/**************************************************************************/ /* rasterizer.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "rasterizer.h" #include "core/os/os.h" #include "core/print_string.h" #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) #include "core/project_settings.h" #endif Rasterizer *(*Rasterizer::_create_func)() = nullptr; Rasterizer *Rasterizer::create() { return _create_func(); } RasterizerStorage *RasterizerStorage::base_singleton = nullptr; RasterizerStorage::RasterizerStorage() { base_singleton = this; } bool RasterizerStorage::material_uses_tangents(RID p_material) { return false; } bool RasterizerStorage::material_uses_ensure_correct_normals(RID p_material) { return false; } void RasterizerStorage::InterpolationData::notify_free_multimesh(RID p_rid) { // print_line("free multimesh " + itos(p_rid.get_id())); // if the instance was on any of the lists, remove multimesh_interpolate_update_list.erase_multiple_unordered(p_rid); multimesh_transform_update_lists[0].erase_multiple_unordered(p_rid); multimesh_transform_update_lists[1].erase_multiple_unordered(p_rid); } void RasterizerStorage::update_interpolation_tick(bool p_process) { // detect any that were on the previous transform list that are no longer active, // we should remove them from the interpolate list for (unsigned int n = 0; n < _interpolation_data.multimesh_transform_update_list_prev->size(); n++) { const RID &rid = (*_interpolation_data.multimesh_transform_update_list_prev)[n]; bool active = true; // no longer active? (either the instance deleted or no longer being transformed) MMInterpolator *mmi = _multimesh_get_interpolator(rid); if (mmi && !mmi->on_transform_update_list) { active = false; mmi->on_interpolate_update_list = false; // make sure the most recent transform is set // copy data rather than use Pool = function? mmi->_data_interpolated = mmi->_data_curr; // and that both prev and current are the same, just in case of any interpolations mmi->_data_prev = mmi->_data_curr; // make sure are updated one more time to ensure the AABBs are correct //_instance_queue_update(instance, true); } if (!mmi) { active = false; } if (!active) { _interpolation_data.multimesh_interpolate_update_list.erase(rid); } } if (p_process) { for (unsigned int i = 0; i < _interpolation_data.multimesh_transform_update_list_curr->size(); i++) { const RID &rid = (*_interpolation_data.multimesh_transform_update_list_curr)[i]; MMInterpolator *mmi = _multimesh_get_interpolator(rid); if (mmi) { // reset for next tick mmi->on_transform_update_list = false; mmi->_data_prev = mmi->_data_curr; } } // for n } // if any have left the transform list, remove from the interpolate list // we maintain a mirror list for the transform updates, so we can detect when an instance // is no longer being transformed, and remove it from the interpolate list SWAP(_interpolation_data.multimesh_transform_update_list_curr, _interpolation_data.multimesh_transform_update_list_prev); // prepare for the next iteration _interpolation_data.multimesh_transform_update_list_curr->clear(); } void RasterizerStorage::update_interpolation_frame(bool p_process) { if (p_process) { // Only need 32 bit for interpolation, don't use real_t float f = Engine::get_singleton()->get_physics_interpolation_fraction(); for (unsigned int c = 0; c < _interpolation_data.multimesh_interpolate_update_list.size(); c++) { const RID &rid = _interpolation_data.multimesh_interpolate_update_list[c]; // We could use the TransformInterpolator here to slerp transforms, but that might be too expensive, // so