instance->base_data) {
		InstanceDecalData *decal = static_cast<InstanceDecalData *>(instance->base_data);
		RSG::texture_storage->decal_instance_set_sorting_offset(decal->instance, instance->sorting_offset);
	}
}

void RendererSceneCull::instance_geometry_set_transparency(RID p_instance, float p_transparency) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->transparency = p_transparency;

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_transparency(p_transparency);
	}
}

void RendererSceneCull::instance_set_transform(RID p_instance, const Transform3D &p_transform) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->transform == p_transform) {
		return; //must be checked to avoid worst evil
	}

#ifdef DEBUG_ENABLED

	for (int i = 0; i < 4; i++) {
		const Vector3 &v = i < 3 ? p_transform.basis.rows[i] : p_transform.origin;
		ERR_FAIL_COND(!v.is_finite());
	}

#endif
	instance->transform = p_transform;
	_instance_queue_update(instance, true);
}

void RendererSceneCull::instance_attach_object_instance_id(RID p_instance, ObjectID p_id) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->object_id = p_id;
}

void RendererSceneCull::instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->update_item.in_list()) {
		_update_dirty_instance(instance);
	}

	if (instance->mesh_instance.is_valid()) {
		RSG::mesh_storage->mesh_instance_set_blend_shape_weight(instance->mesh_instance, p_shape, p_weight);
	}

	_instance_queue_update(instance, false, false);
}

void RendererSceneCull::instance_set_surface_override_material(RID p_instance, int p_surface, RID p_material) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->base_type == RS::INSTANCE_MESH) {
		//may not have been updated yet, may also have not been set yet. When updated will be correcte, worst case
		instance->materials.resize(MAX(p_surface + 1, RSG::mesh_storage->mesh_get_surface_count(instance->base)));
	}

	ERR_FAIL_INDEX(p_surface, instance->materials.size());

	instance->materials.write[p_surface] = p_material;

	_instance_queue_update(instance, false, true);
}

void RendererSceneCull::instance_set_visible(RID p_instance, bool p_visible) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->visible == p_visible) {
		return;
	}

	instance->visible = p_visible;

	if (p_visible) {
		if (instance->scenario != nullptr) {
			_instance_queue_update(instance, true, false);
		}
	} else if (instance->indexer_id.is_valid()) {
		_unpair_instance(instance);
	}

	if (instance->base_type == RS::INSTANCE_LIGHT) {
		InstanceLightData *light = static_cast<InstanceLightData *>(instance->base_data);
		if (instance->scenario && RSG::light_storage->light_get_type(instance->base) != RS::LIGHT_DIRECTIONAL && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
			if (p_visible) {
				instance->scenario->dynamic_lights.push_back(light->instance);
			} else {
				instance->scenario->dynamic_lights.erase(light->instance);
			}
		}
	}

	if (instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) {
		InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(instance->base_data);
		RSG::particles_storage->particles_collision_instance_set_active(collision->instance, p_visible);
	}

	if (instance->base_type == RS::INSTANCE_FOG_VOLUME) {
		InstanceFogVolumeData *volume = static_cast<InstanceFogVolumeData *>(instance->base_data);
		scene_render->fog_volume_instance_set_active(volume->instance, p_visible);
	}

	if (instance->base_type == RS::INSTANCE_OCCLUDER) {
		if (instance->scenario) {
			RendererSceneOcclusionCull::get_singleton()->scenario_set_instance(instance->scenario->self, p_instance, instance->base, instance->transform, p_visible);
		}
	}
}

inline bool is_geometry_instance(RenderingServer::InstanceType p_type) {
	return p_type == RS::INSTANCE_MESH || p_type == RS::INSTANCE_MULTIMESH || p_type == RS::INSTANCE_PARTICLES;
}

void RendererSceneCull::instance_set_custom_aabb(RID p_instance, AABB p_aabb) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (p_aabb != AABB()) {
		// Set custom AABB
		if (instance->custom_aabb == nullptr) {
			instance->custom_aabb = memnew(AABB);
		}
		*instance->custom_aabb = p_aabb;

	} else {
		// Clear custom AABB
		if (instance->custom_aabb != nullptr) {
			memdelete(instance->custom_aabb);
			instance->custom_aabb = nullptr;
		}
	}

	if (instance->scenario) {
		_instance_queue_update(instance, true, false);
	}
}

void RendererSceneCull::instance_attach_skeleton(RID p_instance, RID p_skeleton) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->skeleton == p_skeleton) {
		return;
	}

	instance->skeleton = p_skeleton;

	if (p_skeleton.is_valid()) {
		//update the dependency now, so if cleared, we remove it
		RSG::mesh_storage->skeleton_update_dependency(p_skeleton, &instance->dependency_tracker);
	}

	_instance_queue_update(instance, true, true);

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		_instance_update_mesh_instance(instance);

		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_skeleton(p_skeleton);
	}
}

void RendererSceneCull::instance_set_extra_visibility_margin(RID p_instance, real_t p_margin) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->extra_margin = p_margin;
	_instance_queue_update(instance, true, false);
}

void RendererSceneCull::instance_set_ignore_culling(RID p_instance, bool p_enabled) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);
	instance->ignore_all_culling = p_enabled;

	if (instance->scenario && instance->array_index >= 0) {
		InstanceData &idata = instance->scenario->instance_data[instance->array_index];
		if (instance->ignore_all_culling) {
			idata.flags |= InstanceData::FLAG_IGNORE_ALL_CULLING;
		} else {
			idata.flags &= ~uint32_t(InstanceData::FLAG_IGNORE_ALL_CULLING);
		}
	}
}

Vector<ObjectID> RendererSceneCull::instances_cull_aabb(const AABB &p_aabb, RID p_scenario) const {
	Vector<ObjectID> instances;
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL_V(scenario, instances);

	const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling

	struct CullAABB {
		Vector<ObjectID> instances;
		_FORCE_INLINE_ bool operator()(void *p_data) {
			Instance *p_instance = (Instance *)p_data;
			if (!p_instance->object_id.is_null()) {
				instances.push_back(p_instance->object_id);
			}
			return false;
		}
	};

	CullAABB cull_aabb;
	scenario->indexers[Scenario::INDEXER_GEOMETRY].aabb_query(p_aabb, cull_aabb);
	scenario->indexers[Scenario::INDEXER_VOLUMES].aabb_query(p_aabb, cull_aabb);
	return cull_aabb.instances;
}

Vector<ObjectID> RendererSceneCull::instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario) const {
	Vector<ObjectID> instances;
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL_V(scenario, instances);
	const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling

	struct CullRay {
		Vector<ObjectID> instances;
		_FORCE_INLINE_ bool operator()(void *p_data) {
			Instance *p_instance = (Instance *)p_data;
			if (!p_instance->object_id.is_null()) {
				instances.push_back(p_instance->object_id);
			}
			return false;
		}
	};

	CullRay cull_ray;
	scenario->indexers[Scenario::INDEXER_GEOMETRY].ray_query(p_from, p_to, cull_ray);
	scenario->indexers[Scenario::INDEXER_VOLUMES].ray_query(p_from, p_to, cull_ray);
	return cull_ray.instances;
}

Vector<ObjectID> RendererSceneCull::instances_cull_convex(const Vector<Plane> &p_convex, RID p_scenario) const {
	Vector<ObjectID> instances;
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	ERR_FAIL_NULL_V(scenario, instances);
	const_cast<RendererSceneCull *>(this)->update_dirty_instances(); // check dirty instances before culling

	Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&p_convex[0], p_convex.size());

	struct CullConvex {
		Vector<ObjectID> instances;
		_FORCE_INLINE_ bool operator()(void *p_data) {
			Instance *p_instance = (Instance *)p_data;
			if (!p_instance->object_id.is_null()) {
				instances.push_back(p_instance->object_id);
			}
			return false;
		}
	};

	CullConvex cull_convex;
	scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(p_convex.ptr(), p_convex.size(), points.ptr(), points.size(), cull_convex);
	scenario->indexers[Scenario::INDEXER_VOLUMES].convex_query(p_convex.ptr(), p_convex.size(), points.ptr(), points.size(), cull_convex);
	return cull_convex.instances;
}

void RendererSceneCull::instance_geometry_set_flag(RID p_instance, RS::InstanceFlags p_flags, bool p_enabled) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	//ERR_FAIL_COND(((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK));

	switch (p_flags) {
		case RS::INSTANCE_FLAG_USE_BAKED_LIGHT: {
			instance->baked_light = p_enabled;

			if (instance->scenario && instance->array_index >= 0) {
				InstanceData &idata = instance->scenario->instance_data[instance->array_index];
				if (instance->baked_light) {
					idata.flags |= InstanceData::FLAG_USES_BAKED_LIGHT;
				} else {
					idata.flags &= ~uint32_t(InstanceData::FLAG_USES_BAKED_LIGHT);
				}
			}

			if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
				InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
				ERR_FAIL_NULL(geom->geometry_instance);
				geom->geometry_instance->set_use_baked_light(p_enabled);
			}

		} break;
		case RS::INSTANCE_FLAG_USE_DYNAMIC_GI: {
			if (p_enabled == instance->dynamic_gi) {
				//bye, redundant
				return;
			}

			if (instance->indexer_id.is_valid()) {
				_unpair_instance(instance);
				_instance_queue_update(instance, true, true);
			}

			//once out of octree, can be changed
			instance->dynamic_gi = p_enabled;

			if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
				InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
				ERR_FAIL_NULL(geom->geometry_instance);
				geom->geometry_instance->set_use_dynamic_gi(p_enabled);
			}

		} break;
		case RS::INSTANCE_FLAG_DRAW_NEXT_FRAME_IF_VISIBLE: {
			instance->redraw_if_visible = p_enabled;

			if (instance->scenario && instance->array_index >= 0) {
				InstanceData &idata = instance->scenario->instance_data[instance->array_index];
				if (instance->redraw_if_visible) {
					idata.flags |= InstanceData::FLAG_REDRAW_IF_VISIBLE;
				} else {
					idata.flags &= ~uint32_t(InstanceData::FLAG_REDRAW_IF_VISIBLE);
				}
			}

		} break;
		case RS::INSTANCE_FLAG_IGNORE_OCCLUSION_CULLING: {
			instance->ignore_occlusion_culling = p_enabled;

			if (instance->scenario && instance->array_index >= 0) {
				InstanceData &idata = instance->scenario->instance_data[instance->array_index];
				if (instance->ignore_occlusion_culling) {
					idata.flags |= InstanceData::FLAG_IGNORE_OCCLUSION_CULLING;
				} else {
					idata.flags &= ~uint32_t(InstanceData::FLAG_IGNORE_OCCLUSION_CULLING);
				}
			}
		} break;
		default: {
		}
	}
}

void RendererSceneCull::instance_geometry_set_cast_shadows_setting(RID p_instance, RS::ShadowCastingSetting p_shadow_casting_setting) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->cast_shadows = p_shadow_casting_setting;

	if (instance->scenario && instance->array_index >= 0) {
		InstanceData &idata = instance->scenario->instance_data[instance->array_index];

		if (instance->cast_shadows != RS::SHADOW_CASTING_SETTING_OFF) {
			idata.flags |= InstanceData::FLAG_CAST_SHADOWS;
		} else {
			idata.flags &= ~uint32_t(InstanceData::FLAG_CAST_SHADOWS);
		}

		if (instance->cast_shadows == RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
			idata.flags |= InstanceData::FLAG_CAST_SHADOWS_ONLY;
		} else {
			idata.flags &= ~uint32_t(InstanceData::FLAG_CAST_SHADOWS_ONLY);
		}
	}

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);

		geom->geometry_instance->set_cast_double_sided_shadows(instance->cast_shadows == RS::SHADOW_CASTING_SETTING_DOUBLE_SIDED);
	}

	_instance_queue_update(instance, false, true);
}

void RendererSceneCull::instance_geometry_set_material_override(RID p_instance, RID p_material) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->material_override = p_material;
	_instance_queue_update(instance, false, true);

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_material_override(p_material);
	}
}

void RendererSceneCull::instance_geometry_set_material_overlay(RID p_instance, RID p_material) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->material_overlay = p_material;
	_instance_queue_update(instance, false, true);

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_material_overlay(p_material);
	}
}

void RendererSceneCull::instance_geometry_set_visibility_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin, RS::VisibilityRangeFadeMode p_fade_mode) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->visibility_range_begin = p_min;
	instance->visibility_range_end = p_max;
	instance->visibility_range_begin_margin = p_min_margin;
	instance->visibility_range_end_margin = p_max_margin;
	instance->visibility_range_fade_mode = p_fade_mode;

	_update_instance_visibility_dependencies(instance);

	if (instance->scenario && instance->visibility_index != -1) {
		InstanceVisibilityData &vd = instance->scenario->instance_visibility[instance->visibility_index];
		vd.range_begin = instance->visibility_range_begin;
		vd.range_end = instance->visibility_range_end;
		vd.range_begin_margin = instance->visibility_range_begin_margin;
		vd.range_end_margin = instance->visibility_range_end_margin;
		vd.fade_mode = p_fade_mode;
	}
}

void RendererSceneCull::instance_set_visibility_parent(RID p_instance, RID p_parent_instance) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	Instance *old_parent = instance->visibility_parent;
	if (old_parent) {
		old_parent->visibility_dependencies.erase(instance);
		instance->visibility_parent = nullptr;
		_update_instance_visibility_depth(old_parent);
	}

	Instance *parent = instance_owner.get_or_null(p_parent_instance);
	ERR_FAIL_COND(p_parent_instance.is_valid() && !parent);

	if (parent) {
		parent->visibility_dependencies.insert(instance);
		instance->visibility_parent = parent;

		bool cycle_detected = _update_instance_visibility_depth(parent);
		if (cycle_detected) {
			ERR_PRINT("Cycle detected in the visibility dependencies tree. The latest change to visibility_parent will have no effect.");
			parent->visibility_dependencies.erase(instance);
			instance->visibility_parent = nullptr;
		}
	}

	_update_instance_visibility_dependencies(instance);
}

bool RendererSceneCull::_update_instance_visibility_depth(Instance *p_instance) {
	bool cycle_detected = false;
	HashSet<Instance *> traversed_nodes;

	{
		Instance *instance = p_instance;
		while (instance) {
			if (!instance->visibility_dependencies.is_empty()) {
				uint32_t depth = 0;
				for (const Instance *E : instance->visibility_dependencies) {
					depth = MAX(depth, E->visibility_dependencies_depth);
				}
				instance->visibility_dependencies_depth = depth + 1;
			} else {
				instance->visibility_dependencies_depth = 0;
			}

			if (instance->scenario && instance->visibility_index != -1) {
				instance->scenario->instance_visibility.move(instance->visibility_index, instance->visibility_dependencies_depth);
			}

			traversed_nodes.insert(instance);

			instance = instance->visibility_parent;
			if (traversed_nodes.has(instance)) {
				cycle_detected = true;
				break;
			}
		}
	}

	return cycle_detected;
}

void RendererSceneCull::_update_instance_visibility_dependencies(Instance *p_instance) {
	bool is_geometry_instance = ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) && p_instance->base_data;
	bool has_visibility_range = p_instance->visibility_range_begin > 0.0 || p_instance->visibility_range_end > 0.0;
	bool needs_visibility_cull = has_visibility_range && is_geometry_instance && p_instance->array_index != -1;

	if (!needs_visibility_cull && p_instance->visibility_index != -1) {
		p_instance->scenario->instance_visibility.remove_at(p_instance->visibility_index);
		p_instance->visibility_index = -1;
	} else if (needs_visibility_cull && p_instance->visibility_index == -1) {
		InstanceVisibilityData vd;
		vd.instance = p_instance;
		vd.range_begin = p_instance->visibility_range_begin;
		vd.range_end = p_instance->visibility_range_end;
		vd.range_begin_margin = p_instance->visibility_range_begin_margin;
		vd.range_end_margin = p_instance->visibility_range_end_margin;
		vd.position = p_instance->transformed_aabb.get_center();
		vd.array_index = p_instance->array_index;
		vd.fade_mode = p_instance->visibility_range_fade_mode;

		p_instance->scenario->instance_visibility.insert(vd, p_instance->visibility_dependencies_depth);
	}

	if (p_instance->scenario && p_instance->array_index != -1) {
		InstanceData &idata = p_instance->scenario->instance_data[p_instance->array_index];
		idata.visibility_index = p_instance->visibility_index;

		if (is_geometry_instance) {
			if (has_visibility_range && p_instance->visibility_range_fade_mode == RS::VISIBILITY_RANGE_FADE_SELF) {
				bool begin_enabled = p_instance->visibility_range_begin > 0.0f;
				float begin_min = p_instance->visibility_range_begin - p_instance->visibility_range_begin_margin;
				float begin_max = p_instance->visibility_range_begin + p_instance->visibility_range_begin_margin;
				bool end_enabled = p_instance->visibility_range_end > 0.0f;
				float end_min = p_instance->visibility_range_end - p_instance->visibility_range_end_margin;
				float end_max = p_instance->visibility_range_end + p_instance->visibility_range_end_margin;
				idata.instance_geometry->set_fade_range(begin_enabled, begin_min, begin_max, end_enabled, end_min, end_max);
			} else {
				idata.instance_geometry->set_fade_range(false, 0.0f, 0.0f, false, 0.0f, 0.0f);
			}
		}

		if ((has_visibility_range || p_instance->visibility_parent) && (p_instance->visibility_index == -1 || p_instance->visibility_dependencies_depth == 0)) {
			idata.flags |= InstanceData::FLAG_VISIBILITY_DEPENDENCY_NEEDS_CHECK;
		} else {
			idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_NEEDS_CHECK;
		}

		if (p_instance->visibility_parent) {
			idata.parent_array_index = p_instance->visibility_parent->array_index;
		} else {
			idata.parent_array_index = -1;
			if (is_geometry_instance) {
				idata.instance_geometry->set_parent_fade_alpha(1.0f);
			}
		}
	}
}

void RendererSceneCull::instance_geometry_set_lightmap(RID p_instance, RID p_lightmap, const Rect2 &p_lightmap_uv_scale, int p_slice_index) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	if (instance->lightmap) {
		InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(((Instance *)instance->lightmap)->base_data);
		lightmap_data->users.erase(instance);
		instance->lightmap = nullptr;
	}

