/**************************************************************************/ /* lightmapper_rd.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "lightmapper_rd.h" #include "lm_blendseams.glsl.gen.h" #include "lm_compute.glsl.gen.h" #include "lm_raster.glsl.gen.h" #include "core/config/project_settings.h" #include "core/io/dir_access.h" #include "core/math/geometry_2d.h" #include "editor/editor_paths.h" #include "editor/editor_settings.h" #include "servers/rendering/rendering_device_binds.h" #if defined(VULKAN_ENABLED) #include "drivers/vulkan/rendering_context_driver_vulkan.h" #endif //uncomment this if you want to see textures from all the process saved //#define DEBUG_TEXTURES void LightmapperRD::add_mesh(const MeshData &p_mesh) { ERR_FAIL_COND(p_mesh.albedo_on_uv2.is_null() || p_mesh.albedo_on_uv2->is_empty()); ERR_FAIL_COND(p_mesh.emission_on_uv2.is_null() || p_mesh.emission_on_uv2->is_empty()); ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_width() != p_mesh.emission_on_uv2->get_width()); ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_height() != p_mesh.emission_on_uv2->get_height()); ERR_FAIL_COND(p_mesh.points.is_empty()); MeshInstance mi; mi.data = p_mesh; mesh_instances.push_back(mi); } void LightmapperRD::add_directional_light(bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) { Light l; l.type = LIGHT_TYPE_DIRECTIONAL; l.direction[0] = p_direction.x; l.direction[1] = p_direction.y; l.direction[2] = p_direction.z; l.color[0] = p_color.r; l.color[1] = p_color.g; l.color[2] = p_color.b; l.energy = p_energy; l.indirect_energy = p_indirect_energy; l.static_bake = p_static; l.size = Math::tan(Math::deg_to_rad(p_angular_distance)); l.shadow_blur = p_shadow_blur; lights.push_back(l); } void LightmapperRD::add_omni_light(bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) { Light l; l.type = LIGHT_TYPE_OMNI; l.position[0] = p_position.x; l.position[1] = p_position.y; l.position[2] = p_position.z; l.range = p_range; l.attenuation = p_attenuation; l.color[0] = p_color.r; l.color[1] = p_color.g; l.color[2] = p_color.b; l.energy = p_energy; l.indirect_energy = p_indirect_energy; l.static_bake = p_static; l.size = p_size; l.shadow_blur = p_shadow_blur; lights.push_back(l); } void LightmapperRD::add_spot_light(bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) { Light l; l.type = LIGHT_TYPE_SPOT; l.position[0] = p_position.x; l.position[1] = p_position.y; l.position[2] = p_position.z; l.direction[0] = p_direction.x; l.direction[1] = p_direction.y; l.direction[2] = p_direction.z; l.range = p_range; l.attenuation = p_attenuation; l.cos_spot_angle = Math::cos(Math::deg_to_rad(p_spot_angle)); l.inv_spot_attenuation = 1.0f / p_spot_attenuation; l.color[0] = p_color.r; l.color[1] = p_color.g; l.color[2] = p_color.b; l.energy = p_energy; l.indirect_energy = p_indirect_energy; l.static_bake = p_static; l.size = p_size; l.shadow_blur = p_shadow_blur; lights.push_back(l); } void LightmapperRD::add_probe(const Vector3 &p_position) { Probe probe; probe.position[0] = p_position.x; probe.position[1] = p_position.y; probe.position[2] = p_position.z; probe.position[3] = 0; probe_positions.push_back(probe); } void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &p_triangles_sort, uint32_t p_grid_size) { int half_size = p_size / 2; for (int i = 0; i < 8; i++) { AABB aabb = p_bounds; aabb.size *= 0.5; Vector3i n = p_ofs; if (i & 1) { aabb.position.x += aabb.size.x; n.x += half_size; } if (i & 2) { aabb.position.y += aabb.size.y; n.y += half_size; } if (i & 4) { aabb.position.z += aabb.size.z; n.z += half_size; } { Vector3 qsize = aabb.size * 0.5; //quarter size, for fast aabb test if (!Geometry3D::triangle_box_overlap(aabb.position + qsize, qsize, p_points)) { //does not fit in child, go on continue; } } if (half_size == 1) { //got to the end TriangleSort ts; ts.cell_index = n.x + (n.y * p_grid_size) + (n.z * p_grid_size * p_grid_size); ts.triangle_index = p_triangle_index; ts.triangle_aabb.position = p_points[0]; ts.triangle_aabb.size = Vector3(); ts.triangle_aabb.expand_to(p_points[1]); ts.triangle_aabb.expand_to(p_points[2]); p_triangles_sort.push_back(ts); } else { _plot_triangle_into_triangle_index_list(half_size, n, aabb, p_points, p_triangle_index, p_triangles_sort, p_grid_size); } } } void LightmapperRD::_sort_triangle_clusters(uint32_t p_cluster_size, uint32_t p_cluster_index, uint32_t p_index_start, uint32_t p_count, LocalVector<TriangleSort> &p_triangle_sort, LocalVector<ClusterAABB> &p_cluster_aabb) { if (p_count == 0) { return; } // Compute AABB for all triangles in the range. SortArray<TriangleSort, TriangleSortAxis<0>> triangle_sorter_x; SortArray<TriangleSort, TriangleSortAxis<1>> triangle_sorter_y; SortArray<TriangleSort, TriangleSortAxis<2>> triangle_sorter_z; AABB cluster_aabb = p_triangle_sort[p_index_start].triangle_aabb; for (uint32_t i = 1; i < p_count; i++) { cluster_aabb.merge_with(p_triangle_sort[p_index_start + i].triangle_aabb); } if (p_count > p_cluster_size) { int longest_axis_index = cluster_aabb.get_longest_axis_index(); switch (longest_axis_index) { case 0: triangle_sorter_x.sort(&p_triangle_sort[p_index_start], p_count); break; case 1: triangle_sorter_y.sort(&p_triangle_sort[p_index_start], p_count); break; case 2: triangle_sorter_z.sort(&p_triangle_sort[p_index_start], p_count); break; default: DEV_ASSERT(false && "Invalid axis returned by AABB."); break; } uint32_t left_cluster_count = next_power_of_2(p_count / 2); left_cluster_count = MAX(left_cluster_count, p_cluster_size); left_cluster_count = MIN(left_cluster_count, p_count); _sort_triangle_clusters(p_cluster_size, p_cluster_index, p_index_start, left_cluster_count, p_triangle_sort, p_cluster_aabb); if (left_cluster_count < p_count) { uint32_t cluster_index_right = p_cluster_index + (left_cluster_count / p_cluster_size); _sort_triangle_clusters(p_cluster_size, cluster_index_right, p_index_start + left_cluster_count, p_count - left_cluster_count, p_triangle_sort, p_cluster_aabb); } } else { ClusterAABB &aabb = p_cluster_aabb[p_cluster_index]; Vector3 aabb_end = cluster_aabb.get_end(); aabb.min_bounds[0] = cluster_aabb.position.x; aabb.min_bounds[1] = cluster_aabb.position.y; aabb.min_bounds[2] = cluster_aabb.position.z; aabb.max_bounds[0] = aabb_end.x; aabb.max_bounds[1] = aabb_end.y; aabb.max_bounds[2] = aabb_end.z; } } Lightmapper::BakeError LightmapperRD::_blit_meshes_into_atlas(int p_max_texture_size, int p_denoiser_range, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, BakeStepFunc p_step_function, void *p_bake_userdata) { Vector<Size2i> sizes; for (int m_i = 0; m_i < mesh_instances.size(); m_i++) { MeshInstance &mi = mesh_instances.write[m_i]; Size2i s = Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height()); sizes.push_back(s); atlas_size = atlas_size.max(s + Size2i(2, 2).maxi(p_denoiser_range)); } int max = nearest_power_of_2_templated(atlas_size.width); max = MAX(max, nearest_power_of_2_templated(atlas_size.height)); if (max > p_max_texture_size) { return BAKE_ERROR_TEXTURE_EXCEEDS_MAX_SIZE; } if (p_step_function) { p_step_function(0.1, RTR("Determining optimal atlas size"), p_bake_userdata, true); } atlas_size = Size2i(max, max); Size2i best_atlas_size; int best_atlas_slices = 0; int best_atlas_memory = 0x7FFFFFFF; Vector<Vector3i> best_atlas_offsets; // Determine best texture array atlas size by bruteforce fitting. while (atlas_size.x <= p_max_texture_size && atlas_size.y <= p_max_texture_size) { Vector<Vector2i> source_sizes; Vector<int> source_indices; source_sizes.resize(sizes.size()); source_indices.resize(sizes.size()); for (int i = 0; i < source_indices.size(); i++) { source_sizes.write[i] = sizes[i] + Vector2i(2, 2).maxi(p_denoiser_range); // Add padding between lightmaps. source_indices.write[i] = i; } Vector<Vector3i> atlas_offsets; atlas_offsets.resize(source_sizes.size()); // Ensure the sizes can all fit into a single atlas layer. // This should always happen, and this check is only in place to prevent an infinite loop. for (int i = 0; i < source_sizes.size(); i++) { if (source_sizes[i] > atlas_size) { return BAKE_ERROR_ATLAS_TOO_SMALL; } } int slices = 0; while (source_sizes.size() > 0) { Vector<Vector3i> offsets = Geometry2D::partial_pack_rects(source_sizes, atlas_size); Vector<int> new_indices; Vector<Vector2i> new_sources; for (int i = 0; i < offsets.size(); i++) { Vector3i ofs = offsets[i]; int sidx = source_indices[i]; if (ofs.z > 0) { //valid ofs.z = slices; atlas_offsets.write[sidx] = ofs + Vector3i(1, 1, 0); // Center lightmap in the reserved oversized region } else { new_indices.push_back(sidx); new_sources.push_back(source_sizes[i]); } } source_sizes = new_sources; source_indices = new_indices; slices++; } int mem_used = atlas_size.x * atlas_size.y * slices; if (mem_used < best_atlas_memory) { best_atlas_size = atlas_size; best_atlas_offsets = atlas_offsets; best_atlas_slices = slices; best_atlas_memory = mem_used; } if (atlas_size.width == atlas_size.height) { atlas_size.width *= 2; } else { atlas_size.height *= 2; } } atlas_size = best_atlas_size; atlas_slices = best_atlas_slices; // apply the offsets and slice to all images, and also blit albedo and emission albedo_images.resize(atlas_slices); emission_images.resize(atlas_slices); if (p_step_function) { p_step_function(0.2, RTR("Blitting albedo and emission"), p_bake_userdata, true); } for (int i = 0; i < atlas_slices; i++) { Ref<Image> albedo = Image::create_empty(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBA8); albedo->set_as_black(); albedo_images.write[i] = albedo; Ref<Image> emission = Image::create_empty(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH); emission->set_as_black(); emission_images.write[i] = emission; } //assign uv positions for (int m_i = 0; m_i < mesh_instances.size(); m_i++) { MeshInstance &mi = mesh_instances.write[m_i]; mi.offset.x = best_atlas_offsets[m_i].x; mi.offset.y = best_atlas_offsets[m_i].y; mi.slice = best_atlas_offsets[m_i].z; albedo_images.write[mi.slice]->blit_rect(mi.data.albedo_on_uv2, Rect2i(Vector2i(), mi.data.albedo_on_uv2->get_size()), mi.offset); emission_images.write[mi.slice]->blit_rect(mi.data.emission_on_uv2, Rect2(Vector2i(), mi.data.emission_on_uv2->get_size()), mi.offset); } return BAKE_OK; } void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, uint32_t p_cluster_size, Vector<Probe> &p_probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &r_triangle_indices_buffer, RID &r_cluster_indices_buffer, RID &r_cluster_aabbs_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata) { HashMap<Vertex, uint32_t, VertexHash> vertex_map; //fill triangles array and vertex array LocalVector<Triangle> triangles; LocalVector<Vertex> vertex_array; LocalVector<Seam> seams; slice_triangle_count.resize(atlas_slices); slice_seam_count.resize(atlas_slices); for (int i = 0; i < atlas_slices; i++) { slice_triangle_count.write[i] = 0; slice_seam_count.write[i] = 0; } bounds = AABB(); for (int m_i = 0; m_i < mesh_instances.size(); m_i++) { if (p_step_function) { float p = float(m_i + 1) / MAX(1, mesh_instances.size()) * 0.1; p_step_function(0.3 + p, vformat(RTR("Plotting mesh into acceleration structure %d/%d"), m_i + 1, mesh_instances.size()), p_bake_userdata, false); } HashMap<Edge, EdgeUV2, EdgeHash> edges; MeshInstance &mi = mesh_instances.write[m_i]; Vector2 uv_scale = Vector2(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height()) / Vector2(atlas_size); Vector2 uv_offset = Vector2(mi.offset) / Vector2(atlas_size); if (m_i == 0) { bounds.position = mi.data.points[0]; } for (int i = 0; i < mi.data.points.size(); i += 3) { Vector3 vtxs[3] = { mi.data.points[i + 0], mi.data.points[i + 1], mi.data.points[i + 2] }; Vector2 uvs[3] = { mi.data.uv2[i + 0] * uv_scale + uv_offset, mi.data.uv2[i + 1] * uv_scale + uv_offset, mi.data.uv2[i + 2] * uv_scale + uv_offset }; Vector3 normal[3] = { mi.data.normal[i + 0], mi.data.normal[i + 1], mi.data.normal[i + 2] }; AABB taabb; Triangle t; t.slice = mi.slice; for (int k = 0; k < 3; k++) { bounds.expand_to(vtxs[k]); Vertex v; v.position[0] = vtxs[k].x; v.position[1] = vtxs[k].y; v.position[2] = vtxs[k].z; v.uv[0] = uvs[k].x; v.uv[1] = uvs[k].y; v.normal_xy[0] = normal[k].x; v.normal_xy[1] = normal[k].y; v.normal_z = normal[k].z; uint32_t *indexptr = vertex_map.getptr(v); if (indexptr) { t.indices[k] = *indexptr; } else { uint32_t new_index = vertex_map.size(); t.indices[k] = new_index; vertex_map[v] = new_index; vertex_array.push_back(v); } if (k == 0) { taabb.position = vtxs[k]; } else { taabb.expand_to(vtxs[k]); } } //compute seams that will need to be blended later for (int k = 0; k < 3; k++) { int n = (k + 1) % 3; Edge edge(vtxs[k], vtxs[n], normal[k], normal[n]); Vector2i edge_indices(t.indices[k], t.indices[n]); EdgeUV2 uv2(uvs[k], uvs[n], edge_indices); if (edge.b == edge.a) { continue; //degenerate, somehow } if (edge.b < edge.a) { SWAP(edge.a, edge.b); SWAP(edge.na, edge.nb); SWAP(uv2.a, uv2.b); SWAP(uv2.indices.x, uv2.indices.y); SWAP(edge_indices.x, edge_indices.y); } EdgeUV2 *euv2 = edges.getptr(edge); if (!euv2) { edges[edge] = uv2; } else { if (*euv2 == uv2) { continue; // seam shared UV space, no need to blend } if (euv2->seam_found) { continue; //bad geometry } Seam seam; seam.a = edge_indices; seam.b = euv2->indices; seam.slice = mi.slice; seams.push_back(seam); slice_seam_count.write[mi.slice]++; euv2->seam_found = true; } } t.min_bounds[0] = taabb.position.x; t.min_bounds[1] = taabb.position.y; t.min_bounds[2] = taabb.position.z; t.max_bounds[0] = taabb.position.x + MAX(taabb.size.x, 0.0001); t.max_bounds[1] = taabb.position.y + MAX(taabb.size.y, 0.0001); t.max_bounds[2] = taabb.position.z + MAX(taabb.size.z, 0.0001); t.pad0 = t.pad1 = 0; //make valgrind not complain triangles.push_back(t); slice_triangle_count.write[t.slice]++; } } //also consider probe positions for bounds for (int i = 0; i < p_probe_positions.size(); i++) { Vector3 pp(p_probe_positions[i].position[0], p_probe_positions[i].position[1], p_probe_positions[i].position[2]); bounds.expand_to(pp); } bounds.grow_by(0.1); //grow a bit to avoid numerical error triangles.sort(); //sort by slice seams.sort(); if (p_step_function) { p_step_function(0.4, RTR("Optimizing acceleration structure"), p_bake_userdata, true); } //fill list of triangles in grid LocalVector<TriangleSort> triangle_sort; for (uint32_t i = 0; i < triangles.size(); i++) { const Triangle &t = triangles[i]; Vector3 face[3] = { Vector3(vertex_array[t.indices[0]].position[0], vertex_array[t.indices[0]].position[1], vertex_array[t.indices[0]].position[2]), Vector3(vertex_array[t.indices[1]].position[0], vertex_array[t.indices[1]].position[1], vertex_array[t.indices[1]].position[2]), Vector3(vertex_array[t.indices[2]].position[0], vertex_array[t.indices[2]].position[1], vertex_array[t.indices[2]].position[2]) }; _plot_triangle_into_triangle_index_list(grid_size, Vector3i(), bounds, face, i, triangle_sort, grid_size); } //sort it triangle_sort.sort(); LocalVector<uint32_t> cluster_indices; LocalVector<ClusterAABB> cluster_aabbs; Vector<uint32_t> triangle_indices; triangle_indices.resize(triangle_sort.size()); Vector<uint32_t> grid_indices; grid_indices.resize(grid_size * grid_size * grid_size * 2); memset(grid_indices.ptrw(), 0, grid_indices.size() * sizeof(uint32_t)); { // Fill grid with cell indices. uint32_t last_cell = 0xFFFFFFFF; uint32_t *giw = grid_indices.ptrw(); uint32_t cluster_count = 0; uint32_t solid_cell_count = 0; for (uint32_t i = 0; i < triangle_sort.size(); i++) { uint32_t cell = triangle_sort[i].cell_index; if (cell != last_cell) { giw[cell * 2 + 1] = solid_cell_count; solid_cell_count++; } if ((giw[cell * 2] % p_cluster_size) == 0) { // Add an extra cluster every time the triangle counter reaches a multiple of the cluster size. cluster_count++; } giw[cell * 2]++; last_cell = cell; } // Build fixed-size triangle clusters for all the cells to speed up the traversal. A cell can hold multiple clusters that each contain a fixed // amount of triangles and an AABB. The tracer will check against the AABBs first to know whether it needs to visit the cell's triangles. // // The building algorithm will divide the triangles recursively contained inside each cell, sorting by the longest axis of the AABB on each step. // // - If the amount of triangles is less or equal to the cluster size, the AABB will be stored and the algorithm stops. // // - The division by two is increased to the next power of two of half the amount of triangles (with cluster size as the minimum value) to // ensure the first half always fills the cluster. cluster_indices.resize(solid_cell_count * 2); cluster_aabbs.resize(cluster_count); uint32_t i = 0; uint32_t cluster_index = 0; uint32_t solid_cell_index = 0; uint32_t *tiw = triangle_indices.ptrw(); while (i < triangle_sort.size()) { cluster_indices[solid_cell_index * 2] = cluster_index; cluster_indices[solid_cell_index * 2 + 1] = i; uint32_t cell = triangle_sort[i].cell_index; uint32_t triangle_count = giw[cell * 2]; uint32_t cell_cluster_count = (triangle_count + p_cluster_size - 1) / p_cluster_size; _sort_triangle_clusters(p_cluster_size, cluster_index, i, triangle_count, triangle_sort, cluster_aabbs); for (uint32_t j = 0; j < triangle_count; j++) { tiw[i + j] = triangle_sort[i + j].triangle_index; } i += triangle_count; cluster_index += cell_cluster_count; solid_cell_index++; } } #if 0 for (int i = 0; i < grid_size; i++) { for (int j = 0; j < grid_size; j++) { for (int k = 0; k < grid_size; k++) { uint32_t index = i * (grid_size * grid_size) + j * grid_size + k; grid_indices.write[index * 2] = float(i) / grid_size * 255; grid_indices.write[index * 2 + 1] = float(j) / grid_size * 255; } } } #endif #if 0 for (int i = 0; i < grid_size; i++) { Vector<uint8_t> grid_usage; grid_usage.resize(grid_size * grid_size); for (int j = 0; j < grid_usage.size(); j++) { uint32_t ofs = i * grid_size * grid_size + j; uint32_t count = grid_indices[ofs * 2]; grid_usage.write[j] = count > 0 ? 255 : 0; } Ref<Image> img = Image::create_from_data(grid_size, grid_size, false, Image::FORMAT_L8, grid_usage); img->save_png("res://grid_layer_" + itos(1000 + i).substr(1, 3) + ".png"); } #endif /*****************************/ /*** CREATE GPU STRUCTURES ***/ /*****************************/ lights.sort(); Vector<Vector2i> seam_buffer_vec; seam_buffer_vec.resize(seams.size() * 2); for (uint32_t i = 0; i < seams.size(); i++) { seam_buffer_vec.write[i * 2 + 0] = seams[i].a; seam_buffer_vec.write[i * 2 + 1] = seams[i].b; } { //buffers Vector<uint8_t> vb = vertex_array.to_byte_array(); vertex_buffer = rd->storage_buffer_create(vb.size(), vb); Vector<uint8_t> tb = triangles.to_byte_array(); triangle_buffer = rd->storage_buffer_create(tb.size(), tb); Vector<uint8_t> tib = triangle_indices.to_byte_array(); r_triangle_indices_buffer = rd->storage_buffer_create(tib.size(), tib); Vector<uint8_t> cib = cluster_indices.to_byte_array(); r_cluster_indices_buffer = rd->storage_buffer_create(cib.size(), cib); Vector<uint8_t> cab = cluster_aabbs.to_byte_array(); r_cluster_aabbs_buffer = rd->storage_buffer_create(cab.size(), cab); Vector<uint8_t> lb = lights.to_byte_array(); if (lb.size() == 0) { lb.resize(sizeof(Light)); //even if no lights, the buffer must exist } lights_buffer = rd->storage_buffer_create(lb.size(), lb); Vector<uint8_t> sb = seam_buffer_vec.to_byte_array(); if (sb.size() == 0) { sb.resize(sizeof(Vector2i) * 2); //even if no seams, the buffer must exist } seams_buffer = rd->storage_buffer_create(sb.size(), sb); Vector<uint8_t> pb = p_probe_positions.to_byte_array(); if (pb.size() == 0) { pb.resize(sizeof(Probe)); } probe_positions_buffer = rd->storage_buffer_create(pb.size(), pb); } { //grid RD::TextureFormat tf; tf.width = grid_size; tf.height = grid_size; tf.depth = grid_size; tf.texture_type = RD::TEXTURE_TYPE_3D; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; Vector<Vector<uint8_t>> texdata; texdata.resize(1); //grid and indices tf.format = RD::DATA_FORMAT_R32G32_UINT; texdata.write[0] = grid_indices.to_byte_array(); grid_texture = rd->texture_create(tf, RD::TextureView(), texdata); } } void LightmapperRD::_raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform) { Vector<RID> framebuffers; for (int i = 0; i < atlas_slices; i++) { RID