just using a Basis lerp for now. MMInterpolator *mmi = _multimesh_get_interpolator(rid); if (mmi) { // make sure arrays are correct size DEV_ASSERT(mmi->_data_prev.size() == mmi->_data_curr.size()); if (mmi->_data_interpolated.size() < mmi->_data_curr.size()) { mmi->_data_interpolated.resize(mmi->_data_curr.size()); } DEV_ASSERT(mmi->_data_interpolated.size() >= mmi->_data_curr.size()); DEV_ASSERT((mmi->_data_curr.size() % mmi->_stride) == 0); int num = mmi->_data_curr.size() / mmi->_stride; PoolVector::Read r_prev = mmi->_data_prev.read(); PoolVector::Read r_curr = mmi->_data_curr.read(); PoolVector::Write w = mmi->_data_interpolated.write(); const float *pf_prev = r_prev.ptr(); const float *pf_curr = r_curr.ptr(); float *pf_int = w.ptr(); bool use_lerp = mmi->quality == 0; // temporary transform (needed for swizzling) // (transform prev, curr and result) Transform tp, tc, tr; // Test for cache friendliness versus doing branchless for (int n = 0; n < num; n++) { // Transform if (use_lerp) { for (int i = 0; i < mmi->_vf_size_xform; i++) { float a = pf_prev[i]; float b = pf_curr[i]; pf_int[i] = (a + ((b - a) * f)); } } else { // Silly swizzling, this will slow things down. no idea why it is using this format // .. maybe due to the shader. tp.basis.elements[0][0] = pf_prev[0]; tp.basis.elements[0][1] = pf_prev[1]; tp.basis.elements[0][2] = pf_prev[2]; tp.basis.elements[1][0] = pf_prev[4]; tp.basis.elements[1][1] = pf_prev[5]; tp.basis.elements[1][2] = pf_prev[6]; tp.basis.elements[2][0] = pf_prev[8]; tp.basis.elements[2][1] = pf_prev[9]; tp.basis.elements[2][2] = pf_prev[10]; tp.origin.x = pf_prev[3]; tp.origin.y = pf_prev[7]; tp.origin.z = pf_prev[11]; tc.basis.elements[0][0] = pf_curr[0]; tc.basis.elements[0][1] = pf_curr[1]; tc.basis.elements[0][2] = pf_curr[2]; tc.basis.elements[1][0] = pf_curr[4]; tc.basis.elements[1][1] = pf_curr[5]; tc.basis.elements[1][2] = pf_curr[6]; tc.basis.elements[2][0] = pf_curr[8]; tc.basis.elements[2][1] = pf_curr[9]; tc.basis.elements[2][2] = pf_curr[10]; tc.origin.x = pf_curr[3]; tc.origin.y = pf_curr[7]; tc.origin.z = pf_curr[11]; TransformInterpolator::interpolate_transform(tp, tc, tr, f); pf_int[0] = tr.basis.elements[0][0]; pf_int[1] = tr.basis.elements[0][1]; pf_int[2] = tr.basis.elements[0][2]; pf_int[4] = tr.basis.elements[1][0]; pf_int[5] = tr.basis.elements[1][1]; pf_int[6] = tr.basis.elements[1][2]; pf_int[8] = tr.basis.elements[2][0]; pf_int[9] = tr.basis.elements[2][1]; pf_int[10] = tr.basis.elements[2][2]; pf_int[3] = tr.origin.x; pf_int[7] = tr.origin.y; pf_int[11] = tr.origin.z; } pf_prev += mmi->_vf_size_xform; pf_curr += mmi->_vf_size_xform; pf_int += mmi->_vf_size_xform; // Color if (mmi->_vf_size_color == 1) { const uint8_t *p8_prev = (const uint8_t *)pf_prev; const uint8_t *p8_curr = (const uint8_t *)pf_curr; uint8_t *p8_int = (uint8_t *)pf_int; _interpolate_RGBA8(p8_prev, p8_curr, p8_int, f); pf_prev += 1; pf_curr += 1; pf_int += 1; } else if (mmi->_vf_size_color == 4) { for (int i = 0; i < 4; i++) { pf_int[i] = pf_prev[i] + ((pf_curr[i] - pf_prev[i]) * f); } pf_prev += 4; pf_curr += 4; pf_int += 4; } // Custom Data if (mmi->_vf_size_data == 1) { const uint8_t *p8_prev = (const uint8_t *)pf_prev; const uint8_t *p8_curr = (const uint8_t *)pf_curr; uint8_t *p8_int = (uint8_t *)pf_int; _interpolate_RGBA8(p8_prev, p8_curr, p8_int, f); pf_prev += 1; pf_curr += 1; pf_int += 1; } else if (mmi->_vf_size_data == 4) { for (int i = 0; i < 4; i++) { pf_int[i] = pf_prev[i] + ((pf_curr[i] - pf_prev[i]) * f); } pf_prev += 4; pf_curr += 4; pf_int += 