	Instance *lightmap_instance = instance_owner.get_or_null(p_lightmap);

	instance->lightmap = lightmap_instance;
	instance->lightmap_uv_scale = p_lightmap_uv_scale;
	instance->lightmap_slice_index = p_slice_index;

	RID lightmap_instance_rid;

	if (lightmap_instance) {
		InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(lightmap_instance->base_data);
		lightmap_data->users.insert(instance);
		lightmap_instance_rid = lightmap_data->instance;
	}

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_use_lightmap(lightmap_instance_rid, p_lightmap_uv_scale, p_slice_index);
	}
}

void RendererSceneCull::instance_geometry_set_lod_bias(RID p_instance, float p_lod_bias) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	instance->lod_bias = p_lod_bias;

	if ((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK && instance->base_data) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_lod_bias(p_lod_bias);
	}
}

void RendererSceneCull::instance_geometry_set_shader_parameter(RID p_instance, const StringName &p_parameter, const Variant &p_value) {
	Instance *instance = instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	ERR_FAIL_COND(p_value.get_type() == Variant::OBJECT);

	HashMap<StringName, Instance::InstanceShaderParameter>::Iterator E = instance->instance_shader_uniforms.find(p_parameter);

	if (!E) {
		Instance::InstanceShaderParameter isp;
		isp.index = -1;
		isp.info = PropertyInfo();
		isp.value = p_value;
		instance->instance_shader_uniforms[p_parameter] = isp;
	} else {
		E->value.value = p_value;
		if (E->value.index >= 0 && instance->instance_allocated_shader_uniforms) {
			int flags_count = 0;
			if (E->value.info.hint == PROPERTY_HINT_FLAGS) {
				// A small hack to detect boolean flags count and prevent overhead.
				switch (E->value.info.hint_string.length()) {
					case 3: // "x,y"
						flags_count = 1;
						break;
					case 5: // "x,y,z"
						flags_count = 2;
						break;
					case 7: // "x,y,z,w"
						flags_count = 3;
						break;
				}
			}
			//update directly
			RSG::material_storage->global_shader_parameters_instance_update(p_instance, E->value.index, p_value, flags_count);
		}
	}
}

Variant RendererSceneCull::instance_geometry_get_shader_parameter(RID p_instance, const StringName &p_parameter) const {
	const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL_V(instance, Variant());

	if (instance->instance_shader_uniforms.has(p_parameter)) {
		return instance->instance_shader_uniforms[p_parameter].value;
	}
	return Variant();
}

Variant RendererSceneCull::instance_geometry_get_shader_parameter_default_value(RID p_instance, const StringName &p_parameter) const {
	const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL_V(instance, Variant());

	if (instance->instance_shader_uniforms.has(p_parameter)) {
		return instance->instance_shader_uniforms[p_parameter].default_value;
	}
	return Variant();
}

void RendererSceneCull::instance_geometry_get_shader_parameter_list(RID p_instance, List<PropertyInfo> *p_parameters) const {
	const Instance *instance = const_cast<RendererSceneCull *>(this)->instance_owner.get_or_null(p_instance);
	ERR_FAIL_NULL(instance);

	const_cast<RendererSceneCull *>(this)->update_dirty_instances();

	Vector<StringName> names;
	for (const KeyValue<StringName, Instance::InstanceShaderParameter> &E : instance->instance_shader_uniforms) {
		names.push_back(E.key);
	}
	names.sort_custom<StringName::AlphCompare>();
	for (int i = 0; i < names.size(); i++) {
		PropertyInfo pinfo = instance->instance_shader_uniforms[names[i]].info;
		p_parameters->push_back(pinfo);
	}
}

void RendererSceneCull::_update_instance(Instance *p_instance) {
	p_instance->version++;

	if (p_instance->base_type == RS::INSTANCE_LIGHT) {
		InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);

		RSG::light_storage->light_instance_set_transform(light->instance, p_instance->transform);
		RSG::light_storage->light_instance_set_aabb(light->instance, p_instance->transform.xform(p_instance->aabb));
		light->make_shadow_dirty();

		RS::LightBakeMode bake_mode = RSG::light_storage->light_get_bake_mode(p_instance->base);
		if (RSG::light_storage->light_get_type(p_instance->base) != RS::LIGHT_DIRECTIONAL && bake_mode != light->bake_mode) {
			if (p_instance->visible && p_instance->scenario && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
				p_instance->scenario->dynamic_lights.erase(light->instance);
			}

			light->bake_mode = bake_mode;

			if (p_instance->visible && p_instance->scenario && light->bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
				p_instance->scenario->dynamic_lights.push_back(light->instance);
			}
		}

		uint32_t max_sdfgi_cascade = RSG::light_storage->light_get_max_sdfgi_cascade(p_instance->base);
		if (light->max_sdfgi_cascade != max_sdfgi_cascade) {
			light->max_sdfgi_cascade = max_sdfgi_cascade; //should most likely make sdfgi dirty in scenario
		}
	} else if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
		InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);

		RSG::light_storage->reflection_probe_instance_set_transform(reflection_probe->instance, p_instance->transform);

		if (p_instance->scenario && p_instance->array_index >= 0) {
			InstanceData &idata = p_instance->scenario->instance_data[p_instance->array_index];
			idata.flags |= InstanceData::FLAG_REFLECTION_PROBE_DIRTY;
		}
	} else if (p_instance->base_type == RS::INSTANCE_DECAL) {
		InstanceDecalData *decal = static_cast<InstanceDecalData *>(p_instance->base_data);

		RSG::texture_storage->decal_instance_set_transform(decal->instance, p_instance->transform);
	} else if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
		InstanceLightmapData *lightmap = static_cast<InstanceLightmapData *>(p_instance->base_data);

		RSG::light_storage->lightmap_instance_set_transform(lightmap->instance, p_instance->transform);
	} else if (p_instance->base_type == RS::INSTANCE_VOXEL_GI) {
		InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(p_instance->base_data);

		scene_render->voxel_gi_instance_set_transform_to_data(voxel_gi->probe_instance, p_instance->transform);
	} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
		RSG::particles_storage->particles_set_emission_transform(p_instance->base, p_instance->transform);
	} else if (p_instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) {
		InstanceParticlesCollisionData *collision = static_cast<InstanceParticlesCollisionData *>(p_instance->base_data);

		//remove materials no longer used and un-own them
		if (RSG::particles_storage->particles_collision_is_heightfield(p_instance->base)) {
			heightfield_particle_colliders_update_list.insert(p_instance);
		}
		RSG::particles_storage->particles_collision_instance_set_transform(collision->instance, p_instance->transform);
	} else if (p_instance->base_type == RS::INSTANCE_FOG_VOLUME) {
		InstanceFogVolumeData *volume = static_cast<InstanceFogVolumeData *>(p_instance->base_data);
		scene_render->fog_volume_instance_set_transform(volume->instance, p_instance->transform);
	} else if (p_instance->base_type == RS::INSTANCE_OCCLUDER) {
		if (p_instance->scenario) {
			RendererSceneOcclusionCull::get_singleton()->scenario_set_instance(p_instance->scenario->self, p_instance->self, p_instance->base, p_instance->transform, p_instance->visible);
		}
	}

	if (!p_instance->aabb.has_surface()) {
		return;
	}

	if (p_instance->base_type == RS::INSTANCE_LIGHTMAP) {
		//if this moved, update the captured objects
		InstanceLightmapData *lightmap_data = static_cast<InstanceLightmapData *>(p_instance->base_data);
		//erase dependencies, since no longer a lightmap

		for (Instance *E : lightmap_data->geometries) {
			Instance *geom = E;
			_instance_queue_update(geom, true, false);
		}
	}

	AABB new_aabb;
	new_aabb = p_instance->transform.xform(p_instance->aabb);
	p_instance->transformed_aabb = new_aabb;

	if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
		//make sure lights are updated if it casts shadow

		if (geom->can_cast_shadows) {
			for (const Instance *E : geom->lights) {
				InstanceLightData *light = static_cast<InstanceLightData *>(E->base_data);
				light->make_shadow_dirty();
			}
		}

		if (!p_instance->lightmap && geom->lightmap_captures.size()) {
			//affected by lightmap captures, must update capture info!
			_update_instance_lightmap_captures(p_instance);
		} else {
			if (!p_instance->lightmap_sh.is_empty()) {
				p_instance->lightmap_sh.clear(); //don't need SH
				p_instance->lightmap_target_sh.clear(); //don't need SH
				ERR_FAIL_NULL(geom->geometry_instance);
				geom->geometry_instance->set_lightmap_capture(nullptr);
			}
		}

		ERR_FAIL_NULL(geom->geometry_instance);
		geom->geometry_instance->set_transform(p_instance->transform, p_instance->aabb, p_instance->transformed_aabb);
	}

	// note: we had to remove is equal approx check here, it meant that det == 0.000004 won't work, which is the case for some of our scenes.
	if (p_instance->scenario == nullptr || !p_instance->visible || p_instance->transform.basis.determinant() == 0) {
		p_instance->prev_transformed_aabb = p_instance->transformed_aabb;
		return;
	}

	//quantize to improve moving object performance
	AABB bvh_aabb = p_instance->transformed_aabb;

	if (p_instance->indexer_id.is_valid() && bvh_aabb != p_instance->prev_transformed_aabb) {
		//assume motion, see if bounds need to be quantized
		AABB motion_aabb = bvh_aabb.merge(p_instance->prev_transformed_aabb);
		float motion_longest_axis = motion_aabb.get_longest_axis_size();
		float longest_axis = p_instance->transformed_aabb.get_longest_axis_size();

		if (motion_longest_axis < longest_axis * 2) {
			//moved but not a lot, use motion aabb quantizing
			float quantize_size = Math::pow(2.0, Math::ceil(Math::log(motion_longest_axis) / Math::log(2.0))) * 0.5; //one fifth
			bvh_aabb.quantize(quantize_size);
		}
	}

	if (!p_instance->indexer_id.is_valid()) {
		if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
			p_instance->indexer_id = p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY].insert(bvh_aabb, p_instance);
		} else {
			p_instance->indexer_id = p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES].insert(bvh_aabb, p_instance);
		}

		p_instance->array_index = p_instance->scenario->instance_data.size();
		InstanceData idata;
		idata.instance = p_instance;
		idata.layer_mask = p_instance->layer_mask;
		idata.flags = p_instance->base_type; //changing it means de-indexing, so this never needs to be changed later
		idata.base_rid = p_instance->base;
		idata.parent_array_index = p_instance->visibility_parent ? p_instance->visibility_parent->array_index : -1;
		idata.visibility_index = p_instance->visibility_index;
		idata.occlusion_timeout = 0;

		for (Instance *E : p_instance->visibility_dependencies) {
			Instance *dep_instance = E;
			if (dep_instance->array_index != -1) {
				dep_instance->scenario->instance_data[dep_instance->array_index].parent_array_index = p_instance->array_index;
			}
		}

		switch (p_instance->base_type) {
			case RS::INSTANCE_MESH:
			case RS::INSTANCE_MULTIMESH:
			case RS::INSTANCE_PARTICLES: {
				InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
				idata.instance_geometry = geom->geometry_instance;
			} break;
			case RS::INSTANCE_LIGHT: {
				InstanceLightData *light_data = static_cast<InstanceLightData *>(p_instance->base_data);
				idata.instance_data_rid = light_data->instance.get_id();
				light_data->uses_projector = RSG::light_storage->light_has_projector(p_instance->base);
				light_data->uses_softshadow = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE) > CMP_EPSILON;

			} break;
			case RS::INSTANCE_REFLECTION_PROBE: {
				idata.instance_data_rid = static_cast<InstanceReflectionProbeData *>(p_instance->base_data)->instance.get_id();
			} break;
			case RS::INSTANCE_DECAL: {
				idata.instance_data_rid = static_cast<InstanceDecalData *>(p_instance->base_data)->instance.get_id();
			} break;
			case RS::INSTANCE_LIGHTMAP: {
				idata.instance_data_rid = static_cast<InstanceLightmapData *>(p_instance->base_data)->instance.get_id();
			} break;
			case RS::INSTANCE_VOXEL_GI: {
				idata.instance_data_rid = static_cast<InstanceVoxelGIData *>(p_instance->base_data)->probe_instance.get_id();
			} break;
			case RS::INSTANCE_FOG_VOLUME: {
				idata.instance_data_rid = static_cast<InstanceFogVolumeData *>(p_instance->base_data)->instance.get_id();
			} break;
			case RS::INSTANCE_VISIBLITY_NOTIFIER: {
				idata.visibility_notifier = static_cast<InstanceVisibilityNotifierData *>(p_instance->base_data);
			} break;
			default: {
			}
		}

		if (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE) {
			//always dirty when added
			idata.flags |= InstanceData::FLAG_REFLECTION_PROBE_DIRTY;
		}
		if (p_instance->cast_shadows != RS::SHADOW_CASTING_SETTING_OFF) {
			idata.flags |= InstanceData::FLAG_CAST_SHADOWS;
		}
		if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_SHADOWS_ONLY) {
			idata.flags |= InstanceData::FLAG_CAST_SHADOWS_ONLY;
		}
		if (p_instance->redraw_if_visible) {
			idata.flags |= InstanceData::FLAG_REDRAW_IF_VISIBLE;
		}
		// dirty flags should not be set here, since no pairing has happened
		if (p_instance->baked_light) {
			idata.flags |= InstanceData::FLAG_USES_BAKED_LIGHT;
		}
		if (p_instance->mesh_instance.is_valid()) {
			idata.flags |= InstanceData::FLAG_USES_MESH_INSTANCE;
		}
		if (p_instance->ignore_occlusion_culling) {
			idata.flags |= InstanceData::FLAG_IGNORE_OCCLUSION_CULLING;
		}
		if (p_instance->ignore_all_culling) {
			idata.flags |= InstanceData::FLAG_IGNORE_ALL_CULLING;
		}

		p_instance->scenario->instance_data.push_back(idata);
		p_instance->scenario->instance_aabbs.push_back(InstanceBounds(p_instance->transformed_aabb));
		_update_instance_visibility_dependencies(p_instance);
	} else {
		if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
			p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY].update(p_instance->indexer_id, bvh_aabb);
		} else {
			p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES].update(p_instance->indexer_id, bvh_aabb);
		}
		p_instance->scenario->instance_aabbs[p_instance->array_index] = InstanceBounds(p_instance->transformed_aabb);
	}

	if (p_instance->visibility_index != -1) {
		p_instance->scenario->instance_visibility[p_instance->visibility_index].position = p_instance->transformed_aabb.get_center();
	}

	//move instance and repair
	pair_pass++;

	PairInstances pair;

	pair.instance = p_instance;
	pair.pair_allocator = &pair_allocator;
	pair.pair_pass = pair_pass;
	pair.pair_mask = 0;
	pair.cull_mask = 0xFFFFFFFF;

	if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
		pair.pair_mask |= 1 << RS::INSTANCE_LIGHT;
		pair.pair_mask |= 1 << RS::INSTANCE_VOXEL_GI;
		pair.pair_mask |= 1 << RS::INSTANCE_LIGHTMAP;
		if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
			pair.pair_mask |= 1 << RS::INSTANCE_PARTICLES_COLLISION;
		}

		pair.pair_mask |= geometry_instance_pair_mask;

		pair.bvh2 = &p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES];
	} else if (p_instance->base_type == RS::INSTANCE_LIGHT) {
		pair.pair_mask |= RS::INSTANCE_GEOMETRY_MASK;
		pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];

