/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Copyright (c) 2016, Intel Corporation // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the "Software"), to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of // the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, // TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // File changes (yyyy-mm-dd) // 2016-09-07: filip.strugar@intel.com: first commit // 2020-12-05: clayjohn: convert to Vulkan and Godot /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #[compute] #version 450 #VERSION_DEFINES layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; layout(push_constant, std430) uniform Params { vec2 pixel_size; float z_far; float z_near; bool orthogonal; float radius_sq; uvec2 pad; } params; layout(set = 0, binding = 0) uniform sampler2D source_depth; layout(r16f, set = 1, binding = 0) uniform restrict writeonly image2DArray dest_image0; //rename #ifdef GENERATE_MIPS layout(r16f, set = 2, binding = 0) uniform restrict writeonly image2DArray dest_image1; layout(r16f, set = 2, binding = 1) uniform restrict writeonly image2DArray dest_image2; layout(r16f, set = 2, binding = 2) uniform restrict writeonly image2DArray dest_image3; #ifdef GENERATE_FULL_MIPS layout(r16f, set = 2, binding = 3) uniform restrict writeonly image2DArray dest_image4; #endif #endif vec4 screen_space_to_view_space_depth(vec4 p_depth) { if (params.orthogonal) { vec4 depth = p_depth * 2.0 - 1.0; return ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; } float depth_linearize_mul = params.z_near; float depth_linearize_add = params.z_far; // Optimized version of "-cameraClipNear / (cameraClipFar - projDepth * (cameraClipFar - cameraClipNear)) * cameraClipFar" // Set your depth_linearize_mul and depth_linearize_add to: // depth_linearize_mul = ( cameraClipFar * cameraClipNear) / ( cameraClipFar - cameraClipNear ); // depth_linearize_add = cameraClipFar / ( cameraClipFar - cameraClipNear ); return depth_linearize_mul / (depth_linearize_add - p_depth); } float screen_space_to_view_space_depth(float p_depth) { if (params.orthogonal) { float depth = p_depth * 2.0 - 1.0; return ((depth + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / (2.0 * params.z_far); } float depth_linearize_mul = params.z_near; float depth_linearize_add = params.z_far; return depth_linearize_mul / (depth_linearize_add - p_depth); } #ifdef GENERATE_MIPS shared float depth_buffer[4][8][8]; float mip_smart_average(vec4 p_depths) { float closest = min(min(p_depths.x, p_depths.y), min(p_depths.z, p_depths.w)); float fallof_sq = -1.0f / params.radius_sq; vec4 dists = p_depths - closest.xxxx; vec4 weights = clamp(dists * dists * fallof_sq + 1.0, 0.0, 1.0); return dot(weights, p_depths) / dot(weights, vec4(1.0, 1.0, 1.0, 1.0)); } void prepare_depths_and_mips(vec4 p_samples, uvec2 p_output_coord, uvec2 p_gtid) { p_samples = screen_space_to_view_space_depth(p_samples); depth_buffer[0][p_gtid.x][p_gtid.y] = p_samples.w; depth_buffer[1][p_gtid.x][p_gtid.y] = p_samples.z; depth_buffer[2][p_gtid.x][p_gtid.y] = p_samples.x; depth_buffer[3][p_gtid.x][p_gtid.y] = p_samples.y; imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 0), vec4(p_samples.w)); imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 1), vec4(p_samples.z)); imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 2), vec4(p_samples.x)); imageStore(dest_image0, ivec3(p_output_coord.x, p_output_coord.y, 3), vec4(p_samples.y)); uint depth_array_index = 2 * (p_gtid.y % 2) + (p_gtid.x % 2); uvec2 depth_array_offset = ivec2(p_gtid.x % 2, p_gtid.y % 2); ivec2 buffer_coord = ivec2(p_gtid) - ivec2(depth_array_offset); p_output_coord /= 2; groupMemoryBarrier(); barrier(); // if (still_alive) <-- all threads alive here { float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0]; float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 1]; float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 1][buffer_coord.y + 0]; float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 1][buffer_coord.y + 1]; float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11)); imageStore(dest_image1, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg)); depth_buffer[depth_array_index][buffer_coord.x][buffer_coord.y] = avg; } bool