slice_pos_tex = rd->texture_create_shared_from_slice(RD::TextureView(), position_tex, i, 0); RID slice_unoc_tex = rd->texture_create_shared_from_slice(RD::TextureView(), unocclude_tex, i, 0); RID slice_norm_tex = rd->texture_create_shared_from_slice(RD::TextureView(), normal_tex, i, 0); Vector<RID> fb; fb.push_back(slice_pos_tex); fb.push_back(slice_norm_tex); fb.push_back(slice_unoc_tex); fb.push_back(raster_depth_buffer); framebuffers.push_back(rd->framebuffer_create(fb)); } RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does render same pixel twice RID raster_pipeline = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0); RID raster_pipeline_wire; { RD::PipelineRasterizationState rw; rw.wireframe = true; raster_pipeline_wire = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, rw, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0); } uint32_t triangle_offset = 0; Vector<Color> clear_colors; clear_colors.push_back(Color(0, 0, 0, 0)); clear_colors.push_back(Color(0, 0, 0, 0)); clear_colors.push_back(Color(0, 0, 0, 0)); for (int i = 0; i < atlas_slices; i++) { RasterPushConstant raster_push_constant; raster_push_constant.atlas_size[0] = atlas_size.x; raster_push_constant.atlas_size[1] = atlas_size.y; raster_push_constant.base_triangle = triangle_offset; raster_push_constant.to_cell_offset[0] = bounds.position.x; raster_push_constant.to_cell_offset[1] = bounds.position.y; raster_push_constant.to_cell_offset[2] = bounds.position.z; raster_push_constant.bias = p_bias; raster_push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size); raster_push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size); raster_push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size); raster_push_constant.grid_size[0] = grid_size; raster_push_constant.grid_size[1] = grid_size; raster_push_constant.grid_size[2] = grid_size; // Half pixel offset is required so the rasterizer doesn't output face edges directly aligned into pixels. // This fixes artifacts where the pixel would be traced from the edge of a face, causing half the rays to // be outside of the boundaries of the geometry. See <https://github.com/godotengine/godot/issues/69126>. raster_push_constant.uv_offset[0] = -0.5f / float(atlas_size.x); raster_push_constant.uv_offset[1] = -0.5f / float(atlas_size.y); RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors, 1.0, 0, Rect2(), RDD::BreadcrumbMarker::LIGHTMAPPER_PASS); //draw opaque rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline); rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0); rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3); //draw wire rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline_wire); rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0); rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3); rd->draw_list_end(); triangle_offset += slice_triangle_count[i]; } } static Vector<RD::Uniform> dilate_or_denoise_common_uniforms(RID &p_source_light_tex, RID &p_dest_light_tex) { Vector<RD::Uniform> uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.append_id(p_dest_light_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.append_id(p_source_light_tex); uniforms.push_back(u); } return uniforms; } LightmapperRD::BakeError LightmapperRD::_dilate(RenderingDevice *rd, Ref<RDShaderFile> &compute_shader, RID &compute_base_uniform_set, PushConstant &push_constant, RID &source_light_tex, RID &dest_light_tex, const Size2i &atlas_size, int atlas_slices) { Vector<RD::Uniform> uniforms = dilate_or_denoise_common_uniforms(source_light_tex, dest_light_tex); RID compute_shader_dilate = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("dilate")); ERR_FAIL_COND_V(compute_shader_dilate.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen RID compute_shader_dilate_pipeline = rd->compute_pipeline_create(compute_shader_dilate); RID dilate_uniform_set = rd->uniform_set_create(uniforms, compute_shader_dilate, 1); RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_dilate_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, dilate_uniform_set, 1); push_constant.region_ofs[0] = 0; push_constant.region_ofs[1] = 0; Vector3i group_size(Math::division_round_up(atlas_size.x, 8), Math::division_round_up(atlas_size.y, 8), 1); //restore group size for (int i = 0; i < atlas_slices; i++) { push_constant.atlas_slice = i; rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); //no barrier, let them run all together } rd->compute_list_end(); rd->free(compute_shader_dilate); #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices; i++) { Vector<uint8_t> s = rd->texture_get_data(source_light_tex, i); Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBA8); img->save_png("res://5_dilated_" + itos(i) + ".png"); } #endif return BAKE_OK; } Error LightmapperRD::_store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name) { Vector<uint8_t> data = p_rd->texture_get_data(p_atlas_tex, p_index); Ref<Image> img = Image::create_from_data(p_atlas_size.width, p_atlas_size.height, false, Image::FORMAT_RGBAH, data); img->convert(Image::FORMAT_RGBF); Vector<uint8_t> data_float = img->get_data(); Error err = OK; Ref<FileAccess> file = FileAccess::open(p_name, FileAccess::WRITE, &err); ERR_FAIL_COND_V_MSG(err, err, vformat("Can't save PFN at path: '%s'.", p_name)); file->store_line("PF"); file->store_line(vformat("%d %d", img->get_width(), img->get_height())); #ifdef BIG_ENDIAN_ENABLED file->store_line("1.0"); #else file->store_line("-1.0"); #endif file->store_buffer(data_float); file->close(); return OK; } Ref<Image> LightmapperRD::_read_pfm(const String &p_name) { Error err = OK; Ref<FileAccess> file = FileAccess::open(p_name, FileAccess::READ, &err); ERR_FAIL_COND_V_MSG(err, Ref<Image>(), vformat("Can't load PFM at path: '%s'.", p_name)); ERR_FAIL_COND_V(file->get_line() != "PF", Ref<Image>()); Vector<String> new_size = file->get_line().split(" "); ERR_FAIL_COND_V(new_size.size() != 2, Ref<Image>()); int new_width = new_size[0].to_int(); int new_height = new_size[1].to_int(); float endian = file->get_line().to_float(); Vector<uint8_t> new_data = file->get_buffer(file->get_length() - file->get_position()); file->close(); #ifdef BIG_ENDIAN_ENABLED if (unlikely(endian < 0.0)) { uint32_t count = new_data.size() / 4; uint16_t *dst = (uint16_t *)new_data.ptrw(); for (uint32_t j = 0; j < count; j++) { dst[j * 4] = BSWAP32(dst[j * 4]); } } #else if (unlikely(endian > 0.0)) { uint32_t count = new_data.size() / 4; uint16_t *dst = (uint16_t *)new_data.ptrw(); for (uint32_t j = 0; j < count; j++) { dst[j * 4] = BSWAP32(dst[j * 4]); } } #endif Ref<Image> img = Image::create_from_data(new_width, new_height, false, Image::FORMAT_RGBF, new_data); img->convert(Image::FORMAT_RGBAH); return img; } LightmapperRD::BakeError LightmapperRD::_denoise_oidn(RenderingDevice *p_rd, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, const String &p_exe) { Ref<DirAccess> da = DirAccess::create(DirAccess::ACCESS_FILESYSTEM); for (int i = 0; i < p_atlas_slices; i++) { String fname_norm_in = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_norm_%d.pfm", i)); _store_pfm(p_rd, p_source_normal_tex, i, p_atlas_size, fname_norm_in); for (int j = 0; j < (p_bake_sh ? 