		RS::LightBakeMode bake_mode = RSG::light_storage->light_get_bake_mode(p_instance->base);
		if (bake_mode == RS::LIGHT_BAKE_STATIC || bake_mode == RS::LIGHT_BAKE_DYNAMIC) {
			pair.pair_mask |= (1 << RS::INSTANCE_VOXEL_GI);
			pair.bvh2 = &p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES];
		}
		pair.cull_mask = RSG::light_storage->light_get_cull_mask(p_instance->base);
	} else if (geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && (p_instance->base_type == RS::INSTANCE_REFLECTION_PROBE)) {
		pair.pair_mask = RS::INSTANCE_GEOMETRY_MASK;
		pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
	} else if (geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && (p_instance->base_type == RS::INSTANCE_DECAL)) {
		pair.pair_mask = RS::INSTANCE_GEOMETRY_MASK;
		pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
		pair.cull_mask = RSG::texture_storage->decal_get_cull_mask(p_instance->base);
	} else if (p_instance->base_type == RS::INSTANCE_PARTICLES_COLLISION) {
		pair.pair_mask = (1 << RS::INSTANCE_PARTICLES);
		pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
	} else if (p_instance->base_type == RS::INSTANCE_VOXEL_GI) {
		//lights and geometries
		pair.pair_mask = RS::INSTANCE_GEOMETRY_MASK | (1 << RS::INSTANCE_LIGHT);
		pair.bvh = &p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY];
		pair.bvh2 = &p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES];
	}

	pair.pair();

	p_instance->prev_transformed_aabb = p_instance->transformed_aabb;
}

void RendererSceneCull::_unpair_instance(Instance *p_instance) {
	if (!p_instance->indexer_id.is_valid()) {
		return; //nothing to do
	}

	while (p_instance->pairs.first()) {
		InstancePair *pair = p_instance->pairs.first()->self();
		Instance *other_instance = p_instance == pair->a ? pair->b : pair->a;
		_instance_unpair(p_instance, other_instance);
		pair_allocator.free(pair);
	}

	if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
		p_instance->scenario->indexers[Scenario::INDEXER_GEOMETRY].remove(p_instance->indexer_id);
	} else {
		p_instance->scenario->indexers[Scenario::INDEXER_VOLUMES].remove(p_instance->indexer_id);
	}

	p_instance->indexer_id = DynamicBVH::ID();

	//replace this by last
	int32_t swap_with_index = p_instance->scenario->instance_data.size() - 1;
	if (swap_with_index != p_instance->array_index) {
		Instance *swapped_instance = p_instance->scenario->instance_data[swap_with_index].instance;
		swapped_instance->array_index = p_instance->array_index; //swap
		p_instance->scenario->instance_data[p_instance->array_index] = p_instance->scenario->instance_data[swap_with_index];
		p_instance->scenario->instance_aabbs[p_instance->array_index] = p_instance->scenario->instance_aabbs[swap_with_index];

		if (swapped_instance->visibility_index != -1) {
			swapped_instance->scenario->instance_visibility[swapped_instance->visibility_index].array_index = swapped_instance->array_index;
		}

		for (Instance *E : swapped_instance->visibility_dependencies) {
			Instance *dep_instance = E;
			if (dep_instance != p_instance && dep_instance->array_index != -1) {
				dep_instance->scenario->instance_data[dep_instance->array_index].parent_array_index = swapped_instance->array_index;
			}
		}
	}

	// pop last
	p_instance->scenario->instance_data.pop_back();
	p_instance->scenario->instance_aabbs.pop_back();

	//uninitialize
	p_instance->array_index = -1;
	if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
		// Clear these now because the InstanceData containing the dirty flags is gone
		InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
		ERR_FAIL_NULL(geom->geometry_instance);

		geom->geometry_instance->pair_light_instances(nullptr, 0);
		geom->geometry_instance->pair_reflection_probe_instances(nullptr, 0);
		geom->geometry_instance->pair_decal_instances(nullptr, 0);
		geom->geometry_instance->pair_voxel_gi_instances(nullptr, 0);
	}

	for (Instance *E : p_instance->visibility_dependencies) {
		Instance *dep_instance = E;
		if (dep_instance->array_index != -1) {
			dep_instance->scenario->instance_data[dep_instance->array_index].parent_array_index = -1;
			if ((1 << dep_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
				dep_instance->scenario->instance_data[dep_instance->array_index].instance_geometry->set_parent_fade_alpha(1.0f);
			}
		}
	}

	_update_instance_visibility_dependencies(p_instance);
}

void RendererSceneCull::_update_instance_aabb(Instance *p_instance) {
	AABB new_aabb;

	ERR_FAIL_COND(p_instance->base_type != RS::INSTANCE_NONE && !p_instance->base.is_valid());

	switch (p_instance->base_type) {
		case RenderingServer::INSTANCE_NONE: {
			// do nothing
		} break;
		case RenderingServer::INSTANCE_MESH: {
			if (p_instance->custom_aabb) {
				new_aabb = *p_instance->custom_aabb;
			} else {
				new_aabb = RSG::mesh_storage->mesh_get_aabb(p_instance->base, p_instance->skeleton);
			}

		} break;

		case RenderingServer::INSTANCE_MULTIMESH: {
			if (p_instance->custom_aabb) {
				new_aabb = *p_instance->custom_aabb;
			} else {
				new_aabb = RSG::mesh_storage->multimesh_get_aabb(p_instance->base);
			}

		} break;
		case RenderingServer::INSTANCE_PARTICLES: {
			if (p_instance->custom_aabb) {
				new_aabb = *p_instance->custom_aabb;
			} else {
				new_aabb = RSG::particles_storage->particles_get_aabb(p_instance->base);
			}

		} break;
		case RenderingServer::INSTANCE_PARTICLES_COLLISION: {
			new_aabb = RSG::particles_storage->particles_collision_get_aabb(p_instance->base);

		} break;
		case RenderingServer::INSTANCE_FOG_VOLUME: {
			new_aabb = RSG::fog->fog_volume_get_aabb(p_instance->base);
		} break;
		case RenderingServer::INSTANCE_VISIBLITY_NOTIFIER: {
			new_aabb = RSG::utilities->visibility_notifier_get_aabb(p_instance->base);
		} break;
		case RenderingServer::INSTANCE_LIGHT: {
			new_aabb = RSG::light_storage->light_get_aabb(p_instance->base);

		} break;
		case RenderingServer::INSTANCE_REFLECTION_PROBE: {
			new_aabb = RSG::light_storage->reflection_probe_get_aabb(p_instance->base);

		} break;
		case RenderingServer::INSTANCE_DECAL: {
			new_aabb = RSG::texture_storage->decal_get_aabb(p_instance->base);

		} break;
		case RenderingServer::INSTANCE_VOXEL_GI: {
			new_aabb = RSG::gi->voxel_gi_get_bounds(p_instance->base);

		} break;
		case RenderingServer::INSTANCE_LIGHTMAP: {
			new_aabb = RSG::light_storage->lightmap_get_aabb(p_instance->base);

		} break;
		default: {
		}
	}

	if (p_instance->extra_margin) {
		new_aabb.grow_by(p_instance->extra_margin);
	}

	p_instance->aabb = new_aabb;
}

void RendererSceneCull::_update_instance_lightmap_captures(Instance *p_instance) {
	bool first_set = p_instance->lightmap_sh.size() == 0;
	p_instance->lightmap_sh.resize(9); //using SH
	p_instance->lightmap_target_sh.resize(9); //using SH
	Color *instance_sh = p_instance->lightmap_target_sh.ptrw();
	bool inside = false;
	Color accum_sh[9];
	float accum_blend = 0.0;

	InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
	for (Instance *E : geom->lightmap_captures) {
		Instance *lightmap = E;

		bool interior = RSG::light_storage->lightmap_is_interior(lightmap->base);

		if (inside && !interior) {
			continue; //we are inside, ignore exteriors
		}

		Transform3D to_bounds = lightmap->transform.affine_inverse();
		Vector3 center = p_instance->transform.xform(p_instance->aabb.get_center()); //use aabb center

		Vector3 lm_pos = to_bounds.xform(center);

		AABB bounds = RSG::light_storage->lightmap_get_aabb(lightmap->base);
		if (!bounds.has_point(lm_pos)) {
			continue; //not in this lightmap
		}

		Color sh[9];
		RSG::light_storage->lightmap_tap_sh_light(lightmap->base, lm_pos, sh);

		//rotate it
		Basis rot = lightmap->transform.basis.orthonormalized();
		for (int i = 0; i < 3; i++) {
			real_t csh[9];
			for (int j = 0; j < 9; j++) {
				csh[j] = sh[j][i];
			}
			rot.rotate_sh(csh);
			for (int j = 0; j < 9; j++) {
				sh[j][i] = csh[j];
			}
		}

		Vector3 inner_pos = ((lm_pos - bounds.position) / bounds.size) * 2.0 - Vector3(1.0, 1.0, 1.0);

		real_t blend = MAX(ABS(inner_pos.x), MAX(ABS(inner_pos.y), ABS(inner_pos.z)));
		//make blend more rounded
		blend = Math::lerp(inner_pos.length(), blend, blend);
		blend *= blend;
		blend = MAX(0.0, 1.0 - blend);

		if (interior && !inside) {
			//do not blend, just replace
			for (int j = 0; j < 9; j++) {
				accum_sh[j] = sh[j] * blend;
			}
			accum_blend = blend;
			inside = true;
		} else {
			for (int j = 0; j < 9; j++) {
				accum_sh[j] += sh[j] * blend;
			}
			accum_blend += blend;
		}
	}

	if (accum_blend > 0.0) {
		for (int j = 0; j < 9; j++) {
			instance_sh[j] = accum_sh[j] / accum_blend;
			if (first_set) {
				p_instance->lightmap_sh.write[j] = instance_sh[j];
			}
		}
	}

	ERR_FAIL_NULL(geom->geometry_instance);
	geom->geometry_instance->set_lightmap_capture(p_instance->lightmap_sh.ptr());
}

void RendererSceneCull::_light_instance_setup_directional_shadow(int p_shadow_index, Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect) {
	// For later tight culling, the light culler needs to know the details of the directional light.
	light_culler->prepare_directional_light(p_instance, p_shadow_index);

	InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);

	Transform3D light_transform = p_instance->transform;
	light_transform.orthonormalize(); //scale does not count on lights

	real_t max_distance = p_cam_projection.get_z_far();
	real_t shadow_max = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE);
	if (shadow_max > 0 && !p_cam_orthogonal) { //its impractical (and leads to unwanted behaviors) to set max distance in orthogonal camera
		max_distance = MIN(shadow_max, max_distance);
	}
	max_distance = MAX(max_distance, p_cam_projection.get_z_near() + 0.001);
	real_t min_distance = MIN(p_cam_projection.get_z_near(), max_distance);

	real_t pancake_size = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE);

	real_t range = max_distance - min_distance;

	int splits = 0;
	switch (RSG::light_storage->light_directional_get_shadow_mode(p_instance->base)) {
		case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
			splits = 1;
			break;
		case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
			splits = 2;
			break;
		case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
			splits = 4;
			break;
	}

	real_t distances[5];

	distances[0] = min_distance;
	for (int i = 0; i < splits; i++) {
		distances[i + 1] = min_distance + RSG::light_storage->light_get_param(p_instance->base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range;
	};

	distances[splits] = max_distance;

	real_t texture_size = RSG::light_storage->get_directional_light_shadow_size(light->instance);

	bool overlap = RSG::light_storage->light_directional_get_blend_splits(p_instance->base);

	cull.shadow_count = p_shadow_index + 1;
	cull.shadows[p_shadow_index].cascade_count = splits;
	cull.shadows[p_shadow_index].light_instance = light->instance;

	for (int i = 0; i < splits; i++) {
		RENDER_TIMESTAMP("Cull DirectionalLight3D, Split " + itos(i));

		// setup a camera matrix for that range!
		Projection camera_matrix;

		real_t aspect = p_cam_projection.get_aspect();

		if (p_cam_orthogonal) {
			Vector2 vp_he = p_cam_projection.get_viewport_half_extents();

			camera_matrix.set_orthogonal(vp_he.y * 2.0, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], false);
		} else {
			real_t fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it
			camera_matrix.set_perspective(fov, aspect, distances[(i == 0 || !overlap) ? i : i - 1], distances[i + 1], true);
		}

		//obtain the frustum endpoints

		Vector3 endpoints[8]; // frustum plane endpoints
		bool res = camera_matrix.get_endpoints(p_cam_transform, endpoints);
		ERR_CONTINUE(!res);

		// obtain the light frustum ranges (given endpoints)

		Transform3D transform = light_transform; //discard scale and stabilize light

		Vector3 x_vec = transform.basis.get_column(Vector3::AXIS_X).normalized();
		Vector3 y_vec = transform.basis.get_column(Vector3::AXIS_Y).normalized();
		Vector3 z_vec = transform.basis.get_column(Vector3::AXIS_Z).normalized();
		//z_vec points against the camera, like in default opengl

		real_t x_min = 0.f, x_max = 0.f;
		real_t y_min = 0.f, y_max = 0.f;
		real_t z_min = 0.f, z_max = 0.f;

		// FIXME: z_max_cam is defined, computed, but not used below when setting up
		// ortho_camera. Commented out for now to fix warnings but should be investigated.
		real_t x_min_cam = 0.f, x_max_cam = 0.f;
		real_t y_min_cam = 0.f, y_max_cam = 0.f;
		real_t z_min_cam = 0.f;
		//real_t z_max_cam = 0.f;

		//real_t bias_scale = 1.0;
		//real_t aspect_bias_scale = 1.0;

		//used for culling

		for (int j = 0; j < 8; j++) {
			real_t d_x = x_vec.dot(endpoints[j]);
			real_t d_y = y_vec.dot(endpoints[j]);
			real_t d_z = z_vec.dot(endpoints[j]);

			if (j == 0 || d_x < x_min) {
				x_min = d_x;
			}
			if (j == 0 || d_x > x_max) {
				x_max = d_x;
			}

			if (j == 0 || d_y < y_min) {
				y_min = d_y;
			}
			if (j == 0 || d_y > y_max) {
				y_max = d_y;
			}

			if (j == 0 || d_z < z_min) {
				z_min = d_z;
			}
			if (j == 0 || d_z > z_max) {
				z_max = d_z;
			}
		}

		real_t radius = 0;
		real_t soft_shadow_expand = 0;
		Vector3 center;

		{
			//camera viewport stuff

			for (int j = 0; j < 8; j++) {
				center += endpoints[j];
			}
			center /= 8.0;

			//center=x_vec*(x_max-x_min)*0.5 + y_vec*(y_max-y_min)*0.5 + z_vec*(z_max-z_min)*0.5;

			for (int j = 0; j < 8; j++) {
				real_t d = center.distance_to(endpoints[j]);
				if (d > radius) {
					radius = d;
				}
			}

			radius *= texture_size / (texture_size - 2.0); //add a texel by each side

			z_min_cam = z_vec.dot(center) - radius;

			{
				float soft_shadow_angle = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SIZE);

				if (soft_shadow_angle > 0.0) {
					float z_range = (z_vec.dot(center) + radius + pancake_size) - z_min_cam;
					soft_shadow_expand = Math::tan(Math::deg_to_rad(soft_shadow_angle)) * z_range;

					x_max += soft_shadow_expand;
					y_max += soft_shadow_expand;

					x_min -= soft_shadow_expand;
					y_min -= soft_shadow_expand;
				}
			}

			// This trick here is what stabilizes the shadow (make potential jaggies to not move)
			// at the cost of some wasted resolution. Still, the quality increase is very well worth it.
			const real_t unit = (radius + soft_shadow_expand) * 4.0 / texture_size;
			x_max_cam = Math::snapped(x_vec.dot(center) + radius + soft_shadow_expand, unit);
			x_min_cam = Math::snapped(x_vec.dot(center) - radius - soft_shadow_expand, unit);
			y_max_cam = Math::snapped(y_vec.dot(center) + radius + soft_shadow_expand, unit);
			y_min_cam = Math::snapped(y_vec.dot(center) - radius - soft_shadow_expand, unit);
		}

		//now that we know all ranges, we can proceed to make the light frustum planes, for culling octree

		Vector<Plane> light_frustum_planes;
		light_frustum_planes.resize(6);