still_alive = p_gtid.x % 4 == depth_array_offset.x && p_gtid.y % 4 == depth_array_offset.y; p_output_coord /= 2; groupMemoryBarrier(); barrier(); if (still_alive) { float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0]; float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 2]; float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 2][buffer_coord.y + 0]; float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 2][buffer_coord.y + 2]; float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11)); imageStore(dest_image2, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg)); depth_buffer[depth_array_index][buffer_coord.x][buffer_coord.y] = avg; } still_alive = p_gtid.x % 8 == depth_array_offset.x && depth_array_offset.y % 8 == depth_array_offset.y; p_output_coord /= 2; groupMemoryBarrier(); barrier(); if (still_alive) { float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0]; float sample_01 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 4]; float sample_10 = depth_buffer[depth_array_index][buffer_coord.x + 4][buffer_coord.y + 0]; float sample_11 = depth_buffer[depth_array_index][buffer_coord.x + 4][buffer_coord.y + 4]; float avg = mip_smart_average(vec4(sample_00, sample_01, sample_10, sample_11)); imageStore(dest_image3, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(avg)); #ifndef GENERATE_FULL_MIPS } #else depth_buffer[depth_array_index][buffer_coord.x][buffer_coord.y] = avg; } still_alive = p_gtid.x % 16 == depth_array_offset.x && depth_array_offset.y % 16 == depth_array_offset.y; p_output_coord /= 2; if (still_alive) { // Use the previous average, not ideal, but still not bad. float sample_00 = depth_buffer[depth_array_index][buffer_coord.x + 0][buffer_coord.y + 0]; imageStore(dest_image4, ivec3(p_output_coord.x, p_output_coord.y, depth_array_index), vec4(sample_00)); } #endif } #else #ifndef USE_HALF_BUFFERS void prepare_depths(vec4 p_samples, uvec2 p_tid) { p_samples = screen_space_to_view_space_depth(p_samples); imageStore(dest_image0, ivec3(p_tid, 0), vec4(p_samples.w)); imageStore(dest_image0, ivec3(p_tid, 1), vec4(p_samples.z)); imageStore(dest_image0, ivec3(p_tid, 2), vec4(p_samples.x)); imageStore(dest_image0, ivec3(p_tid, 3), vec4(p_samples.y)); } #endif #endif void main() { #ifdef USE_HALF_BUFFERS // Half buffers means that we divide depth into two half res buffers (we only capture 1/4 of pixels). #ifdef USE_HALF_SIZE float sample_00 = texelFetch(source_depth, ivec2(4 * gl_GlobalInvocationID.x + 0, 4 * gl_GlobalInvocationID.y + 0), 0).x; float sample_11 = texelFetch(source_depth, ivec2(4 * gl_GlobalInvocationID.x + 2, 4 * gl_GlobalInvocationID.y + 2), 0).x; #else float sample_00 = texelFetch(source_depth, ivec2(2 * gl_GlobalInvocationID.x + 0, 2 * gl_GlobalInvocationID.y + 0), 0).x; float sample_11 = texelFetch(source_depth, ivec2(2 * gl_GlobalInvocationID.x + 1, 2 * gl_GlobalInvocationID.y + 1), 0).x; #endif sample_00 = screen_space_to_view_space_depth(sample_00); sample_11 = screen_space_to_view_space_depth(sample_11); imageStore(dest_image0, ivec3(gl_GlobalInvocationID.xy, 0), vec4(sample_00)); imageStore(dest_image0, ivec3(gl_GlobalInvocationID.xy, 3), vec4(sample_11)); #else //!USE_HALF_BUFFERS #ifdef USE_HALF_SIZE ivec2 depth_buffer_coord = 4 * ivec2(gl_GlobalInvocationID.xy); ivec2 output_coord = ivec2(gl_GlobalInvocationID); vec2 uv = (vec2(depth_buffer_coord) + 0.5f) * params.pixel_size; vec4 samples; samples.x = textureLodOffset(source_depth, uv, 0, ivec2(0, 2)).x; samples.y = textureLodOffset(source_depth, uv, 0, ivec2(2, 2)).x; samples.z = textureLodOffset(source_depth, uv, 0, ivec2(2, 0)).x; samples.w = textureLodOffset(source_depth, uv, 0, ivec2(0, 0)).x; #else ivec2 depth_buffer_coord = 2 * ivec2(gl_GlobalInvocationID.xy); ivec2 output_coord = ivec2(gl_GlobalInvocationID); vec2 uv = (vec2(depth_buffer_coord) + 0.5f) * params.pixel_size; vec4 samples = textureGather(source_depth, uv); #endif //USE_HALF_SIZE #ifdef GENERATE_MIPS prepare_depths_and_mips(samples, output_coord, gl_LocalInvocationID.xy); #else prepare_depths(samples, gl_GlobalInvocationID.xy); #endif #endif //USE_HALF_BUFFERS }