4; } } _multimesh_set_as_bulk_array(rid, mmi->_data_interpolated); // make sure AABBs are constantly up to date through the interpolation? // NYI } } // for n } } RID RasterizerStorage::multimesh_create() { return _multimesh_create(); } void RasterizerStorage::multimesh_allocate(RID p_multimesh, int p_instances, VS::MultimeshTransformFormat p_transform_format, VS::MultimeshColorFormat p_color_format, VS::MultimeshCustomDataFormat p_data) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { mmi->_transform_format = p_transform_format; mmi->_color_format = p_color_format; mmi->_data_format = p_data; mmi->_num_instances = p_instances; mmi->_vf_size_xform = p_transform_format == VS::MULTIMESH_TRANSFORM_3D ? 12 : 8; switch (p_color_format) { default: { mmi->_vf_size_color = 0; } break; case VS::MULTIMESH_COLOR_8BIT: { mmi->_vf_size_color = 1; } break; case VS::MULTIMESH_COLOR_FLOAT: { mmi->_vf_size_color = 4; } break; } switch (p_data) { default: { mmi->_vf_size_data = 0; } break; case VS::MULTIMESH_CUSTOM_DATA_8BIT: { mmi->_vf_size_data = 1; } break; case VS::MULTIMESH_CUSTOM_DATA_FLOAT: { mmi->_vf_size_data = 4; } break; } mmi->_stride = mmi->_vf_size_xform + mmi->_vf_size_color + mmi->_vf_size_data; int size_in_floats = p_instances * mmi->_stride; mmi->_data_curr.resize(size_in_floats); mmi->_data_prev.resize(size_in_floats); mmi->_data_interpolated.resize(size_in_floats); mmi->_data_curr.fill(0); mmi->_data_prev.fill(0); mmi->_data_interpolated.fill(0); } return _multimesh_allocate(p_multimesh, p_instances, p_transform_format, p_color_format, p_data); } int RasterizerStorage::multimesh_get_instance_count(RID p_multimesh) const { return _multimesh_get_instance_count(p_multimesh); } void RasterizerStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) { _multimesh_set_mesh(p_multimesh, p_mesh); } void RasterizerStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform &p_transform) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { if (mmi->interpolated) { ERR_FAIL_COND(p_index >= mmi->_num_instances); ERR_FAIL_COND(mmi->_vf_size_xform != 12); PoolVector::Write w = mmi->_data_curr.write(); int start = p_index * mmi->_stride; float *ptr = w.ptr(); ptr += start; const Transform &t = p_transform; ptr[0] = t.basis.elements[0][0]; ptr[1] = t.basis.elements[0][1]; ptr[2] = t.basis.elements[0][2]; ptr[3] = t.origin.x; ptr[4] = t.basis.elements[1][0]; ptr[5] = t.basis.elements[1][1]; ptr[6] = t.basis.elements[1][2]; ptr[7] = t.origin.y; ptr[8] = t.basis.elements[2][0]; ptr[9] = t.basis.elements[2][1]; ptr[10] = t.basis.elements[2][2]; ptr[11] = t.origin.z; _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) if (!Engine::get_singleton()->is_in_physics_frame()) { static int32_t warn_count = 0; warn_count++; if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) { WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign)."); } } #endif return; } } _multimesh_instance_set_transform(p_multimesh, p_index, p_transform); } void RasterizerStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) { _multimesh_instance_set_transform_2d(p_multimesh, p_index, p_transform); } void RasterizerStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { if (mmi->interpolated) { ERR_FAIL_COND(p_index >= mmi->_num_instances); ERR_FAIL_COND(mmi->_vf_size_color == 0); PoolVector::Write w = mmi->_data_curr.write(); int start = (p_index * mmi->_stride) + mmi->_vf_size_xform; float *ptr = w.ptr(); ptr += start; if (mmi->_vf_size_color == 4) { for (int n = 0; n < 4; n++) { ptr[n] = p_color.components[n]; } } else { #ifdef DEV_ENABLED // The options are currently 4, 1, or zero, but