		//right/left
		light_frustum_planes.write[0] = Plane(x_vec, x_max);
		light_frustum_planes.write[1] = Plane(-x_vec, -x_min);
		//top/bottom
		light_frustum_planes.write[2] = Plane(y_vec, y_max);
		light_frustum_planes.write[3] = Plane(-y_vec, -y_min);
		//near/far
		light_frustum_planes.write[4] = Plane(z_vec, z_max + 1e6);
		light_frustum_planes.write[5] = Plane(-z_vec, -z_min); // z_min is ok, since casters further than far-light plane are not needed

		// a pre pass will need to be needed to determine the actual z-near to be used

		z_max = z_vec.dot(center) + radius + pancake_size;

		{
			Projection ortho_camera;
			real_t half_x = (x_max_cam - x_min_cam) * 0.5;
			real_t half_y = (y_max_cam - y_min_cam) * 0.5;

			ortho_camera.set_orthogonal(-half_x, half_x, -half_y, half_y, 0, (z_max - z_min_cam));

			Vector2 uv_scale(1.0 / (x_max_cam - x_min_cam), 1.0 / (y_max_cam - y_min_cam));

			Transform3D ortho_transform;
			ortho_transform.basis = transform.basis;
			ortho_transform.origin = x_vec * (x_min_cam + half_x) + y_vec * (y_min_cam + half_y) + z_vec * z_max;

			cull.shadows[p_shadow_index].cascades[i].frustum = Frustum(light_frustum_planes);
			cull.shadows[p_shadow_index].cascades[i].projection = ortho_camera;
			cull.shadows[p_shadow_index].cascades[i].transform = ortho_transform;
			cull.shadows[p_shadow_index].cascades[i].zfar = z_max - z_min_cam;
			cull.shadows[p_shadow_index].cascades[i].split = distances[i + 1];
			cull.shadows[p_shadow_index].cascades[i].shadow_texel_size = radius * 2.0 / texture_size;
			cull.shadows[p_shadow_index].cascades[i].bias_scale = (z_max - z_min_cam);
			cull.shadows[p_shadow_index].cascades[i].range_begin = z_max;
			cull.shadows[p_shadow_index].cascades[i].uv_scale = uv_scale;
		}
	}
}

bool RendererSceneCull::_light_instance_update_shadow(Instance *p_instance, const Transform3D p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, bool p_cam_vaspect, RID p_shadow_atlas, Scenario *p_scenario, float p_screen_mesh_lod_threshold, uint32_t p_visible_layers) {
	InstanceLightData *light = static_cast<InstanceLightData *>(p_instance->base_data);

	Transform3D light_transform = p_instance->transform;
	light_transform.orthonormalize(); //scale does not count on lights

	bool animated_material_found = false;

	switch (RSG::light_storage->light_get_type(p_instance->base)) {
		case RS::LIGHT_DIRECTIONAL: {
		} break;
		case RS::LIGHT_OMNI: {
			RS::LightOmniShadowMode shadow_mode = RSG::light_storage->light_omni_get_shadow_mode(p_instance->base);

			if (shadow_mode == RS::LIGHT_OMNI_SHADOW_DUAL_PARABOLOID || !RSG::light_storage->light_instances_can_render_shadow_cube()) {
				if (max_shadows_used + 2 > MAX_UPDATE_SHADOWS) {
					return true;
				}
				for (int i = 0; i < 2; i++) {
					//using this one ensures that raster deferred will have it
					RENDER_TIMESTAMP("Cull OmniLight3D Shadow Paraboloid, Half " + itos(i));

					real_t radius = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);

					real_t z = i == 0 ? -1 : 1;
					Vector<Plane> planes;
					planes.resize(6);
					planes.write[0] = light_transform.xform(Plane(Vector3(0, 0, z), radius));
					planes.write[1] = light_transform.xform(Plane(Vector3(1, 0, z).normalized(), radius));
					planes.write[2] = light_transform.xform(Plane(Vector3(-1, 0, z).normalized(), radius));
					planes.write[3] = light_transform.xform(Plane(Vector3(0, 1, z).normalized(), radius));
					planes.write[4] = light_transform.xform(Plane(Vector3(0, -1, z).normalized(), radius));
					planes.write[5] = light_transform.xform(Plane(Vector3(0, 0, -z), 0));

					instance_shadow_cull_result.clear();

					Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&planes[0], planes.size());

					struct CullConvex {
						PagedArray<Instance *> *result;
						_FORCE_INLINE_ bool operator()(void *p_data) {
							Instance *p_instance = (Instance *)p_data;
							result->push_back(p_instance);
							return false;
						}
					};

					CullConvex cull_convex;
					cull_convex.result = &instance_shadow_cull_result;

					p_scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(planes.ptr(), planes.size(), points.ptr(), points.size(), cull_convex);

					RendererSceneRender::RenderShadowData &shadow_data = render_shadow_data[max_shadows_used++];

					if (!light->is_shadow_update_full()) {
						light_culler->cull_regular_light(instance_shadow_cull_result);
					}

					for (int j = 0; j < (int)instance_shadow_cull_result.size(); j++) {
						Instance *instance = instance_shadow_cull_result[j];
						if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows || !(p_visible_layers & instance->layer_mask)) {
							continue;
						} else {
							if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
								animated_material_found = true;
							}

							if (instance->mesh_instance.is_valid()) {
								RSG::mesh_storage->mesh_instance_check_for_update(instance->mesh_instance);
							}
						}

						shadow_data.instances.push_back(static_cast<InstanceGeometryData *>(instance->base_data)->geometry_instance);
					}

					RSG::mesh_storage->update_mesh_instances();

					RSG::light_storage->light_instance_set_shadow_transform(light->instance, Projection(), light_transform, radius, 0, i, 0);
					shadow_data.light = light->instance;
					shadow_data.pass = i;
				}
			} else { //shadow cube

				if (max_shadows_used + 6 > MAX_UPDATE_SHADOWS) {
					return true;
				}

				real_t radius = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
				Projection cm;
				cm.set_perspective(90, 1, radius * 0.005f, radius);

				for (int i = 0; i < 6; i++) {
					RENDER_TIMESTAMP("Cull OmniLight3D Shadow Cube, Side " + itos(i));
					//using this one ensures that raster deferred will have it

					static const Vector3 view_normals[6] = {
						Vector3(+1, 0, 0),
						Vector3(-1, 0, 0),
						Vector3(0, -1, 0),
						Vector3(0, +1, 0),
						Vector3(0, 0, +1),
						Vector3(0, 0, -1)
					};
					static const Vector3 view_up[6] = {
						Vector3(0, -1, 0),
						Vector3(0, -1, 0),
						Vector3(0, 0, -1),
						Vector3(0, 0, +1),
						Vector3(0, -1, 0),
						Vector3(0, -1, 0)
					};

					Transform3D xform = light_transform * Transform3D().looking_at(view_normals[i], view_up[i]);

					Vector<Plane> planes = cm.get_projection_planes(xform);

					instance_shadow_cull_result.clear();

					Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&planes[0], planes.size());

					struct CullConvex {
						PagedArray<Instance *> *result;
						_FORCE_INLINE_ bool operator()(void *p_data) {
							Instance *p_instance = (Instance *)p_data;
							result->push_back(p_instance);
							return false;
						}
					};

					CullConvex cull_convex;
					cull_convex.result = &instance_shadow_cull_result;

					p_scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(planes.ptr(), planes.size(), points.ptr(), points.size(), cull_convex);

					RendererSceneRender::RenderShadowData &shadow_data = render_shadow_data[max_shadows_used++];

					if (!light->is_shadow_update_full()) {
						light_culler->cull_regular_light(instance_shadow_cull_result);
					}

					for (int j = 0; j < (int)instance_shadow_cull_result.size(); j++) {
						Instance *instance = instance_shadow_cull_result[j];
						if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows || !(p_visible_layers & instance->layer_mask)) {
							continue;
						} else {
							if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
								animated_material_found = true;
							}
							if (instance->mesh_instance.is_valid()) {
								RSG::mesh_storage->mesh_instance_check_for_update(instance->mesh_instance);
							}
						}

						shadow_data.instances.push_back(static_cast<InstanceGeometryData *>(instance->base_data)->geometry_instance);
					}

					RSG::mesh_storage->update_mesh_instances();
					RSG::light_storage->light_instance_set_shadow_transform(light->instance, cm, xform, radius, 0, i, 0);

					shadow_data.light = light->instance;
					shadow_data.pass = i;
				}

				//restore the regular DP matrix
				//RSG::light_storage->light_instance_set_shadow_transform(light->instance, Projection(), light_transform, radius, 0, 0, 0);
			}

		} break;
		case RS::LIGHT_SPOT: {
			RENDER_TIMESTAMP("Cull SpotLight3D Shadow");

			if (max_shadows_used + 1 > MAX_UPDATE_SHADOWS) {
				return true;
			}

			real_t radius = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_RANGE);
			real_t angle = RSG::light_storage->light_get_param(p_instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);

			Projection cm;
			cm.set_perspective(angle * 2.0, 1.0, 0.005f * radius, radius);

			Vector<Plane> planes = cm.get_projection_planes(light_transform);

			instance_shadow_cull_result.clear();

			Vector<Vector3> points = Geometry3D::compute_convex_mesh_points(&planes[0], planes.size());

			struct CullConvex {
				PagedArray<Instance *> *result;
				_FORCE_INLINE_ bool operator()(void *p_data) {
					Instance *p_instance = (Instance *)p_data;
					result->push_back(p_instance);
					return false;
				}
			};

			CullConvex cull_convex;
			cull_convex.result = &instance_shadow_cull_result;

			p_scenario->indexers[Scenario::INDEXER_GEOMETRY].convex_query(planes.ptr(), planes.size(), points.ptr(), points.size(), cull_convex);

			RendererSceneRender::RenderShadowData &shadow_data = render_shadow_data[max_shadows_used++];

			if (!light->is_shadow_update_full()) {
				light_culler->cull_regular_light(instance_shadow_cull_result);
			}

			for (int j = 0; j < (int)instance_shadow_cull_result.size(); j++) {
				Instance *instance = instance_shadow_cull_result[j];
				if (!instance->visible || !((1 << instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) || !static_cast<InstanceGeometryData *>(instance->base_data)->can_cast_shadows || !(p_visible_layers & instance->layer_mask)) {
					continue;
				} else {
					if (static_cast<InstanceGeometryData *>(instance->base_data)->material_is_animated) {
						animated_material_found = true;
					}

					if (instance->mesh_instance.is_valid()) {
						RSG::mesh_storage->mesh_instance_check_for_update(instance->mesh_instance);
					}
				}
				shadow_data.instances.push_back(static_cast<InstanceGeometryData *>(instance->base_data)->geometry_instance);
			}

			RSG::mesh_storage->update_mesh_instances();

			RSG::light_storage->light_instance_set_shadow_transform(light->instance, cm, light_transform, radius, 0, 0, 0);
			shadow_data.light = light->instance;
			shadow_data.pass = 0;

		} break;
	}

	return animated_material_found;
}

void RendererSceneCull::render_camera(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_camera, RID p_scenario, RID p_viewport, Size2 p_viewport_size, uint32_t p_jitter_phase_count, float p_screen_mesh_lod_threshold, RID p_shadow_atlas, Ref<XRInterface> &p_xr_interface, RenderInfo *r_render_info) {
#ifndef _3D_DISABLED

	Camera *camera = camera_owner.get_or_null(p_camera);
	ERR_FAIL_NULL(camera);

	Vector2 jitter;
	if (p_jitter_phase_count > 0) {
		uint32_t current_jitter_count = camera_jitter_array.size();
		if (p_jitter_phase_count != current_jitter_count) {
			// Resize the jitter array and fill it with the pre-computed Halton sequence.
			camera_jitter_array.resize(p_jitter_phase_count);

			for (uint32_t i = current_jitter_count; i < p_jitter_phase_count; i++) {
				camera_jitter_array[i].x = get_halton_value(i, 2);
				camera_jitter_array[i].y = get_halton_value(i, 3);
			}
		}

		jitter = camera_jitter_array[RSG::rasterizer->get_frame_number() % p_jitter_phase_count] / p_viewport_size;
	}

	RendererSceneRender::CameraData camera_data;

	// Setup Camera(s)
	if (p_xr_interface.is_null()) {
		// Normal camera
		Transform3D transform = camera->transform;
		Projection projection;
		bool vaspect = camera->vaspect;
		bool is_orthogonal = false;

		switch (camera->type) {
			case Camera::ORTHOGONAL: {
				projection.set_orthogonal(
						camera->size,
						p_viewport_size.width / (float)p_viewport_size.height,
						camera->znear,
						camera->zfar,
						camera->vaspect);
				is_orthogonal = true;
			} break;
			case Camera::PERSPECTIVE: {
				projection.set_perspective(
						camera->fov,
						p_viewport_size.width / (float)p_viewport_size.height,
						camera->znear,
						camera->zfar,
						camera->vaspect);

			} break;
			case Camera::FRUSTUM: {
				projection.set_frustum(
						camera->size,
						p_viewport_size.width / (float)p_viewport_size.height,
						camera->offset,
						camera->znear,
						camera->zfar,
						camera->vaspect);
			} break;
		}

		camera_data.set_camera(transform, projection, is_orthogonal, vaspect, jitter, camera->visible_layers);
	} else {
		// Setup our camera for our XR interface.
		// We can support multiple views here each with their own camera
		Transform3D transforms[RendererSceneRender::MAX_RENDER_VIEWS];
		Projection projections[RendererSceneRender::MAX_RENDER_VIEWS];

		uint32_t view_count = p_xr_interface->get_view_count();
		ERR_FAIL_COND_MSG(view_count == 0 || view_count > RendererSceneRender::MAX_RENDER_VIEWS, "Requested view count is not supported");

		float aspect = p_viewport_size.width / (float)p_viewport_size.height;

		Transform3D world_origin = XRServer::get_singleton()->get_world_origin();

		// We ignore our camera position, it will have been positioned with a slightly old tracking position.
		// Instead we take our origin point and have our XR interface add fresh tracking data! Whoohoo!
		for (uint32_t v = 0; v < view_count; v++) {
			transforms[v] = p_xr_interface->get_transform_for_view(v, world_origin);
			projections[v] = p_xr_interface->get_projection_for_view(v, aspect, camera->znear, camera->zfar);
		}

		if (view_count == 1) {
			camera_data.set_camera(transforms[0], projections[0], false, camera->vaspect, jitter, camera->visible_layers);
		} else if (view_count == 2) {
			camera_data.set_multiview_camera(view_count, transforms, projections, false, camera->vaspect);
		} else {
			// this won't be called (see fail check above) but keeping this comment to indicate we may support more then 2 views in the future...
		}
	}

	RID environment = _render_get_environment(p_camera, p_scenario);
	RID compositor = _render_get_compositor(p_camera, p_scenario);

	RENDER_TIMESTAMP("Update Occlusion Buffer")
	// For now just cull on the first camera
	RendererSceneOcclusionCull::get_singleton()->buffer_update(p_viewport, camera_data.main_transform, camera_data.main_projection, camera_data.is_orthogonal);

	_render_scene(&camera_data, p_render_buffers, environment, camera->attributes, compositor, camera->visible_layers, p_scenario, p_viewport, p_shadow_atlas, RID(), -1, p_screen_mesh_lod_threshold, true, r_render_info);
#endif
}

void RendererSceneCull::_visibility_cull_threaded(uint32_t p_thread, VisibilityCullData *cull_data) {
	uint32_t total_threads = WorkerThreadPool::get_singleton()->get_thread_count();
	uint32_t bin_from = p_thread * cull_data->cull_count / total_threads;
	uint32_t bin_to = (p_thread + 1 == total_threads) ? cull_data->cull_count : ((p_thread + 1) * cull_data->cull_count / total_threads);