4 : 1); j++) { int index = i * (p_bake_sh ? 4 : 1) + j; String fname_light_in = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_light_%d.pfm", index)); String fname_out = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_denoised_%d.pfm", index)); _store_pfm(p_rd, p_source_light_tex, index, p_atlas_size, fname_light_in); List<String> args; args.push_back("--device"); args.push_back("default"); args.push_back("--filter"); args.push_back("RTLightmap"); args.push_back("--hdr"); args.push_back(fname_light_in); args.push_back("--nrm"); args.push_back(fname_norm_in); args.push_back("--output"); args.push_back(fname_out); String str; int exitcode = 0; Error err = OS::get_singleton()->execute(p_exe, args, &str, &exitcode, true); da->remove(fname_light_in); if (err != OK || exitcode != 0) { da->remove(fname_out); print_verbose(str); ERR_FAIL_V_MSG(BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES, vformat("OIDN denoiser failed, return code: %d", exitcode)); } Ref<Image> img = _read_pfm(fname_out); da->remove(fname_out); ERR_FAIL_COND_V(img.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); Vector<uint8_t> old_data = p_rd->texture_get_data(p_source_light_tex, index); Vector<uint8_t> new_data = img->get_data(); img.unref(); // Avoid copy on write. uint32_t count = old_data.size() / 2; const uint16_t *src = (const uint16_t *)old_data.ptr(); uint16_t *dst = (uint16_t *)new_data.ptrw(); for (uint32_t k = 0; k < count; k += 4) { dst[k + 3] = src[k + 3]; } p_rd->texture_update(p_dest_light_tex, index, new_data); } da->remove(fname_norm_in); } return BAKE_OK; } LightmapperRD::BakeError LightmapperRD::_denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, float p_denoiser_strength, int p_denoiser_range, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function, void *p_bake_userdata) { RID denoise_params_buffer = p_rd->uniform_buffer_create(sizeof(DenoiseParams)); DenoiseParams denoise_params; denoise_params.spatial_bandwidth = 5.0f; denoise_params.light_bandwidth = p_denoiser_strength; denoise_params.albedo_bandwidth = 1.0f; denoise_params.normal_bandwidth = 0.1f; denoise_params.filter_strength = 10.0f; denoise_params.half_search_window = p_denoiser_range; p_rd->buffer_update(denoise_params_buffer, 0, sizeof(DenoiseParams), &denoise_params); Vector<RD::Uniform> uniforms = dilate_or_denoise_common_uniforms(p_source_light_tex, p_dest_light_tex); { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.append_id(p_source_normal_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 3; u.append_id(denoise_params_buffer); uniforms.push_back(u); } RID compute_shader_denoise = p_rd->shader_create_from_spirv(p_compute_shader->get_spirv_stages("denoise")); ERR_FAIL_COND_V(compute_shader_denoise.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID compute_shader_denoise_pipeline = p_rd->compute_pipeline_create(compute_shader_denoise); RID denoise_uniform_set = p_rd->uniform_set_create(uniforms, compute_shader_denoise, 1); // We denoise in fixed size regions and synchronize execution to avoid GPU timeouts. // We use a region with 1/4 the amount of pixels if we're denoising SH lightmaps, as // all four of them are denoised in the shader in one dispatch. const int max_region_size = p_bake_sh ? 512 : 1024; int x_regions = Math::division_round_up(p_atlas_size.width, max_region_size); int y_regions = Math::division_round_up(p_atlas_size.height, max_region_size); for (int s = 0; s < p_atlas_slices; s++) { p_push_constant.atlas_slice = s; for (int i = 0; i < x_regions; i++) { for (int j = 0; j < y_regions; j++) { int x = i * max_region_size; int y = j * max_region_size; int w = MIN((i + 1) * max_region_size, p_atlas_size.width) - x; int h = MIN((j + 1) * max_region_size, p_atlas_size.height) - y; p_push_constant.region_ofs[0] = x; p_push_constant.region_ofs[1] = y; RD::ComputeListID compute_list = p_rd->compute_list_begin(); p_rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_denoise_pipeline); p_rd->compute_list_bind_uniform_set(compute_list, p_compute_base_uniform_set, 0); p_rd->compute_list_bind_uniform_set(compute_list, denoise_uniform_set, 1); p_rd->compute_list_set_push_constant(compute_list, &p_push_constant, sizeof(PushConstant)); p_rd->compute_list_dispatch(compute_list, Math::division_round_up(w, 8), Math::division_round_up(h, 8), 1); p_rd->compute_list_end(); p_rd->submit(); p_rd->sync(); } } if (p_step_function) { int percent = (s + 1) * 100 / p_atlas_slices; float p = float(s) / p_atlas_slices * 0.1; p_step_function(0.8 + p, vformat(RTR("Denoising %d%%"), percent), p_bake_userdata, false); } } p_rd->free(compute_shader_denoise); p_rd->free(denoise_params_buffer); return BAKE_OK; } LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata, float p_exposure_normalization) { int denoiser = GLOBAL_GET("rendering/lightmapping/denoising/denoiser"); String oidn_path = EDITOR_GET("filesystem/tools/oidn/oidn_denoise_path"); if (p_use_denoiser && denoiser == 1) { // OIDN (external). Ref<DirAccess> da = DirAccess::create(DirAccess::ACCESS_FILESYSTEM); if (da->dir_exists(oidn_path)) { if (OS::get_singleton()->get_name() == "Windows") { oidn_path = oidn_path.path_join("oidnDenoise.exe"); } else { oidn_path = oidn_path.path_join("oidnDenoise"); } } ERR_FAIL_COND_V_MSG(oidn_path.is_empty() || !da->file_exists(oidn_path), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES, "OIDN denoiser is selected in the project settings, but no or invalid OIDN executable path is configured in the editor settings."); } if (p_step_function) { p_step_function(0.0, RTR("Begin Bake"), p_bake_userdata, true); } bake_textures.clear(); int grid_size = 128; /* STEP 1: Fetch material textures and compute the bounds */ AABB bounds; Size2i atlas_size; int atlas_slices; Vector<Ref<Image>> albedo_images; Vector<Ref<Image>> emission_images; BakeError bake_error = _blit_meshes_into_atlas(p_max_texture_size, p_denoiser_range, albedo_images, emission_images, bounds, atlas_size, atlas_slices, p_step_function, p_bake_userdata); if (bake_error != BAKE_OK) { return bake_error; } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices; i++) { albedo_images[i]->save_png("res://0_albedo_" + itos(i) + ".png"); emission_images[i]->save_png("res://0_emission_" + itos(i) + ".png"); } #endif // Attempt to create a local