just in case this changes in future... ERR_FAIL_COND(mmi->_vf_size_color != 1); #endif uint32_t *pui = (uint32_t *)ptr; *pui = p_color.to_rgba32(); } _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); return; } } _multimesh_instance_set_color(p_multimesh, p_index, p_color); } void RasterizerStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { if (mmi->interpolated) { ERR_FAIL_COND(p_index >= mmi->_num_instances); ERR_FAIL_COND(mmi->_vf_size_data == 0); PoolVector::Write w = mmi->_data_curr.write(); int start = (p_index * mmi->_stride) + mmi->_vf_size_xform + mmi->_vf_size_color; float *ptr = w.ptr(); ptr += start; if (mmi->_vf_size_data == 4) { for (int n = 0; n < 4; n++) { ptr[n] = p_color.components[n]; } } else { #ifdef DEV_ENABLED // The options are currently 4, 1, or zero, but just in case this changes in future... ERR_FAIL_COND(mmi->_vf_size_data != 1); #endif uint32_t *pui = (uint32_t *)ptr; *pui = p_color.to_rgba32(); } _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); return; } } _multimesh_instance_set_custom_data(p_multimesh, p_index, p_color); } RID RasterizerStorage::multimesh_get_mesh(RID p_multimesh) const { return _multimesh_get_mesh(p_multimesh); } Transform RasterizerStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const { return _multimesh_instance_get_transform(p_multimesh, p_index); } Transform2D RasterizerStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const { return _multimesh_instance_get_transform_2d(p_multimesh, p_index); } Color RasterizerStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const { return _multimesh_instance_get_color(p_multimesh, p_index); } Color RasterizerStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const { return _multimesh_instance_get_custom_data(p_multimesh, p_index); } void RasterizerStorage::multimesh_set_physics_interpolated(RID p_multimesh, bool p_interpolated) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { mmi->interpolated = p_interpolated; } } void RasterizerStorage::multimesh_set_physics_interpolation_quality(RID p_multimesh, VS::MultimeshPhysicsInterpolationQuality p_quality) { ERR_FAIL_COND((p_quality < 0) || (p_quality > 1)); MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { mmi->quality = (int)p_quality; } } void RasterizerStorage::multimesh_instance_reset_physics_interpolation(RID p_multimesh, int p_index) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { ERR_FAIL_INDEX(p_index, mmi->_num_instances); PoolVector::Write w = mmi->_data_prev.write(); PoolVector::Read r = mmi->_data_curr.read(); int start = p_index * mmi->_stride; for (int n = 0; n < mmi->_stride; n++) { w[start + n] = r[start + n]; } } } void RasterizerStorage::_multimesh_add_to_interpolation_lists(RID p_multimesh, MMInterpolator &r_mmi) { if (!r_mmi.on_interpolate_update_list) { r_mmi.on_interpolate_update_list = true; _interpolation_data.multimesh_interpolate_update_list.push_back(p_multimesh); } if (!r_mmi.on_transform_update_list) { r_mmi.on_transform_update_list = true; _interpolation_data.multimesh_transform_update_list_curr->push_back(p_multimesh); } } void RasterizerStorage::multimesh_set_as_bulk_array_interpolated(RID p_multimesh, const PoolVector &p_array, const PoolVector &p_array_prev) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { ERR_FAIL_COND_MSG(p_array.size() != mmi->_data_curr.size(), vformat("Array for current frame should have %d elements, got %d instead.", mmi->_data_curr.size(), p_array.size())); ERR_FAIL_COND_MSG(p_array_prev.size() != mmi->_data_prev.size(), vformat("Array for previous frame should have %d