	_visibility_cull(*cull_data, cull_data->cull_offset + bin_from, cull_data->cull_offset + bin_to);
}

void RendererSceneCull::_visibility_cull(const VisibilityCullData &cull_data, uint64_t p_from, uint64_t p_to) {
	Scenario *scenario = cull_data.scenario;
	for (unsigned int i = p_from; i < p_to; i++) {
		InstanceVisibilityData &vd = scenario->instance_visibility[i];
		InstanceData &idata = scenario->instance_data[vd.array_index];

		if (idata.parent_array_index >= 0) {
			uint32_t parent_flags = scenario->instance_data[idata.parent_array_index].flags;

			if ((parent_flags & InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN) || !(parent_flags & (InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE | InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN))) {
				idata.flags |= InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN;
				idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE;
				idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN;
				continue;
			}
		}

		int range_check = _visibility_range_check<true>(vd, cull_data.camera_position, cull_data.viewport_mask);

		if (range_check == -1) {
			idata.flags |= InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN;
			idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE;
			idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN;
		} else if (range_check == 1) {
			idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN;
			idata.flags |= InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE;
			idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN;
		} else {
			idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN;
			idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE;
			if (range_check == 2) {
				idata.flags |= InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN;
			} else {
				idata.flags &= ~InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN;
			}
		}
	}
}

template <bool p_fade_check>
int RendererSceneCull::_visibility_range_check(InstanceVisibilityData &r_vis_data, const Vector3 &p_camera_pos, uint64_t p_viewport_mask) {
	float dist = p_camera_pos.distance_to(r_vis_data.position);
	const RS::VisibilityRangeFadeMode &fade_mode = r_vis_data.fade_mode;

	float begin_offset = -r_vis_data.range_begin_margin;
	float end_offset = r_vis_data.range_end_margin;

	if (fade_mode == RS::VISIBILITY_RANGE_FADE_DISABLED && !(p_viewport_mask & r_vis_data.viewport_state)) {
		begin_offset = -begin_offset;
		end_offset = -end_offset;
	}

	if (r_vis_data.range_end > 0.0f && dist > r_vis_data.range_end + end_offset) {
		r_vis_data.viewport_state &= ~p_viewport_mask;
		return -1;
	} else if (r_vis_data.range_begin > 0.0f && dist < r_vis_data.range_begin + begin_offset) {
		r_vis_data.viewport_state &= ~p_viewport_mask;
		return 1;
	} else {
		r_vis_data.viewport_state |= p_viewport_mask;
		if (p_fade_check) {
			if (fade_mode != RS::VISIBILITY_RANGE_FADE_DISABLED) {
				r_vis_data.children_fade_alpha = 1.0f;
				if (r_vis_data.range_end > 0.0f && dist > r_vis_data.range_end - end_offset) {
					if (fade_mode == RS::VISIBILITY_RANGE_FADE_DEPENDENCIES) {
						r_vis_data.children_fade_alpha = MIN(1.0f, (dist - (r_vis_data.range_end - end_offset)) / (2.0f * r_vis_data.range_end_margin));
					}
					return 2;
				} else if (r_vis_data.range_begin > 0.0f && dist < r_vis_data.range_begin - begin_offset) {
					if (fade_mode == RS::VISIBILITY_RANGE_FADE_DEPENDENCIES) {
						r_vis_data.children_fade_alpha = MIN(1.0f, 1.0 - (dist - (r_vis_data.range_begin + begin_offset)) / (2.0f * r_vis_data.range_begin_margin));
					}
					return 2;
				}
			}
		}
		return 0;
	}
}

bool RendererSceneCull::_visibility_parent_check(const CullData &p_cull_data, const InstanceData &p_instance_data) {
	if (p_instance_data.parent_array_index == -1) {
		return true;
	}
	const uint32_t &parent_flags = p_cull_data.scenario->instance_data[p_instance_data.parent_array_index].flags;
	return ((parent_flags & InstanceData::FLAG_VISIBILITY_DEPENDENCY_NEEDS_CHECK) == InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE) || (parent_flags & InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN);
}

void RendererSceneCull::_scene_cull_threaded(uint32_t p_thread, CullData *cull_data) {
	uint32_t cull_total = cull_data->scenario->instance_data.size();
	uint32_t total_threads = WorkerThreadPool::get_singleton()->get_thread_count();
	uint32_t cull_from = p_thread * cull_total / total_threads;
	uint32_t cull_to = (p_thread + 1 == total_threads) ? cull_total : ((p_thread + 1) * cull_total / total_threads);

	_scene_cull(*cull_data, scene_cull_result_threads[p_thread], cull_from, cull_to);
}

void RendererSceneCull::_scene_cull(CullData &cull_data, InstanceCullResult &cull_result, uint64_t p_from, uint64_t p_to) {
	uint64_t frame_number = RSG::rasterizer->get_frame_number();
	float lightmap_probe_update_speed = RSG::light_storage->lightmap_get_probe_capture_update_speed() * RSG::rasterizer->get_frame_delta_time();

	uint32_t sdfgi_last_light_index = 0xFFFFFFFF;
	uint32_t sdfgi_last_light_cascade = 0xFFFFFFFF;

	RID instance_pair_buffer[MAX_INSTANCE_PAIRS];

	Transform3D inv_cam_transform = cull_data.cam_transform.inverse();
	float z_near = cull_data.camera_matrix->get_z_near();

	for (uint64_t i = p_from; i < p_to; i++) {
		bool mesh_visible = false;

		InstanceData &idata = cull_data.scenario->instance_data[i];
		uint32_t visibility_flags = idata.flags & (InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE | InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN | InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN);
		int32_t visibility_check = -1;

#define HIDDEN_BY_VISIBILITY_CHECKS (visibility_flags == InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN_CLOSE_RANGE || visibility_flags == InstanceData::FLAG_VISIBILITY_DEPENDENCY_HIDDEN)
#define LAYER_CHECK (cull_data.visible_layers & idata.layer_mask)
#define IN_FRUSTUM(f) (cull_data.scenario->instance_aabbs[i].in_frustum(f))
#define VIS_RANGE_CHECK ((idata.visibility_index == -1) || _visibility_range_check<false>(cull_data.scenario->instance_visibility[idata.visibility_index], cull_data.cam_transform.origin, cull_data.visibility_viewport_mask) == 0)
#define VIS_PARENT_CHECK (_visibility_parent_check(cull_data, idata))
#define VIS_CHECK (visibility_check < 0 ? (visibility_check = (visibility_flags != InstanceData::FLAG_VISIBILITY_DEPENDENCY_NEEDS_CHECK || (VIS_RANGE_CHECK && VIS_PARENT_CHECK))) : visibility_check)
#define OCCLUSION_CULLED (cull_data.occlusion_buffer != nullptr && (cull_data.scenario->instance_data[i].flags & InstanceData::FLAG_IGNORE_OCCLUSION_CULLING) == 0 && cull_data.occlusion_buffer->is_occluded(cull_data.scenario->instance_aabbs[i].bounds, cull_data.cam_transform.origin, inv_cam_transform, *cull_data.camera_matrix, z_near, cull_data.scenario->instance_data[i].occlusion_timeout))

		if (!HIDDEN_BY_VISIBILITY_CHECKS) {
			if ((LAYER_CHECK && IN_FRUSTUM(cull_data.cull->frustum) && VIS_CHECK && !OCCLUSION_CULLED) || (cull_data.scenario->instance_data[i].flags & InstanceData::FLAG_IGNORE_ALL_CULLING)) {
				uint32_t base_type = idata.flags & InstanceData::FLAG_BASE_TYPE_MASK;
				if (base_type == RS::INSTANCE_LIGHT) {
					cull_result.lights.push_back(idata.instance);
					cull_result.light_instances.push_back(RID::from_uint64(idata.instance_data_rid));
					if (cull_data.shadow_atlas.is_valid() && RSG::light_storage->light_has_shadow(idata.base_rid)) {
						RSG::light_storage->light_instance_mark_visible(RID::from_uint64(idata.instance_data_rid)); //mark it visible for shadow allocation later
					}

				} else if (base_type == RS::INSTANCE_REFLECTION_PROBE) {
					if (cull_data.render_reflection_probe != idata.instance) {
						//avoid entering The Matrix

						if ((idata.flags & InstanceData::FLAG_REFLECTION_PROBE_DIRTY) || RSG::light_storage->reflection_probe_instance_needs_redraw(RID::from_uint64(idata.instance_data_rid))) {
							InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(idata.instance->base_data);
							cull_data.cull->lock.lock();
							if (!reflection_probe->update_list.in_list()) {
								reflection_probe->render_step = 0;
								reflection_probe_render_list.add_last(&reflection_probe->update_list);
							}
							cull_data.cull->lock.unlock();

							idata.flags &= ~uint32_t(InstanceData::FLAG_REFLECTION_PROBE_DIRTY);
						}

						if (RSG::light_storage->reflection_probe_instance_has_reflection(RID::from_uint64(idata.instance_data_rid))) {
							cull_result.reflections.push_back(RID::from_uint64(idata.instance_data_rid));
						}
					}
				} else if (base_type == RS::INSTANCE_DECAL) {
					cull_result.decals.push_back(RID::from_uint64(idata.instance_data_rid));

				} else if (base_type == RS::INSTANCE_VOXEL_GI) {
					InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(idata.instance->base_data);
					cull_data.cull->lock.lock();
					if (!voxel_gi->update_element.in_list()) {
						voxel_gi_update_list.add(&voxel_gi->update_element);
					}
					cull_data.cull->lock.unlock();
					cull_result.voxel_gi_instances.push_back(RID::from_uint64(idata.instance_data_rid));

				} else if (base_type == RS::INSTANCE_LIGHTMAP) {
					cull_result.lightmaps.push_back(RID::from_uint64(idata.instance_data_rid));
				} else if (base_type == RS::INSTANCE_FOG_VOLUME) {
					cull_result.fog_volumes.push_back(RID::from_uint64(idata.instance_data_rid));
				} else if (base_type == RS::INSTANCE_VISIBLITY_NOTIFIER) {
					InstanceVisibilityNotifierData *vnd = idata.visibility_notifier;
					if (!vnd->list_element.in_list()) {
						visible_notifier_list_lock.lock();
						visible_notifier_list.add(&vnd->list_element);
						visible_notifier_list_lock.unlock();
						vnd->just_visible = true;
					}
					vnd->visible_in_frame = RSG::rasterizer->get_frame_number();
				} else if (((1 << base_type) & RS::INSTANCE_GEOMETRY_MASK) && !(idata.flags & InstanceData::FLAG_CAST_SHADOWS_ONLY)) {
					bool keep = true;

					if (idata.flags & InstanceData::FLAG_REDRAW_IF_VISIBLE) {
						RenderingServerDefault::redraw_request();
					}

					if (base_type == RS::INSTANCE_MESH) {
						mesh_visible = true;
					} else if (base_type == RS::INSTANCE_PARTICLES) {
						//particles visible? process them
						if (RSG::particles_storage->particles_is_inactive(idata.base_rid)) {
							//but if nothing is going on, don't do it.
							keep = false;
						} else {
							cull_data.cull->lock.lock();
							RSG::particles_storage->particles_request_process(idata.base_rid);
							cull_data.cull->lock.unlock();
							RSG::particles_storage->particles_set_view_axis(idata.base_rid, -cull_data.cam_transform.basis.get_column(2).normalized(), cull_data.cam_transform.basis.get_column(1).normalized());
							//particles visible? request redraw
							RenderingServerDefault::redraw_request();
						}
					}

					if (idata.parent_array_index != -1) {
						float fade = 1.0f;
						const uint32_t &parent_flags = cull_data.scenario->instance_data[idata.parent_array_index].flags;
						if (parent_flags & InstanceData::FLAG_VISIBILITY_DEPENDENCY_FADE_CHILDREN) {
							const int32_t &parent_idx = cull_data.scenario->instance_data[idata.parent_array_index].visibility_index;
							fade = cull_data.scenario->instance_visibility[parent_idx].children_fade_alpha;
						}
						idata.instance_geometry->set_parent_fade_alpha(fade);
					}

					if (geometry_instance_pair_mask & (1 << RS::INSTANCE_LIGHT) && (idata.flags & InstanceData::FLAG_GEOM_LIGHTING_DIRTY)) {
						InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
						uint32_t idx = 0;

						for (const Instance *E : geom->lights) {
							InstanceLightData *light = static_cast<InstanceLightData *>(E->base_data);
							instance_pair_buffer[idx++] = light->instance;
							if (idx == MAX_INSTANCE_PAIRS) {
								break;
							}
						}

						ERR_FAIL_NULL(geom->geometry_instance);
						geom->geometry_instance->pair_light_instances(instance_pair_buffer, idx);
						idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_LIGHTING_DIRTY);
					}

					if (idata.flags & InstanceData::FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY) {
						InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);

						ERR_FAIL_NULL(geom->geometry_instance);
						cull_data.cull->lock.lock();
						geom->geometry_instance->set_softshadow_projector_pairing(geom->softshadow_count > 0, geom->projector_count > 0);
						cull_data.cull->lock.unlock();
						idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_PROJECTOR_SOFTSHADOW_DIRTY);
					}

					if (geometry_instance_pair_mask & (1 << RS::INSTANCE_REFLECTION_PROBE) && (idata.flags & InstanceData::FLAG_GEOM_REFLECTION_DIRTY)) {
						InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
						uint32_t idx = 0;

						for (const Instance *E : geom->reflection_probes) {
							InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(E->base_data);

							instance_pair_buffer[idx++] = reflection_probe->instance;
							if (idx == MAX_INSTANCE_PAIRS) {
								break;
							}
						}

						ERR_FAIL_NULL(geom->geometry_instance);
						geom->geometry_instance->pair_reflection_probe_instances(instance_pair_buffer, idx);
						idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_REFLECTION_DIRTY);
					}

					if (geometry_instance_pair_mask & (1 << RS::INSTANCE_DECAL) && (idata.flags & InstanceData::FLAG_GEOM_DECAL_DIRTY)) {
						InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
						uint32_t idx = 0;

						for (const Instance *E : geom->decals) {
							InstanceDecalData *decal = static_cast<InstanceDecalData *>(E->base_data);

							instance_pair_buffer[idx++] = decal->instance;
							if (idx == MAX_INSTANCE_PAIRS) {
								break;
							}
						}

						ERR_FAIL_NULL(geom->geometry_instance);
						geom->geometry_instance->pair_decal_instances(instance_pair_buffer, idx);

						idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_DECAL_DIRTY);
					}

					if (idata.flags & InstanceData::FLAG_GEOM_VOXEL_GI_DIRTY) {
						InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
						uint32_t idx = 0;
						for (const Instance *E : geom->voxel_gi_instances) {
							InstanceVoxelGIData *voxel_gi = static_cast<InstanceVoxelGIData *>(E->base_data);

							instance_pair_buffer[idx++] = voxel_gi->probe_instance;
							if (idx == MAX_INSTANCE_PAIRS) {
								break;
							}
						}

						ERR_FAIL_NULL(geom->geometry_instance);
						geom->geometry_instance->pair_voxel_gi_instances(instance_pair_buffer, idx);

						idata.flags &= ~uint32_t(InstanceData::FLAG_GEOM_VOXEL_GI_DIRTY);
					}

					if ((idata.flags & InstanceData::FLAG_LIGHTMAP_CAPTURE) && idata.instance->last_frame_pass != frame_number && !idata.instance->lightmap_target_sh.is_empty() && !idata.instance->lightmap_sh.is_empty()) {
						InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(idata.instance->base_data);
						Color *sh = idata.instance->lightmap_sh.ptrw();
						const Color *target_sh = idata.instance->lightmap_target_sh.ptr();
						for (uint32_t j = 0; j < 9; j++) {
							sh[j] = sh[j].lerp(target_sh[j], MIN(1.0, lightmap_probe_update_speed));
						}
						ERR_FAIL_NULL(geom->geometry_instance);
						cull_data.cull->lock.lock();
						geom->geometry_instance->set_lightmap_capture(sh);
						cull_data.cull->lock.unlock();
						idata.instance->last_frame_pass = frame_number;
					}

					if (keep) {
						cull_result.geometry_instances.push_back(idata.instance_geometry);
					}
				}
			}

			for (uint32_t j = 0; j < cull_data.cull->shadow_count; j++) {
				if (!light_culler->cull_directional_light(cull_data.scenario->instance_aabbs[i], j)) {
					continue;
				}
				for (uint32_t k = 0; k < cull_data.cull->shadows[j].cascade_count; k++) {
					if (IN_FRUSTUM(cull_data.cull->shadows[j].cascades[k].frustum) && VIS_CHECK) {
						uint32_t base_type = idata.flags & InstanceData::FLAG_BASE_TYPE_MASK;

						if (((1 << base_type) & RS::INSTANCE_GEOMETRY_MASK) && idata.flags & InstanceData::FLAG_CAST_SHADOWS && LAYER_CHECK) {
							cull_result.directional_shadows[j].cascade_geometry_instances[k].push_back(idata.instance_geometry);
							mesh_visible = true;
						}
					}
				}
			}
		}

#undef HIDDEN_BY_VISIBILITY_CHECKS
#undef LAYER_CHECK
#undef IN_FRUSTUM
#undef VIS_RANGE_CHECK
#undef VIS_PARENT_CHECK
#undef VIS_CHECK
#undef OCCLUSION_CULLED

		for (uint32_t j = 0; j < cull_data.cull->sdfgi.region_count; j++) {
			if (cull_data.scenario->instance_aabbs[i].in_aabb(cull_data.cull->sdfgi.region_aabb[j])) {
				uint32_t base_type = idata.flags & InstanceData::FLAG_BASE_TYPE_MASK;

				if (base_type == RS::INSTANCE_LIGHT) {
					InstanceLightData *instance_light = (InstanceLightData *)idata.instance->base_data;
					if (instance_light->bake_mode == RS::LIGHT_BAKE_STATIC && cull_data.cull->sdfgi.region_cascade[j] <= instance_light->max_sdfgi_cascade) {
						if (sdfgi_last_light_index != i || sdfgi_last_light_cascade != cull_data.cull->sdfgi.region_cascade[j]) {
							sdfgi_last_light_index = i;
							sdfgi_last_light_cascade = cull_data.cull->sdfgi.region_cascade[j];
							cull_result.sdfgi_cascade_lights[sdfgi_last_light_cascade].push_back(instance_light->instance);
						}
					}
				} else if ((1 << base_type) & RS::INSTANCE_GEOMETRY_MASK) {
					if (idata.flags & InstanceData::FLAG_USES_BAKED_LIGHT) {
						cull_result.sdfgi_region_geometry_instances[j].push_back(idata.instance_geometry);
						mesh_visible = true;
					}
				}
			}
		}

		if (mesh_visible && cull_data.scenario->instance_data[i].flags & InstanceData::FLAG_USES_MESH_INSTANCE) {
			cull_result.mesh_instances.push_back(cull_data.scenario->instance_data[i].instance->mesh_instance);
		}
	}
}

void RendererSceneCull::_render_scene(const RendererSceneRender::CameraData *p_camera_data, const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, RID p_force_camera_attributes, RID p_compositor, uint32_t p_visible_layers, RID p_scenario, RID p_viewport, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, bool p_using_shadows, RenderingMethod::RenderInfo *r_render_info) {
	Instance *render_reflection_probe = instance_owner.get_or_null(p_reflection_probe); //if null, not rendering to it

	// Prepare the light - camera volume culling system.
	light_culler->prepare_camera(p_camera_data->main_transform, p_camera_data->main_projection);

	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	Vector3 camera_position = p_camera_data->main_transform.origin;

	ERR_FAIL_COND(p_render_buffers.is_null());

	render_pass++;

	scene_render->set_scene_pass(render_pass);

	if (p_reflection_probe.is_null()) {
		//no rendering code here, this is only to set up what needs to be done, request regions, etc.
		scene_render->sdfgi_update(p_render_buffers, p_environment, camera_position); //update conditions for SDFGI (whether its used or not)
	}

	RENDER_TIMESTAMP("Update Visibility Dependencies");

	if (scenario->instance_visibility.get_bin_count() > 0) {
		if (!scenario->viewport_visibility_masks.has(p_viewport)) {
			scenario_add_viewport_visibility_mask(scenario->self, p_viewport);
		}

		VisibilityCullData visibility_cull_data;
		visibility_cull_data.scenario = scenario;
		visibility_cull_data.viewport_mask = scenario->viewport_visibility_masks[p_viewport];
		visibility_cull_data.camera_position = camera_position;

		for (int i = scenario->instance_visibility.get_bin_count() - 1; i > 0; i--) { // We skip bin 0
			visibility_cull_data.cull_offset = scenario->instance_visibility.get_bin_start(i);
			visibility_cull_data.cull_count = scenario->instance_visibility.get_bin_size(i);

			if (visibility_cull_data.cull_count == 0) {
				continue;
			}

			if (visibility_cull_data.cull_count > thread_cull_threshold) {
				WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &RendererSceneCull::_visibility_cull_threaded, &visibility_cull_data, WorkerThreadPool::get_singleton()->get_thread_count(), -1, true, SNAME("VisibilityCullInstances"));
				WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
			} else {
				_visibility_cull(visibility_cull_data, visibility_cull_data.cull_offset, visibility_cull_data.cull_offset + visibility_cull_data.cull_count);
			}
		}
	}

	RENDER_TIMESTAMP("Cull 3D Scene");

	//rasterizer->set_camera(p_camera_data->main_transform, p_camera_data.main_projection, p_camera_data.is_orthogonal);

	/* STEP 2 - CULL */

	Vector<Plane> planes = p_camera_data->main_projection.get_projection_planes(p_camera_data->main_transform);
	cull.frustum = Frustum(planes);

	Vector<RID> directional_lights;
	// directional lights
	{
		cull.shadow_count = 0;

		Vector<Instance *> lights_with_shadow;

		for (Instance *E : scenario->directional_lights) {
			if (!E->visible) {
				continue;
			}

			if (directional_lights.size() > RendererSceneRender::MAX_DIRECTIONAL_LIGHTS) {
				break;
			}

			InstanceLightData *light = static_cast<InstanceLightData *>(E->base_data);

			//check shadow..

			if (light) {
				if (p_using_shadows && p_shadow_atlas.is_valid() && RSG::light_storage->light_has_shadow(E->base) && !(RSG::light_storage->light_get_type(E->base) == RS::LIGHT_DIRECTIONAL && RSG::light_storage->light_directional_get_sky_mode(E->base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY)) {
					lights_with_shadow.push_back(E);
				}
				//add to list
				directional_lights.push_back(light->instance);
			}
		}

		RSG::light_storage->set_directional_shadow_count(lights_with_shadow.size());

		for (int i = 0; i < lights_with_shadow.size(); i++) {
			_light_instance_setup_directional_shadow(i, lights_with_shadow[i], p_camera_data->main_transform, p_camera_data->main_projection, p_camera_data->is_orthogonal, p_camera_data->vaspect);
		}
	}

	{ //sdfgi
		cull.sdfgi.region_count = 0;

		if (p_reflection_probe.is_null()) {
			cull.sdfgi.cascade_light_count = 0;

			uint32_t prev_cascade = 0xFFFFFFFF;
			uint32_t pending_region_count = scene_render->sdfgi_get_pending_region_count(p_render_buffers);

			for (uint32_t i = 0; i < pending_region_count; i++) {
				cull.sdfgi.region_aabb[i] = scene_render->sdfgi_get_pending_region_bounds(p_render_buffers, i);
				uint32_t region_cascade = scene_render->sdfgi_get_pending_region_cascade(p_render_buffers, i);
				cull.sdfgi.region_cascade[i] = region_cascade;

				if (region_cascade != prev_cascade) {
					cull.sdfgi.cascade_light_index[cull.sdfgi.cascade_light_count] = region_cascade;
					cull.sdfgi.cascade_light_count++;
					prev_cascade = region_cascade;
				}
			}

			cull.sdfgi.region_count = pending_region_count;
		}
	}

	scene_cull_result.clear();

	{
		uint64_t cull_from = 0;
		uint64_t cull_to = scenario->instance_data.size();

		CullData cull_data;

		//prepare for eventual thread usage
		cull_data.cull = &cull;
		cull_data.scenario = scenario;
		cull_data.shadow_atlas = p_shadow_atlas;
		cull_data.cam_transform = p_camera_data->main_transform;
		cull_data.visible_layers = p_visible_layers;
		cull_data.render_reflection_probe = render_reflection_probe;
		cull_data.occlusion_buffer = RendererSceneOcclusionCull::get_singleton()->buffer_get_ptr(p_viewport);
		cull_data.camera_matrix = &p_camera_data->main_projection;
		cull_data.visibility_viewport_mask = scenario->viewport_visibility_masks.has(p_viewport) ? scenario->viewport_visibility_masks[p_viewport] : 0;
//#define DEBUG_CULL_TIME
#ifdef DEBUG_CULL_TIME
		uint64_t time_from = OS::get_singleton()->get_ticks_usec();
#endif

		if (cull_to > thread_cull_threshold) {
			//multiple threads
			for (InstanceCullResult &thread : scene_cull_result_threads) {
				thread.clear();
			}

			WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &RendererSceneCull::_scene_cull_threaded, &cull_data, scene_cull_result_threads.size(), -1, true, SNAME("RenderCullInstances"));
			WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);

			for (InstanceCullResult &thread : scene_cull_result_threads) {
				scene_cull_result.append_from(thread);
			}

		} else {
			//single threaded
			_scene_cull(cull_data, scene_cull_result, cull_from, cull_to);
		}

#ifdef DEBUG_CULL_TIME
		static float time_avg = 0;
		static uint32_t time_count = 0;
		time_avg += double(OS::get_singleton()->get_ticks_usec() - time_from) / 1000.0;
		time_count++;
		print_line("time taken: " + rtos(time_avg / time_count));
#endif

		if (scene_cull_result.mesh_instances.size()) {
			for (uint64_t i = 0; i < scene_cull_result.mesh_instances.size(); i++) {
				RSG::mesh_storage->mesh_instance_check_for_update(scene_cull_result.mesh_instances[i]);
			}
			RSG::mesh_storage->update_mesh_instances();
		}
	}

	//render shadows

	max_shadows_used = 0;

	if (p_using_shadows) { //setup shadow maps

		// Directional Shadows

		for (uint32_t i = 0; i < cull.shadow_count; i++) {
			for (uint32_t j = 0; j < cull.shadows[i].cascade_count; j++) {
				const Cull::Shadow::Cascade &c = cull.shadows[i].cascades[j];
				//			print_line("shadow " + itos(i) + " cascade " + itos(j) + " elements: " + itos(c.cull_result.size()));
				RSG::light_storage->light_instance_set_shadow_transform(cull.shadows[i].light_instance, c.projection, c.transform, c.zfar, c.split, j, c.shadow_texel_size, c.bias_scale, c.range_begin, c.uv_scale);
				if (max_shadows_used == MAX_UPDATE_SHADOWS) {
					continue;
				}
				render_shadow_data[max_shadows_used].light = cull.shadows[i].light_instance;
				render_shadow_data[max_shadows_used].pass = j;
				render_shadow_data[max_shadows_used].instances.merge_unordered(scene_cull_result.directional_shadows[i].cascade_geometry_instances[j]);
				max_shadows_used++;
			}
		}

		// Positional Shadows
		for (uint32_t i = 0; i < (uint32_t)scene_cull_result.lights.size(); i++) {
			Instance *ins = scene_cull_result.lights[i];

			if (!p_shadow_atlas.is_valid()) {
				continue;
			}

			InstanceLightData *light = static_cast<InstanceLightData *>(ins->base_data);

			if (!RSG::light_storage->light_instance_is_shadow_visible_at_position(light->instance, camera_position)) {
				continue;
			}

			float coverage = 0.f;

			{ //compute coverage

				Transform3D cam_xf = p_camera_data->main_transform;
				float zn = p_camera_data->main_projection.get_z_near();
				Plane p(-cam_xf.basis.get_column(2), cam_xf.origin + cam_xf.basis.get_column(2) * -zn); //camera near plane

				// near plane half width and height
				Vector2 vp_half_extents = p_camera_data->main_projection.get_viewport_half_extents();

				switch (RSG::light_storage->light_get_type(ins->base)) {
					case RS::LIGHT_OMNI: {
						float radius = RSG::light_storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);

						//get two points parallel to near plane
						Vector3 points[2] = {
							ins->transform.origin,
							ins->transform.origin + cam_xf.basis.get_column(0) * radius
						};

						if (!p_camera_data->is_orthogonal) {
							//if using perspetive, map them to near plane
							for (int j = 0; j < 2; j++) {
								if (p.distance_to(points[j]) < 0) {
									points[j].z = -zn; //small hack to keep size constant when hitting the screen
								}

								p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
							}
						}

						float screen_diameter = points[0].distance_to(points[1]) * 2;
						coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);
					} break;
					case RS::LIGHT_SPOT: {
						float radius = RSG::light_storage->light_get_param(ins->base, RS::LIGHT_PARAM_RANGE);
						float angle = RSG::light_storage->light_get_param(ins->base, RS::LIGHT_PARAM_SPOT_ANGLE);

						float w = radius * Math::sin(Math::deg_to_rad(angle));
						float d = radius * Math::cos(Math::deg_to_rad(angle));

						Vector3 base = ins->transform.origin - ins->transform.basis.get_column(2).normalized() * d;

						Vector3 points[2] = {
							base,
							base + cam_xf.basis.get_column(0) * w
						};

						if (!p_camera_data->is_orthogonal) {
							//if using perspetive, map them to near plane
							for (int j = 0; j < 2; j++) {
								if (p.distance_to(points[j]) < 0) {
									points[j].z = -zn; //small hack to keep size constant when hitting the screen
								}

								p.intersects_segment(cam_xf.origin, points[j], &points[j]); //map to plane
							}
						}

						float screen_diameter = points[0].distance_to(points[1]) * 2;
						coverage = screen_diameter / (vp_half_extents.x + vp_half_extents.y);

					} break;
					default: {
						ERR_PRINT("Invalid Light Type");
					}
				}
			}

			// We can detect whether multiple cameras are hitting this light, whether or not the shadow is dirty,
			// so that we can turn off tighter caster culling.
			light->detect_light_intersects_multiple_cameras(Engine::get_singleton()->get_frames_drawn());

			if (light->is_shadow_dirty()) {
				// Dirty shadows have no need to be drawn if
				// the light volume doesn't intersect the camera frustum.

				// Returns false if the entire light can be culled.
				bool allow_redraw = light_culler->prepare_regular_light(*ins);

				// Directional lights aren't handled here, _light_instance_update_shadow is called from elsewhere.
				// Checking for this in case this changes, as this is assumed.
				DEV_CHECK_ONCE(RSG::light_storage->light_get_type(ins->base) != RS::LIGHT_DIRECTIONAL);

				// Tighter caster culling to the camera frustum should work correctly with multiple viewports + cameras.
				// The first camera will cull tightly, but if the light is present on more than 1 camera, the second will
				// do a full render, and mark the light as non-dirty.
				// There is however a cost to tighter shadow culling in this situation (2 shadow updates in 1 frame),
				// so we should detect this and switch off tighter caster culling automatically.
				// This is done in the logic for `decrement_shadow_dirty()`.
				if (allow_redraw) {
					light->last_version++;
					light->decrement_shadow_dirty();
				}
			}

			bool redraw = RSG::light_storage->shadow_atlas_update_light(p_shadow_atlas, light->instance, coverage, light->last_version);

			if (redraw && max_shadows_used < MAX_UPDATE_SHADOWS) {
				//must redraw!
				RENDER_TIMESTAMP("> Render Light3D " + itos(i));
				if (_light_instance_update_shadow(ins, p_camera_data->main_transform, p_camera_data->main_projection, p_camera_data->is_orthogonal, p_camera_data->vaspect, p_shadow_atlas, scenario, p_screen_mesh_lod_threshold, p_visible_layers)) {
					light->make_shadow_dirty();
				}
				RENDER_TIMESTAMP("< Render Light3D " + itos(i));
			} else {
				if (redraw) {
					light->make_shadow_dirty();
				}
			}
		}
	}

	//render SDFGI

	{
		// Q: Should this whole block be skipped if we're rendering our reflection probe?

		sdfgi_update_data.update_static = false;

		if (cull.sdfgi.region_count > 0) {
			//update regions
			for (uint32_t i = 0; i < cull.sdfgi.region_count; i++) {
				render_sdfgi_data[i].instances.merge_unordered(scene_cull_result.sdfgi_region_geometry_instances[i]);
				render_sdfgi_data[i].region = i;
			}
			//check if static lights were culled
			bool static_lights_culled = false;
			for (uint32_t i = 0; i < cull.sdfgi.cascade_light_count; i++) {
				if (scene_cull_result.sdfgi_cascade_lights[i].size()) {
					static_lights_culled = true;
					break;
				}
			}

			if (static_lights_culled) {
				sdfgi_update_data.static_cascade_count = cull.sdfgi.cascade_light_count;
				sdfgi_update_data.static_cascade_indices = cull.sdfgi.cascade_light_index;
				sdfgi_update_data.static_positional_lights = scene_cull_result.sdfgi_cascade_lights;
				sdfgi_update_data.update_static = true;
			}
		}

		if (p_reflection_probe.is_null()) {
			sdfgi_update_data.directional_lights = &directional_lights;
			sdfgi_update_data.positional_light_instances = scenario->dynamic_lights.ptr();
			sdfgi_update_data.positional_light_count = scenario->dynamic_lights.size();
		}
	}

	//append the directional lights to the lights culled
	for (int i = 0; i < directional_lights.size(); i++) {
		scene_cull_result.light_instances.push_back(directional_lights[i]);
	}

	RID camera_attributes;
	if (p_force_camera_attributes.is_valid()) {
		camera_attributes = p_force_camera_attributes;
	} else {
		camera_attributes = scenario->camera_attributes;
	}

	/* PROCESS GEOMETRY AND DRAW SCENE */

	RID occluders_tex;
	const RendererSceneRender::CameraData *prev_camera_data = p_camera_data;
	if (p_viewport.is_valid()) {
		occluders_tex = RSG::viewport->viewport_get_occluder_debug_texture(p_viewport);
		prev_camera_data = RSG::viewport->viewport_get_prev_camera_data(p_viewport);
	}