elements, got %d instead.", mmi->_data_prev.size(), p_array_prev.size())); // We are assuming that mmi->interpolated is the case, // (can possibly assert this?) // even if this flag hasn't been set - just calling this function suggests // interpolation is desired. mmi->_data_prev = p_array_prev; mmi->_data_curr = p_array; _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) if (!Engine::get_singleton()->is_in_physics_frame()) { static int32_t warn_count = 0; warn_count++; if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) { WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign)."); } } #endif } } void RasterizerStorage::multimesh_set_as_bulk_array(RID p_multimesh, const PoolVector &p_array) { MMInterpolator *mmi = _multimesh_get_interpolator(p_multimesh); if (mmi) { if (mmi->interpolated) { ERR_FAIL_COND_MSG(p_array.size() != mmi->_data_curr.size(), vformat("Array should have %d elements, got %d instead.", mmi->_data_curr.size(), p_array.size())); mmi->_data_curr = p_array; _multimesh_add_to_interpolation_lists(p_multimesh, *mmi); #if defined(DEBUG_ENABLED) && defined(TOOLS_ENABLED) if (!Engine::get_singleton()->is_in_physics_frame()) { static int32_t warn_count = 0; warn_count++; if (((warn_count % 2048) == 0) && GLOBAL_GET("debug/settings/physics_interpolation/enable_warnings")) { WARN_PRINT("[Physics interpolation] MultiMesh interpolation is being triggered from outside physics process, this might lead to issues (possibly benign)."); } } #endif return; } } _multimesh_set_as_bulk_array(p_multimesh, p_array); } void RasterizerStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) { _multimesh_set_visible_instances(p_multimesh, p_visible); } int RasterizerStorage::multimesh_get_visible_instances(RID p_multimesh) const { return _multimesh_get_visible_instances(p_multimesh); } AABB RasterizerStorage::multimesh_get_aabb(RID p_multimesh) const { return _multimesh_get_aabb(p_multimesh); } // The bone bounds are determined by rigging, // as such they can be calculated as a one off operation, // rather than each call to get_rect(). void RasterizerCanvas::Item::precalculate_polygon_bone_bounds(const Item::CommandPolygon &p_polygon) const { p_polygon.skinning_data->dirty = false; p_polygon.skinning_data->untransformed_bound = Rect2(Vector2(), Vector2(-1, -1)); // negative means unused. int num_points = p_polygon.points.size(); const Point2 *pp = &p_polygon.points[0]; // Calculate bone AABBs. int bone_count = RasterizerStorage::base_singleton->skeleton_get_bone_count(skeleton); // Get some local aliases LocalVector &active_bounds = p_polygon.skinning_data->active_bounds; LocalVector &active_bone_ids = p_polygon.skinning_data->active_bone_ids; active_bounds.clear(); active_bone_ids.clear(); // Uses dynamic allocation, but shouldn't happen very often. // If happens more often, use alloca. LocalVector bone_to_active_bone_mapping; bone_to_active_bone_mapping.resize(bone_count); for (int n = 0; n < bone_count; n++) { bone_to_active_bone_mapping[n] = -1; } const Transform2D &item_transform = skinning_data->skeleton_relative_xform; bool some_were_untransformed = false; for (int n = 0; n < num_points; n++) { Point2 p = pp[n]; bool bone_space = false; float total_weight = 0; for (int k = 0; k < 4; k++) { int bone_id = p_polygon.bones[n * 4 + k]; float w = p_polygon.weights[n * 4 + k]; if (w == 0) { continue; } total_weight += w; // Ensure the point is in "bone space" / rigged space. if (!bone_space) { bone_space = true; p = item_transform.xform(p); } // get the active bone, or create a new active bone DEV_ASSERT(bone_id < bone_count); int32_t &active_bone = bone_to_active_bone_mapping[bone_id]; if (active_bone != -1) { active_bounds[active_bone].expand_to(p); } else { // Increment the number of active bones stored. active_bone = active_bounds.size(); active_bounds.resize(active_bone + 1); active_bone_ids.resize(active_bone + 1); // First point for the bone DEV_ASSERT(bone_id <= UINT16_MAX); active_bone_ids[active_bone] = bone_id; active_bounds[active_bone] = Rect2(p, Vector2(0.00001, 0.00001)); } } // If some points were not rigged, // we want to add them directly to an "untransformed bound", // and merge this with the skinned bound later. // Also do this if a point is not FULLY weighted, // because the untransformed position is still having an influence. if (!bone_space || (total_weight < 0.99f)) { if (some_were_untransformed) { p_polygon.skinning_data->untransformed_bound.expand_to(pp[n]); } else { // First point some_were_untransformed = true; p_polygon.skinning_data->untransformed_bound = Rect2(pp[n], Vector2()); } } } } Rect2 RasterizerCanvas::Item::calculate_polygon_bounds(const Item::CommandPolygon &p_polygon) const { int num_points = p_polygon.points.size(); // If there is no skeleton, or the bones data is invalid... // Note : Can we check the second more efficiently? by checking if polygon.skinning_data is set perhaps? if (skeleton == RID() || !(num_points && p_polygon.bones.size() == num_points * 4 && p_polygon.weights.size() == p_polygon.bones.size())) { // With no skeleton, all points are untransformed. Rect2 r; const Point2 *pp = &p_polygon.points[0]; r.position = pp[0]; for (int n = 1; n < num_points; n++) { r.expand_to(pp[n]); } return r; } // Skinned skeleton is present. ERR_FAIL_COND_V_MSG(!skinning_data, Rect2(), "Skinned Polygon2D must have skeleton_relative_xform set for correct culling."); // Ensure the polygon skinning data is created... // (This isn't stored on every polygon to save memory). if (!p_polygon.skinning_data) { p_polygon.skinning_data = memnew(Item::CommandPolygon::SkinningData); } Item::CommandPolygon::SkinningData &pdata = *p_polygon.skinning_data; // This should only occur when rigging has changed. // Usually a one off in games. if (pdata.dirty) { precalculate_polygon_bone_bounds(p_polygon); } // We only deal with the precalculated ACTIVE bone AABBs using the skeleton. // (No need to bother with bones that are unused for this poly.) int num_active_bones = pdata.active_bounds.size(); if (!num_active_bones) { return pdata.untransformed_bound; } // No need to make a dynamic allocation here in 99% of cases. Rect2 *bptr = nullptr; LocalVector bone_aabbs; if (num_active_bones <= 1024) { bptr = (Rect2 *)alloca(sizeof(Rect2) * num_active_bones); } else { bone_aabbs.resize(num_active_bones); bptr = bone_aabbs.ptr(); } // Copy across the precalculated bone bounds. memcpy(bptr, pdata.active_bounds.ptr(), sizeof(Rect2) * num_active_bones); const Transform2D &item_transform_inv = skinning_data->skeleton_relative_xform_inv; Rect2 aabb; bool first_bone = true; for (int n = 0; n < num_active_bones; n++) { int bone_id = pdata.active_bone_ids[n]; const Transform2D &mtx = RasterizerStorage::base_singleton->skeleton_bone_get_transform_2d(skeleton, bone_id); Rect2 baabb = mtx.xform(bptr[n]); if (first_bone) { aabb = baabb; first_bone = false; } else { aabb = aabb.merge(baabb); } } // Transform the polygon AABB back into local space from bone space. aabb = item_transform_inv.xform(aabb); // If some were untransformed... if (pdata.untransformed_bound.size.x >= 0) { return pdata.untransformed_bound.merge(aabb); } return aabb; }