	RENDER_TIMESTAMP("Render 3D Scene");
	scene_render->render_scene(p_render_buffers, p_camera_data, prev_camera_data, scene_cull_result.geometry_instances, scene_cull_result.light_instances, scene_cull_result.reflections, scene_cull_result.voxel_gi_instances, scene_cull_result.decals, scene_cull_result.lightmaps, scene_cull_result.fog_volumes, p_environment, camera_attributes, p_compositor, p_shadow_atlas, occluders_tex, p_reflection_probe.is_valid() ? RID() : scenario->reflection_atlas, p_reflection_probe, p_reflection_probe_pass, p_screen_mesh_lod_threshold, render_shadow_data, max_shadows_used, render_sdfgi_data, cull.sdfgi.region_count, &sdfgi_update_data, r_render_info);

	if (p_viewport.is_valid()) {
		RSG::viewport->viewport_set_prev_camera_data(p_viewport, p_camera_data);
	}

	for (uint32_t i = 0; i < max_shadows_used; i++) {
		render_shadow_data[i].instances.clear();
	}
	max_shadows_used = 0;

	for (uint32_t i = 0; i < cull.sdfgi.region_count; i++) {
		render_sdfgi_data[i].instances.clear();
	}
}

RID RendererSceneCull::_render_get_environment(RID p_camera, RID p_scenario) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	if (camera && scene_render->is_environment(camera->env)) {
		return camera->env;
	}

	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	if (!scenario) {
		return RID();
	}
	if (scene_render->is_environment(scenario->environment)) {
		return scenario->environment;
	}

	if (scene_render->is_environment(scenario->fallback_environment)) {
		return scenario->fallback_environment;
	}

	return RID();
}

RID RendererSceneCull::_render_get_compositor(RID p_camera, RID p_scenario) {
	Camera *camera = camera_owner.get_or_null(p_camera);
	if (camera && scene_render->is_compositor(camera->compositor)) {
		return camera->compositor;
	}

	Scenario *scenario = scenario_owner.get_or_null(p_scenario);
	if (scenario && scene_render->is_compositor(scenario->compositor)) {
		return scenario->compositor;
	}

	return RID();
}

void RendererSceneCull::render_empty_scene(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_scenario, RID p_shadow_atlas) {
#ifndef _3D_DISABLED
	Scenario *scenario = scenario_owner.get_or_null(p_scenario);

	RID environment;
	if (scenario->environment.is_valid()) {
		environment = scenario->environment;
	} else {
		environment = scenario->fallback_environment;
	}
	RID compositor = scenario->compositor;
	RENDER_TIMESTAMP("Render Empty 3D Scene");

	RendererSceneRender::CameraData camera_data;
	camera_data.set_camera(Transform3D(), Projection(), true, false);

	scene_render->render_scene(p_render_buffers, &camera_data, &camera_data, PagedArray<RenderGeometryInstance *>(), PagedArray<RID>(), PagedArray<RID>(), PagedArray<RID>(), PagedArray<RID>(), PagedArray<RID>(), PagedArray<RID>(), environment, RID(), compositor, p_shadow_atlas, RID(), scenario->reflection_atlas, RID(), 0, 0, nullptr, 0, nullptr, 0, nullptr);
#endif
}

bool RendererSceneCull::_render_reflection_probe_step(Instance *p_instance, int p_step) {
	InstanceReflectionProbeData *reflection_probe = static_cast<InstanceReflectionProbeData *>(p_instance->base_data);
	Scenario *scenario = p_instance->scenario;
	ERR_FAIL_NULL_V(scenario, true);

	RenderingServerDefault::redraw_request(); //update, so it updates in editor

	if (p_step == 0) {
		if (!RSG::light_storage->reflection_probe_instance_begin_render(reflection_probe->instance, scenario->reflection_atlas)) {
			return true; // All full, no atlas entry to render to.
		}
	} else if (!RSG::light_storage->reflection_probe_has_atlas_index(reflection_probe->instance)) {
		// We don't have an atlas to render to, just round off.
		// This is likely due to the atlas being reset.
		// If so the probe will be marked as dirty and start over.
		return true;
	}

	if (p_step >= 0 && p_step < 6) {
		static const Vector3 view_normals[6] = {
			Vector3(+1, 0, 0),
			Vector3(-1, 0, 0),
			Vector3(0, +1, 0),
			Vector3(0, -1, 0),
			Vector3(0, 0, +1),
			Vector3(0, 0, -1)
		};
		static const Vector3 view_up[6] = {
			Vector3(0, -1, 0),
			Vector3(0, -1, 0),
			Vector3(0, 0, +1),
			Vector3(0, 0, -1),
			Vector3(0, -1, 0),
			Vector3(0, -1, 0)
		};

		Vector3 probe_size = RSG::light_storage->reflection_probe_get_size(p_instance->base);
		Vector3 origin_offset = RSG::light_storage->reflection_probe_get_origin_offset(p_instance->base);
		float max_distance = RSG::light_storage->reflection_probe_get_origin_max_distance(p_instance->base);
		float atlas_size = RSG::light_storage->reflection_atlas_get_size(scenario->reflection_atlas);
		float mesh_lod_threshold = RSG::light_storage->reflection_probe_get_mesh_lod_threshold(p_instance->base) / atlas_size;

		Vector3 edge = view_normals[p_step] * probe_size / 2;
		float distance = ABS(view_normals[p_step].dot(edge) - view_normals[p_step].dot(origin_offset)); //distance from origin offset to actual view distance limit

		max_distance = MAX(max_distance, distance);

		//render cubemap side
		Projection cm;
		cm.set_perspective(90, 1, 0.01, max_distance);

		Transform3D local_view;
		local_view.set_look_at(origin_offset, origin_offset + view_normals[p_step], view_up[p_step]);

		Transform3D xform = p_instance->transform * local_view;

		RID shadow_atlas;

		bool use_shadows = RSG::light_storage->reflection_probe_renders_shadows(p_instance->base);
		if (use_shadows) {
			shadow_atlas = scenario->reflection_probe_shadow_atlas;
		}

		RID environment;
		if (scenario->environment.is_valid()) {
			environment = scenario->environment;
		} else {
			environment = scenario->fallback_environment;
		}

		RENDER_TIMESTAMP("Render ReflectionProbe, Step " + itos(p_step));
		RendererSceneRender::CameraData camera_data;
		camera_data.set_camera(xform, cm, false, false);

		Ref<RenderSceneBuffers> render_buffers = RSG::light_storage->reflection_probe_atlas_get_render_buffers(scenario->reflection_atlas);
		_render_scene(&camera_data, render_buffers, environment, RID(), RID(), RSG::light_storage->reflection_probe_get_cull_mask(p_instance->base), p_instance->scenario->self, RID(), shadow_atlas, reflection_probe->instance, p_step, mesh_lod_threshold, use_shadows);

	} else {
		//do roughness postprocess step until it believes it's done
		RENDER_TIMESTAMP("Post-Process ReflectionProbe, Step " + itos(p_step));
		return RSG::light_storage->reflection_probe_instance_postprocess_step(reflection_probe->instance);
	}

	return false;
}

void RendererSceneCull::render_probes() {
	/* REFLECTION PROBES */

	SelfList<InstanceReflectionProbeData> *ref_probe = reflection_probe_render_list.first();
	Vector<SelfList<InstanceReflectionProbeData> *> done_list;

	bool busy = false;

	if (ref_probe) {
		RENDER_TIMESTAMP("Render ReflectionProbes");

		while (ref_probe) {
			SelfList<InstanceReflectionProbeData> *next = ref_probe->next();
			RID base = ref_probe->self()->owner->base;

			switch (RSG::light_storage->reflection_probe_get_update_mode(base)) {
				case RS::REFLECTION_PROBE_UPDATE_ONCE: {
					if (busy) { // Already rendering something.
						break;
					}

					bool done = _render_reflection_probe_step(ref_probe->self()->owner, ref_probe->self()->render_step);
					if (done) {
						done_list.push_back(ref_probe);
					} else {
						ref_probe->self()->render_step++;
					}

					busy = true; // Do not render another one of this kind.
				} break;
				case RS::REFLECTION_PROBE_UPDATE_ALWAYS: {
					int step = 0;
					bool done = false;
					while (!done) {
						done = _render_reflection_probe_step(ref_probe->self()->owner, step);
						step++;
					}

					done_list.push_back(ref_probe);
				} break;
			}

			ref_probe = next;
		}

		// Now remove from our list
		for (SelfList<InstanceReflectionProbeData> *rp : done_list) {
			reflection_probe_render_list.remove(rp);
		}
	}

	/* VOXEL GIS */

	SelfList<InstanceVoxelGIData> *voxel_gi = voxel_gi_update_list.first();

	if (voxel_gi) {
		RENDER_TIMESTAMP("Render VoxelGI");
	}

	while (voxel_gi) {
		SelfList<InstanceVoxelGIData> *next = voxel_gi->next();

		InstanceVoxelGIData *probe = voxel_gi->self();
		//Instance *instance_probe = probe->owner;

		//check if probe must be setup, but don't do if on the lighting thread

		bool cache_dirty = false;
		int cache_count = 0;
		{
			int light_cache_size = probe->light_cache.size();
			const InstanceVoxelGIData::LightCache *caches = probe->light_cache.ptr();
			const RID *instance_caches = probe->light_instances.ptr();

			int idx = 0; //must count visible lights
			for (Instance *E : probe->lights) {
				Instance *instance = E;
				InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
				if (!instance->visible) {
					continue;
				}
				if (cache_dirty) {
					//do nothing, since idx must count all visible lights anyway
				} else if (idx >= light_cache_size) {
					cache_dirty = true;
				} else {
					const InstanceVoxelGIData::LightCache *cache = &caches[idx];

					if (
							instance_caches[idx] != instance_light->instance ||
							cache->has_shadow != RSG::light_storage->light_has_shadow(instance->base) ||
							cache->type != RSG::light_storage->light_get_type(instance->base) ||
							cache->transform != instance->transform ||
							cache->color != RSG::light_storage->light_get_color(instance->base) ||
							cache->energy != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
							cache->intensity != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INTENSITY) ||
							cache->bake_energy != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
							cache->radius != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
							cache->attenuation != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
							cache->spot_angle != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
							cache->spot_attenuation != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION)) {
						cache_dirty = true;
					}
				}

				idx++;
			}

			for (const Instance *instance : probe->owner->scenario->directional_lights) {
				InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
				if (!instance->visible) {
					continue;
				}
				if (cache_dirty) {
					//do nothing, since idx must count all visible lights anyway
				} else if (idx >= light_cache_size) {
					cache_dirty = true;
				} else {
					const InstanceVoxelGIData::LightCache *cache = &caches[idx];

					if (
							instance_caches[idx] != instance_light->instance ||
							cache->has_shadow != RSG::light_storage->light_has_shadow(instance->base) ||
							cache->type != RSG::light_storage->light_get_type(instance->base) ||
							cache->transform != instance->transform ||
							cache->color != RSG::light_storage->light_get_color(instance->base) ||
							cache->energy != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY) ||
							cache->intensity != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INTENSITY) ||
							cache->bake_energy != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY) ||
							cache->radius != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE) ||
							cache->attenuation != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION) ||
							cache->spot_angle != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE) ||
							cache->spot_attenuation != RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION) ||
							cache->sky_mode != RSG::light_storage->light_directional_get_sky_mode(instance->base)) {
						cache_dirty = true;
					}
				}

				idx++;
			}

			if (idx != light_cache_size) {
				cache_dirty = true;
			}

			cache_count = idx;
		}

		bool update_lights = scene_render->voxel_gi_needs_update(probe->probe_instance);

		if (cache_dirty) {
			probe->light_cache.resize(cache_count);
			probe->light_instances.resize(cache_count);

			if (cache_count) {
				InstanceVoxelGIData::LightCache *caches = probe->light_cache.ptrw();
				RID *instance_caches = probe->light_instances.ptrw();

				int idx = 0; //must count visible lights
				for (Instance *E : probe->lights) {
					Instance *instance = E;
					InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
					if (!instance->visible) {
						continue;
					}

					InstanceVoxelGIData::LightCache *cache = &caches[idx];

					instance_caches[idx] = instance_light->instance;
					cache->has_shadow = RSG::light_storage->light_has_shadow(instance->base);
					cache->type = RSG::light_storage->light_get_type(instance->base);
					cache->transform = instance->transform;
					cache->color = RSG::light_storage->light_get_color(instance->base);
					cache->energy = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
					cache->intensity = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INTENSITY);
					cache->bake_energy = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
					cache->radius = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
					cache->attenuation = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
					cache->spot_angle = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
					cache->spot_attenuation = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);

					idx++;
				}
				for (const Instance *instance : probe->owner->scenario->directional_lights) {
					InstanceLightData *instance_light = (InstanceLightData *)instance->base_data;
					if (!instance->visible) {
						continue;
					}

					InstanceVoxelGIData::LightCache *cache = &caches[idx];

					instance_caches[idx] = instance_light->instance;
					cache->has_shadow = RSG::light_storage->light_has_shadow(instance->base);
					cache->type = RSG::light_storage->light_get_type(instance->base);
					cache->transform = instance->transform;
					cache->color = RSG::light_storage->light_get_color(instance->base);
					cache->energy = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ENERGY);
					cache->intensity = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INTENSITY);
					cache->bake_energy = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_INDIRECT_ENERGY);
					cache->radius = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_RANGE);
					cache->attenuation = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_ATTENUATION);
					cache->spot_angle = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ANGLE);
					cache->spot_attenuation = RSG::light_storage->light_get_param(instance->base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
					cache->sky_mode = RSG::light_storage->light_directional_get_sky_mode(instance->base);

					idx++;
				}
			}

			update_lights = true;
		}

		scene_cull_result.geometry_instances.clear();

		RID instance_pair_buffer[MAX_INSTANCE_PAIRS];

		for (Instance *E : probe->dynamic_geometries) {
			Instance *ins = E;
			if (!ins->visible) {
				continue;
			}
			InstanceGeometryData *geom = (InstanceGeometryData *)ins->base_data;

			if (ins->scenario && ins->array_index >= 0 && (ins->scenario->instance_data[ins->array_index].flags & InstanceData::FLAG_GEOM_VOXEL_GI_DIRTY)) {
				uint32_t idx = 0;
				for (const Instance *F : geom->voxel_gi_instances) {
					InstanceVoxelGIData *voxel_gi2 = static_cast<InstanceVoxelGIData *>(F->base_data);

					instance_pair_buffer[idx++] = voxel_gi2->probe_instance;
					if (idx == MAX_INSTANCE_PAIRS) {
						break;
					}
				}

				ERR_FAIL_NULL(geom->geometry_instance);
				geom->geometry_instance->pair_voxel_gi_instances(instance_pair_buffer, idx);

				ins->scenario->instance_data[ins->array_index].flags &= ~uint32_t(InstanceData::FLAG_GEOM_VOXEL_GI_DIRTY);
			}

			ERR_FAIL_NULL(geom->geometry_instance);
			scene_cull_result.geometry_instances.push_back(geom->geometry_instance);
		}

		scene_render->voxel_gi_update(probe->probe_instance, update_lights, probe->light_instances, scene_cull_result.geometry_instances);

		voxel_gi_update_list.remove(voxel_gi);

		voxel_gi = next;
	}
}

void RendererSceneCull::render_particle_colliders() {
	while (heightfield_particle_colliders_update_list.begin()) {
		Instance *hfpc = *heightfield_particle_colliders_update_list.begin();

		if (hfpc->scenario && hfpc->base_type == RS::INSTANCE_PARTICLES_COLLISION && RSG::particles_storage->particles_collision_is_heightfield(hfpc->base)) {
			//update heightfield
			instance_cull_result.clear();
			scene_cull_result.geometry_instances.clear();

			struct CullAABB {
				PagedArray<Instance *> *result;
				_FORCE_INLINE_ bool operator()(void *p_data) {
					Instance *p_instance = (Instance *)p_data;
					result->push_back(p_instance);
					return false;
				}
			};

			CullAABB cull_aabb;
			cull_aabb.result = &instance_cull_result;
			hfpc->scenario->indexers[Scenario::INDEXER_GEOMETRY].aabb_query(hfpc->transformed_aabb, cull_aabb);
			hfpc->scenario->indexers[Scenario::INDEXER_VOLUMES].aabb_query(hfpc->transformed_aabb, cull_aabb);

			for (int i = 0; i < (int)instance_cull_result.size(); i++) {
				Instance *instance = instance_cull_result[i];
				if (!instance || !((1 << instance->base_type) & (RS::INSTANCE_GEOMETRY_MASK & (~(1 << RS::INSTANCE_PARTICLES))))) { //all but particles to avoid self collision
					continue;
				}
				InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(instance->base_data);
				ERR_FAIL_NULL(geom->geometry_instance);
				scene_cull_result.geometry_instances.push_back(geom->geometry_instance);
			}

			scene_render->render_particle_collider_heightfield(hfpc->base, hfpc->transform, scene_cull_result.geometry_instances);
		}
		heightfield_particle_colliders_update_list.remove(heightfield_particle_colliders_update_list.begin());
	}
}

void RendererSceneCull::_update_instance_shader_uniforms_from_material(HashMap<StringName, Instance::InstanceShaderParameter> &isparams, const HashMap<StringName, Instance::InstanceShaderParameter> &existing_isparams, RID p_material) {
	List<RendererMaterialStorage::InstanceShaderParam> plist;
	RSG::material_storage->material_get_instance_shader_parameters(p_material, &plist);
	for (const RendererMaterialStorage::InstanceShaderParam &E : plist) {
		StringName name = E.info.name;
		if (isparams.has(name)) {
			if (isparams[name].info.type != E.info.type) {
				WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E.info.name + "', but they do it with different data types. Only the first one (in order) will display correctly.");
			}
			if (isparams[name].index != E.index) {
				WARN_PRINT("More than one material in instance export the same instance shader uniform '" + E.info.name + "', but they do it with different indices. Only the first one (in order) will display correctly.");
			}
			continue; //first one found always has priority
		}

		Instance::InstanceShaderParameter isp;
		isp.index = E.index;
		isp.info = E.info;
		isp.default_value = E.default_value;
		if (existing_isparams.has(name)) {
			isp.value = existing_isparams[name].value;
		} else {
			isp.value = E.default_value;
		}
		isparams[name] = isp;
	}
}

void RendererSceneCull::_update_dirty_instance(Instance *p_instance) {
	if (p_instance->update_aabb) {
		_update_instance_aabb(p_instance);
	}

	if (p_instance->update_dependencies) {
		p_instance->dependency_tracker.update_begin();

		if (p_instance->base.is_valid()) {
			RSG::utilities->base_update_dependency(p_instance->base, &p_instance->dependency_tracker);
		}

		if (p_instance->material_override.is_valid()) {
			RSG::material_storage->material_update_dependency(p_instance->material_override, &p_instance->dependency_tracker);
		}

		if (p_instance->material_overlay.is_valid()) {
			RSG::material_storage->material_update_dependency(p_instance->material_overlay, &p_instance->dependency_tracker);
		}

		if (p_instance->base_type == RS::INSTANCE_MESH) {
			//remove materials no longer used and un-own them

			int new_mat_count = RSG::mesh_storage->mesh_get_surface_count(p_instance->base);
			p_instance->materials.resize(new_mat_count);

			_instance_update_mesh_instance(p_instance);
		}

		if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
			// update the process material dependency

			RID particle_material = RSG::particles_storage->particles_get_process_material(p_instance->base);
			if (particle_material.is_valid()) {
				RSG::material_storage->material_update_dependency(particle_material, &p_instance->dependency_tracker);
			}
		}

		if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
			InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);

			bool can_cast_shadows = true;
			bool is_animated = false;
			HashMap<StringName, Instance::InstanceShaderParameter> isparams;

			if (p_instance->cast_shadows == RS::SHADOW_CASTING_SETTING_OFF) {
				can_cast_shadows = false;
			}

			if (p_instance->material_override.is_valid()) {
				if (!RSG::material_storage->material_casts_shadows(p_instance->material_override)) {
					can_cast_shadows = false;
				}
				is_animated = RSG::material_storage->material_is_animated(p_instance->material_override);
				_update_instance_shader_uniforms_from_material(isparams, p_instance->instance_shader_uniforms, p_instance->material_override);
			} else {
				if (p_instance->base_type == RS::INSTANCE_MESH) {
					RID mesh = p_instance->base;

					if (mesh.is_valid()) {
						bool cast_shadows = false;

						for (int i = 0; i < p_instance->materials.size(); i++) {
							RID mat = p_instance->materials[i].is_valid() ? p_instance->materials[i] : RSG::mesh_storage->mesh_surface_get_material(mesh, i);

							if (!mat.is_valid()) {
								cast_shadows = true;
							} else {
								if (RSG::material_storage->material_casts_shadows(mat)) {
									cast_shadows = true;
								}

								if (RSG::material_storage->material_is_animated(mat)) {
									is_animated = true;
								}

								_update_instance_shader_uniforms_from_material(isparams, p_instance->instance_shader_uniforms, mat);

								RSG::material_storage->material_update_dependency(mat, &p_instance->dependency_tracker);
							}
						}

						if (!cast_shadows) {
							can_cast_shadows = false;
						}
					}

				} else if (p_instance->base_type == RS::INSTANCE_MULTIMESH) {
					RID mesh = RSG::mesh_storage->multimesh_get_mesh(p_instance->base);
					if (mesh.is_valid()) {
						bool cast_shadows = false;

						int sc = RSG::mesh_storage->mesh_get_surface_count(mesh);
						for (int i = 0; i < sc; i++) {
							RID mat = RSG::mesh_storage->mesh_surface_get_material(mesh, i);

							if (!mat.is_valid()) {
								cast_shadows = true;

							} else {
								if (RSG::material_storage->material_casts_shadows(mat)) {
									cast_shadows = true;
								}
								if (RSG::material_storage->material_is_animated(mat)) {
									is_animated = true;
								}

								_update_instance_shader_uniforms_from_material(isparams, p_instance->instance_shader_uniforms, mat);

								RSG::material_storage->material_update_dependency(mat, &p_instance->dependency_tracker);
							}
						}

						if (!cast_shadows) {
							can_cast_shadows = false;
						}

						RSG::utilities->base_update_dependency(mesh, &p_instance->dependency_tracker);
					}
				} else if (p_instance->base_type == RS::INSTANCE_PARTICLES) {
					bool cast_shadows = false;

					int dp = RSG::particles_storage->particles_get_draw_passes(p_instance->base);

					for (int i = 0; i < dp; i++) {
						RID mesh = RSG::particles_storage->particles_get_draw_pass_mesh(p_instance->base, i);
						if (!mesh.is_valid()) {
							continue;
						}

						int sc = RSG::mesh_storage->mesh_get_surface_count(mesh);
						for (int j = 0; j < sc; j++) {
							RID mat = RSG::mesh_storage->mesh_surface_get_material(mesh, j);

							if (!mat.is_valid()) {
								cast_shadows = true;
							} else {
								if (RSG::material_storage->material_casts_shadows(mat)) {
									cast_shadows = true;
								}

								if (RSG::material_storage->material_is_animated(mat)) {
									is_animated = true;
								}

								_update_instance_shader_uniforms_from_material(isparams, p_instance->instance_shader_uniforms, mat);

								RSG::material_storage->material_update_dependency(mat, &p_instance->dependency_tracker);
							}
						}
					}

					if (!cast_shadows) {
						can_cast_shadows = false;
					}
				}
			}

			if (p_instance->material_overlay.is_valid()) {
				can_cast_shadows = can_cast_shadows && RSG::material_storage->material_casts_shadows(p_instance->material_overlay);
				is_animated = is_animated || RSG::material_storage->material_is_animated(p_instance->material_overlay);
				_update_instance_shader_uniforms_from_material(isparams, p_instance->instance_shader_uniforms, p_instance->material_overlay);
			}

			if (can_cast_shadows != geom->can_cast_shadows) {
				//ability to cast shadows change, let lights now
				for (const Instance *E : geom->lights) {
					InstanceLightData *light = static_cast<InstanceLightData *>(E->base_data);
					light->make_shadow_dirty();
				}

				geom->can_cast_shadows = can_cast_shadows;
			}

			geom->material_is_animated = is_animated;
			p_instance->instance_shader_uniforms = isparams;

			if (p_instance->instance_allocated_shader_uniforms != (p_instance->instance_shader_uniforms.size() > 0)) {
				p_instance->instance_allocated_shader_uniforms = (p_instance->instance_shader_uniforms.size() > 0);
				if (p_instance->instance_allocated_shader_uniforms) {
					p_instance->instance_allocated_shader_uniforms_offset = RSG::material_storage->global_shader_parameters_instance_allocate(p_instance->self);
					ERR_FAIL_NULL(geom->geometry_instance);
					geom->geometry_instance->set_instance_shader_uniforms_offset(p_instance->instance_allocated_shader_uniforms_offset);

					for (const KeyValue<StringName, Instance::InstanceShaderParameter> &E : p_instance->instance_shader_uniforms) {
						if (E.value.value.get_type() != Variant::NIL) {
							int flags_count = 0;
							if (E.value.info.hint == PROPERTY_HINT_FLAGS) {
								// A small hack to detect boolean flags count and prevent overhead.
								switch (E.value.info.hint_string.length()) {
									case 3: // "x,y"
										flags_count = 1;
										break;
									case 5: // "x,y,z"
										flags_count = 2;
										break;
									case 7: // "x,y,z,w"
										flags_count = 3;
										break;
								}
							}
							RSG::material_storage->global_shader_parameters_instance_update(p_instance->self, E.value.index, E.value.value, flags_count);
						}
					}
				} else {
					RSG::material_storage->global_shader_parameters_instance_free(p_instance->self);
					p_instance->instance_allocated_shader_uniforms_offset = -1;
					ERR_FAIL_NULL(geom->geometry_instance);
					geom->geometry_instance->set_instance_shader_uniforms_offset(-1);
				}
			}
		}

		if (p_instance->skeleton.is_valid()) {
			RSG::mesh_storage->skeleton_update_dependency(p_instance->skeleton, &p_instance->dependency_tracker);
		}

		p_instance->dependency_tracker.update_end();

		if ((1 << p_instance->base_type) & RS::INSTANCE_GEOMETRY_MASK) {
			InstanceGeometryData *geom = static_cast<InstanceGeometryData *>(p_instance->base_data);
			ERR_FAIL_NULL(geom->geometry_instance);
			geom->geometry_instance->set_surface_materials(p_instance->materials);
		}
	}

	_instance_update_list.remove(&p_instance->update_item);

	_update_instance(p_instance);

	p_instance->update_aabb = false;
	p_instance->update_dependencies = false;
}

void RendererSceneCull::update_dirty_instances() {
	while (_instance_update_list.first()) {
		_update_dirty_instance(_instance_update_list.first()->self());
	}

	// Update dirty resources after dirty instances as instance updates may affect resources.
	RSG::utilities->update_dirty_resources();
}

void RendererSceneCull::update() {
	//optimize bvhs

	uint32_t rid_count = scenario_owner.get_rid_count();
	RID *rids = (RID *)alloca(sizeof(RID) * rid_count);
	scenario_owner.fill_owned_buffer(rids);
	for (uint32_t i = 0; i < rid_count; i++) {
		Scenario *s = scenario_owner.get_or_null(rids[i]);
		s->indexers[Scenario::INDEXER_GEOMETRY].optimize_incremental(indexer_update_iterations);
		s->indexers[Scenario::INDEXER_VOLUMES].optimize_incremental(indexer_update_iterations);
	}
	scene_render->update();
	update_dirty_instances();
	render_particle_colliders();
}

bool RendererSceneCull::free(RID p_rid) {
	if (p_rid.is_null()) {
		return true;
	}

	if (scene_render->free(p_rid)) {
		return true;
	}

	if (camera_owner.owns(p_rid)) {
		camera_owner.free(p_rid);

	} else if (scenario_owner.owns(p_rid)) {
		Scenario *scenario = scenario_owner.get_or_null(p_rid);

		while (scenario->instances.first()) {
			instance_set_scenario(scenario->instances.first()->self()->self, RID());
		}
		scenario->instance_aabbs.reset();
		scenario->instance_data.reset();
		scenario->instance_visibility.reset();

		RSG::light_storage->shadow_atlas_free(scenario->reflection_probe_shadow_atlas);
		RSG::light_storage->reflection_atlas_free(scenario->reflection_atlas);
		scenario_owner.free(p_rid);
		RendererSceneOcclusionCull::get_singleton()->remove_scenario(p_rid);

	} else if (RendererSceneOcclusionCull::get_singleton() && RendererSceneOcclusionCull::get_singleton()->is_occluder(p_rid)) {
		RendererSceneOcclusionCull::get_singleton()->free_occluder(p_rid);
	} else if (instance_owner.owns(p_rid)) {
		// delete the instance

		update_dirty_instances();

		Instance *instance = instance_owner.get_or_null(p_rid);

		instance_geometry_set_lightmap(p_rid, RID(), Rect2(), 0);
		instance_set_scenario(p_rid, RID());
		instance_set_base(p_rid, RID());
		instance_geometry_set_material_override(p_rid, RID());
		instance_geometry_set_material_overlay(p_rid, RID());
		instance_attach_skeleton(p_rid, RID());

		if (instance->instance_allocated_shader_uniforms) {
			//free the used shader parameters
			RSG::material_storage->global_shader_parameters_instance_free(instance->self);
		}
		update_dirty_instances(); //in case something changed this

		instance_owner.free(p_rid);
	} else {
		return false;
	}

	return true;
}

TypedArray<Image> RendererSceneCull::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
	return scene_render->bake_render_uv2(p_base, p_material_overrides, p_image_size);
}

void RendererSceneCull::update_visibility_notifiers() {
	SelfList<InstanceVisibilityNotifierData> *E = visible_notifier_list.first();
	while (E) {
		SelfList<InstanceVisibilityNotifierData> *N = E->next();

		InstanceVisibilityNotifierData *visibility_notifier = E->self();
		if (visibility_notifier->just_visible) {
			visibility_notifier->just_visible = false;

			RSG::utilities->visibility_notifier_call(visibility_notifier->base, true, RSG::threaded);
		} else {
			if (visibility_notifier->visible_in_frame != RSG::rasterizer->get_frame_number()) {
				visible_notifier_list.remove(E);

				RSG::utilities->visibility_notifier_call(visibility_notifier->base, false, RSG::threaded);
			}
		}

		E = N;
	}
}

/*******************************/
/* Passthrough to Scene Render */
/*******************************/

/* ENVIRONMENT API */

RendererSceneCull *RendererSceneCull::singleton = nullptr;

void RendererSceneCull::set_scene_render(RendererSceneRender *p_scene_render) {
	scene_render = p_scene_render;
	geometry_instance_pair_mask = scene_render->geometry_instance_get_pair_mask();
}

RendererSceneCull::RendererSceneCull() {
	render_pass = 1;
	singleton = this;

	instance_cull_result.set_page_pool(&instance_cull_page_pool);
	instance_shadow_cull_result.set_page_pool(&instance_cull_page_pool);

	for (uint32_t i = 0; i < MAX_UPDATE_SHADOWS; i++) {
		render_shadow_data[i].instances.set_page_pool(&geometry_instance_cull_page_pool);
	}
	for (uint32_t i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
		render_sdfgi_data[i].instances.set_page_pool(&geometry_instance_cull_page_pool);
	}

	scene_cull_result.init(&rid_cull_page_pool, &geometry_instance_cull_page_pool, &instance_cull_page_pool);
	scene_cull_result_threads.resize(WorkerThreadPool::get_singleton()->get_thread_count());
	for (InstanceCullResult &thread : scene_cull_result_threads) {
		thread.init(&rid_cull_page_pool, &geometry_instance_cull_page_pool, &instance_cull_page_pool);
	}

	indexer_update_iterations = GLOBAL_GET("rendering/limits/spatial_indexer/update_iterations_per_frame");
	thread_cull_threshold = GLOBAL_GET("rendering/limits/spatial_indexer/threaded_cull_minimum_instances");
	thread_cull_threshold = MAX(thread_cull_threshold, (uint32_t)WorkerThreadPool::get_singleton()->get_thread_count()); //make sure there is at least one thread per CPU
	RendererSceneOcclusionCull::HZBuffer::occlusion_jitter_enabled = GLOBAL_GET("rendering/occlusion_culling/jitter_projection");

	dummy_occlusion_culling = memnew(RendererSceneOcclusionCull);

	light_culler = memnew(RenderingLightCuller);

	bool tighter_caster_culling = GLOBAL_DEF("rendering/lights_and_shadows/tighter_shadow_caster_culling", true);
	light_culler->set_caster_culling_active(tighter_caster_culling);
	light_culler->set_light_culling_active(tighter_caster_culling);
}

RendererSceneCull::~RendererSceneCull() {
	instance_cull_result.reset();
	instance_shadow_cull_result.reset();

	for (uint32_t i = 0; i < MAX_UPDATE_SHADOWS; i++) {
		render_shadow_data[i].instances.reset();
	}
	for (uint32_t i = 0; i < SDFGI_MAX_CASCADES * SDFGI_MAX_REGIONS_PER_CASCADE; i++) {
		render_sdfgi_data[i].instances.reset();
	}

	scene_cull_result.reset();
	for (InstanceCullResult &thread : scene_cull_result_threads) {
		thread.reset();
	}
	scene_cull_result_threads.clear();

	if (dummy_occlusion_culling) {
		memdelete(dummy_occlusion_culling);
	}

	if (light_culler) {
		memdelete(light_culler);
		light_culler = nullptr;
	}
}