device by requesting it from rendering server first. // If that fails because the current renderer is not implemented on top of RD, we fall back to creating // a local rendering device manually depending on the current platform. Error err; RenderingContextDriver *rcd = nullptr; RenderingDevice *rd = RenderingServer::get_singleton()->create_local_rendering_device(); if (rd == nullptr) { #if defined(RD_ENABLED) #if defined(VULKAN_ENABLED) rcd = memnew(RenderingContextDriverVulkan); rd = memnew(RenderingDevice); #endif #endif if (rcd != nullptr && rd != nullptr) { err = rcd->initialize(); if (err == OK) { err = rd->initialize(rcd); } if (err != OK) { memdelete(rd); memdelete(rcd); rd = nullptr; rcd = nullptr; } } } ERR_FAIL_NULL_V(rd, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID albedo_array_tex; RID emission_array_tex; RID normal_tex; RID position_tex; RID unocclude_tex; RID light_source_tex; RID light_dest_tex; RID light_accum_tex; RID light_accum_tex2; RID light_environment_tex; #define FREE_TEXTURES \ rd->free(albedo_array_tex); \ rd->free(emission_array_tex); \ rd->free(normal_tex); \ rd->free(position_tex); \ rd->free(unocclude_tex); \ rd->free(light_source_tex); \ rd->free(light_accum_tex2); \ rd->free(light_accum_tex); \ rd->free(light_environment_tex); { // create all textures Vector<Vector<uint8_t>> albedo_data; Vector<Vector<uint8_t>> emission_data; for (int i = 0; i < atlas_slices; i++) { albedo_data.push_back(albedo_images[i]->get_data()); emission_data.push_back(emission_images[i]->get_data()); } RD::TextureFormat tf; tf.width = atlas_size.width; tf.height = atlas_size.height; tf.array_layers = atlas_slices; tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM; albedo_array_tex = rd->texture_create(tf, RD::TextureView(), albedo_data); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; emission_array_tex = rd->texture_create(tf, RD::TextureView(), emission_data); //this will be rastered to tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_STORAGE_BIT; normal_tex = rd->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; position_tex = rd->texture_create(tf, RD::TextureView()); unocclude_tex = rd->texture_create(tf, RD::TextureView()); tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; light_source_tex = rd->texture_create(tf, RD::TextureView()); rd->texture_clear(light_source_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices); if (p_bake_sh) { tf.array_layers *= 4; } light_accum_tex = rd->texture_create(tf, RD::TextureView()); rd->texture_clear(light_accum_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers); light_dest_tex = rd->texture_create(tf, RD::TextureView()); rd->texture_clear(light_dest_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers); light_accum_tex2 = light_dest_tex; //env { Ref<Image> panorama_tex; if (p_environment_panorama.is_valid()) { panorama_tex = p_environment_panorama; panorama_tex->convert(Image::FORMAT_RGBAF); } else { panorama_tex.instantiate(); panorama_tex->initialize_data(8, 8, false, Image::FORMAT_RGBAF); panorama_tex->fill(Color(0, 0, 0, 1)); } RD::TextureFormat tfp; tfp.width = panorama_tex->get_width(); tfp.height = panorama_tex->get_height(); tfp.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT; tfp.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT; Vector<Vector<uint8_t>> tdata; tdata.push_back(panorama_tex->get_data()); light_environment_tex = rd->texture_create(tfp, RD::TextureView(), tdata); #ifdef DEBUG_TEXTURES panorama_tex->save_exr("res://0_panorama.exr", false); #endif } } /* STEP 2: create the acceleration structure for the GPU*/ Vector<int> slice_triangle_count; RID bake_parameters_buffer; RID vertex_buffer; RID triangle_buffer; RID lights_buffer; RID triangle_indices_buffer; RID cluster_indices_buffer; RID cluster_aabbs_buffer; RID grid_texture; RID seams_buffer; RID probe_positions_buffer; Vector<int> slice_seam_count; #define FREE_BUFFERS \ rd->free(bake_parameters_buffer); \ rd->free(vertex_buffer); \ rd->free(triangle_buffer); \ rd->free(lights_buffer); \ rd->free(triangle_indices_buffer); \ rd->free(cluster_indices_buffer); \ rd->free(cluster_aabbs_buffer); \ rd->free(grid_texture); \ rd->free(seams_buffer); \ rd->free(probe_positions_buffer); const uint32_t cluster_size = 16; _create_acceleration_structures(rd, atlas_size, atlas_slices, bounds, grid_size, cluster_size, probe_positions, p_generate_probes, slice_triangle_count, slice_seam_count, vertex_buffer, triangle_buffer, lights_buffer, triangle_indices_buffer, cluster_indices_buffer, cluster_aabbs_buffer, probe_positions_buffer, grid_texture, seams_buffer, p_step_function, p_bake_userdata); // Create global bake parameters buffer. BakeParameters bake_parameters; bake_parameters.world_size[0] = bounds.size.x; bake_parameters.world_size[1] = bounds.size.y; bake_parameters.world_size[2] = bounds.size.z; bake_parameters.bias = p_bias; bake_parameters.to_cell_offset[0] = bounds.position.x; bake_parameters.to_cell_offset[1] = bounds.position.y; bake_parameters.to_cell_offset[2] = bounds.position.z; bake_parameters.grid_size = grid_size; bake_parameters.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size); bake_parameters.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size); bake_parameters.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size); bake_parameters.light_count = lights.size(); bake_parameters.env_transform[0] = p_environment_transform.rows[0][0]; bake_parameters.env_transform[1] = p_environment_transform.rows[1][0]; bake_parameters.env_transform[2] = p_environment_transform.rows[2][0]; bake_parameters.env_transform[3] = 0.0f; bake_parameters.env_transform[4] = p_environment_transform.rows[0][1]; bake_parameters.env_transform[5] = p_environment_transform.rows[1][1]; bake_parameters.env_transform[6] = p_environment_transform.rows[2][1]; bake_parameters.env_transform[7] = 0.0f; bake_parameters.env_transform[8] = p_environment_transform.rows[0][2]; bake_parameters.env_transform[9] = p_environment_transform.rows[1][2]; bake_parameters.env_transform[10] = p_environment_transform.rows[2][2]; bake_parameters.env_transform[11] = 0.0f; bake_parameters.atlas_size[0] = atlas_size.width; bake_parameters.atlas_size[1] = atlas_size.height; bake_parameters.exposure_normalization = p_exposure_normalization; bake_parameters.bounces = p_bounces; bake_parameters.bounce_indirect_energy = p_bounce_indirect_energy; bake_parameters_buffer = rd->uniform_buffer_create(sizeof(BakeParameters)); rd->buffer_update(bake_parameters_buffer, 0, sizeof(BakeParameters), &bake_parameters); if (p_step_function) { p_step_function(0.47, RTR("Preparing shaders"), p_bake_userdata, true); } //shaders Ref<RDShaderFile> raster_shader; raster_shader.instantiate(); err = raster_shader->parse_versions_from_text(lm_raster_shader_glsl); if (err != OK) { raster_shader->print_errors("raster_shader"); FREE_TEXTURES FREE_BUFFERS memdelete(rd); if (rcd != nullptr) { memdelete(rcd); } } ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID rasterize_shader = rd->shader_create_from_spirv(raster_shader->get_spirv_stages()); ERR_FAIL_COND_V(rasterize_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //this is a bug check, though, should not happen RID sampler; { RD::SamplerState s; s.mag_filter = RD::SAMPLER_FILTER_LINEAR; s.min_filter = RD::SAMPLER_FILTER_LINEAR; s.max_lod = 0; sampler = rd->sampler_create(s); } Vector<RD::Uniform> base_uniforms; { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.binding = 0; u.append_id(bake_parameters_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 1; u.append_id(vertex_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 2; u.append_id(triangle_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 3; u.append_id(triangle_indices_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 4; u.append_id(lights_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 5; u.append_id(seams_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 6; u.append_id(probe_positions_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 7; u.append_id(grid_texture); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 8; u.append_id(albedo_array_tex); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 9; u.append_id(emission_array_tex); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 10; u.append_id(sampler); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 11; u.append_id(cluster_indices_buffer); base_uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 12; u.append_id(cluster_aabbs_buffer); base_uniforms.push_back(u); } } RID raster_base_uniform = rd->uniform_set_create(base_uniforms, rasterize_shader, 0); RID raster_depth_buffer; { RD::TextureFormat tf; tf.width = atlas_size.width; tf.height = atlas_size.height; tf.depth = 1; tf.texture_type = RD::TEXTURE_TYPE_2D; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT; tf.format = RD::DATA_FORMAT_D32_SFLOAT; raster_depth_buffer = rd->texture_create(tf, RD::TextureView()); } rd->submit(); rd->sync(); /* STEP 3: Raster the geometry to UV2 coords in the atlas textures GPU*/ _raster_geometry(rd, atlas_size, atlas_slices, grid_size, bounds, p_bias, slice_triangle_count, position_tex, unocclude_tex, normal_tex, raster_depth_buffer, rasterize_shader, raster_base_uniform); #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices; i++) { Vector<uint8_t> s = rd->texture_get_data(position_tex, i); Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAF, s); img->save_exr("res://1_position_" + itos(i) + ".exr", false); s = rd->texture_get_data(normal_tex, i); img->set_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->save_exr("res://1_normal_" + itos(i) + ".exr", false); } #endif #define FREE_RASTER_RESOURCES \ rd->free(rasterize_shader); \ rd->free(sampler); \ rd->free(raster_depth_buffer); /* Plot direct light */ Ref<RDShaderFile> compute_shader; String defines = ""; defines += "\n#define CLUSTER_SIZE " + uitos(cluster_size) + "\n"; if (p_bake_sh) { defines += "\n#define USE_SH_LIGHTMAPS\n"; } if (p_texture_for_bounces) { defines += "\n#define USE_LIGHT_TEXTURE_FOR_BOUNCES\n"; } compute_shader.instantiate(); err = compute_shader->parse_versions_from_text(lm_compute_shader_glsl, defines); if (err != OK) { FREE_TEXTURES FREE_BUFFERS FREE_RASTER_RESOURCES memdelete(rd); if (rcd != nullptr) { memdelete(rcd); } compute_shader->print_errors("compute_shader"); } ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // Unoccluder RID compute_shader_unocclude = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("unocclude")); ERR_FAIL_COND_V(compute_shader_unocclude.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen RID compute_shader_unocclude_pipeline = rd->compute_pipeline_create(compute_shader_unocclude); // Direct light RID compute_shader_primary = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("primary")); ERR_FAIL_COND_V(compute_shader_primary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen RID compute_shader_primary_pipeline = rd->compute_pipeline_create(compute_shader_primary); // Indirect light RID compute_shader_secondary = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("secondary")); ERR_FAIL_COND_V(compute_shader_secondary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen RID compute_shader_secondary_pipeline = rd->compute_pipeline_create(compute_shader_secondary); // Light probes RID compute_shader_light_probes = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("light_probes")); ERR_FAIL_COND_V(compute_shader_light_probes.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen RID compute_shader_light_probes_pipeline = rd->compute_pipeline_create(compute_shader_light_probes); RID compute_base_uniform_set = rd->uniform_set_create(base_uniforms, compute_shader_primary, 0); #define FREE_COMPUTE_RESOURCES \ rd->free(compute_shader_unocclude); \ rd->free(compute_shader_primary); \ rd->free(compute_shader_secondary); \ rd->free(compute_shader_light_probes); Vector3i group_size(Math::division_round_up(atlas_size.x, 8), Math::division_round_up(atlas_size.y, 8), 1); rd->submit(); rd->sync(); if (p_step_function) { p_step_function(0.49, RTR("Un-occluding geometry"), p_bake_userdata, true); } PushConstant push_constant; /* UNOCCLUDE */ { Vector<RD::Uniform> uniforms; { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.append_id(position_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 1; u.append_id(unocclude_tex); //will be unused uniforms.push_back(u); } } RID unocclude_uniform_set = rd->uniform_set_create(uniforms, compute_shader_unocclude, 1); RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_unocclude_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, unocclude_uniform_set, 1); for (int i = 0; i < atlas_slices; i++) { push_constant.atlas_slice = i; rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); //no barrier, let them run all together } rd->compute_list_end(); //done } if (p_step_function) { p_step_function(0.5, RTR("Plot direct lighting"), p_bake_userdata, true); } // Set ray count to the quality used for direct light and bounces. switch (p_quality) { case BAKE_QUALITY_LOW: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/low_quality_ray_count"); } break; case BAKE_QUALITY_MEDIUM: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/medium_quality_ray_count"); } break; case BAKE_QUALITY_HIGH: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/high_quality_ray_count"); } break; case BAKE_QUALITY_ULTRA: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/ultra_quality_ray_count"); } break; } push_constant.ray_count = CLAMP(push_constant.ray_count, 16u, 8192u); /* PRIMARY (direct) LIGHT PASS */ { Vector<RD::Uniform> uniforms; { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.append_id(light_source_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.append_id(light_dest_tex); //will be unused uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.append_id(position_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 3; u.append_id(normal_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.append_id(light_accum_tex); uniforms.push_back(u); } } RID light_uniform_set = rd->uniform_set_create(uniforms, compute_shader_primary, 1); RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_primary_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, light_uniform_set, 1); for (int i = 0; i < atlas_slices; i++) { push_constant.atlas_slice = i; rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); //no barrier, let them run all together } rd->compute_list_end(); //done } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices; i++) { Vector<uint8_t> s = rd->texture_get_data(light_source_tex, i); Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->save_exr("res://2_light_primary_" + itos(i) + ".exr", false); } if (p_bake_sh) { for (int i = 0; i < atlas_slices * 4; i++) { Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i); Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->save_exr("res://2_light_primary_accum_" + itos(i) + ".exr", false); } } #endif /* SECONDARY (indirect) LIGHT PASS(ES) */ if (p_bounces > 0) { Vector<RD::Uniform> uniforms; { { // Unused. RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 0; u.append_id(light_dest_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.append_id(light_source_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.append_id(position_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 3; u.append_id(normal_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_IMAGE; u.binding = 4; u.append_id(light_accum_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 5; u.append_id(light_environment_tex); uniforms.push_back(u); } } RID secondary_uniform_set; secondary_uniform_set = rd->uniform_set_create(uniforms, compute_shader_secondary, 1); int max_region_size = nearest_power_of_2_templated(int(GLOBAL_GET("rendering/lightmapping/bake_performance/region_size"))); int max_rays = GLOBAL_GET("rendering/lightmapping/bake_performance/max_rays_per_pass"); int x_regions = Math::division_round_up(atlas_size.width, max_region_size); int y_regions = Math::division_round_up(atlas_size.height, max_region_size); int ray_iterations = Math::division_round_up((int32_t)push_constant.ray_count, max_rays); rd->submit(); rd->sync(); if (p_step_function) { p_step_function(0.6, RTR("Integrate indirect lighting"), p_bake_userdata, true); } int count = 0; for (int s = 0; s < atlas_slices; s++) { push_constant.atlas_slice = s; for (int i = 0; i < x_regions; i++) { for (int j = 0; j < y_regions; j++) { int x = i * max_region_size; int y = j * max_region_size; int w = MIN((i + 1) * max_region_size, atlas_size.width) - x; int h = MIN((j + 1) * max_region_size, atlas_size.height) - y; push_constant.region_ofs[0] = x; push_constant.region_ofs[1] = y; group_size = Vector3i(Math::division_round_up(w, 8), Math::division_round_up(h, 8), 1); for (int k = 0; k < ray_iterations; k++) { RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_secondary_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, secondary_uniform_set, 1); push_constant.ray_from = k * max_rays; push_constant.ray_to = MIN((k + 1) * max_rays, int32_t(push_constant.ray_count)); rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z); rd->compute_list_end(); rd->submit(); rd->sync(); count++; if (p_step_function) { int total = (atlas_slices * x_regions * y_regions * ray_iterations); int percent = count * 100 / total; float p = float(count) / total * 0.1; p_step_function(0.6 + p, vformat(RTR("Integrate indirect lighting %d%%"), percent), p_bake_userdata, false); } } } } } } /* LIGHTPROBES */ RID light_probe_buffer; if (probe_positions.size()) { light_probe_buffer = rd->storage_buffer_create(sizeof(float) * 4 * 9 * probe_positions.size()); if (p_step_function) { p_step_function(0.7, RTR("Baking lightprobes"), p_bake_userdata, true); } Vector<RD::Uniform> uniforms; { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 0; u.append_id(light_probe_buffer); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 1; u.append_id(light_source_tex); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 2; u.append_id(light_environment_tex); uniforms.push_back(u); } } RID light_probe_uniform_set = rd->uniform_set_create(uniforms, compute_shader_light_probes, 1); switch (p_quality) { case BAKE_QUALITY_LOW: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/low_quality_probe_ray_count"); } break; case BAKE_QUALITY_MEDIUM: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/medium_quality_probe_ray_count"); } break; case BAKE_QUALITY_HIGH: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/high_quality_probe_ray_count"); } break; case BAKE_QUALITY_ULTRA: { push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/ultra_quality_probe_ray_count"); } break; } push_constant.ray_count = CLAMP(push_constant.ray_count, 16u, 8192u); push_constant.probe_count = probe_positions.size(); int max_rays = GLOBAL_GET("rendering/lightmapping/bake_performance/max_rays_per_probe_pass"); int ray_iterations = Math::division_round_up((int32_t)push_constant.ray_count, max_rays); for (int i = 0; i < ray_iterations; i++) { RD::ComputeListID compute_list = rd->compute_list_begin(); rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_light_probes_pipeline); rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0); rd->compute_list_bind_uniform_set(compute_list, light_probe_uniform_set, 1); push_constant.ray_from = i * max_rays; push_constant.ray_to = MIN((i + 1) * max_rays, int32_t(push_constant.ray_count)); rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant)); rd->compute_list_dispatch(compute_list, Math::division_round_up((int)probe_positions.size(), 64), 1, 1); rd->compute_list_end(); //done rd->submit(); rd->sync(); if (p_step_function) { int percent = i * 100 / ray_iterations; float p = float(i) / ray_iterations * 0.1; p_step_function(0.7 + p, vformat(RTR("Integrating light probes %d%%"), percent), p_bake_userdata, false); } } } #if 0 for (int i = 0; i < probe_positions.size(); i++) { Ref<Image> img = Image::create_empty(6, 4, false, Image::FORMAT_RGB8); for (int j = 0; j < 6; j++) { Vector<uint8_t> s = rd->texture_get_data(lightprobe_tex, i * 6 + j); Ref<Image> img2 = Image::create_from_data(2, 2, false, Image::FORMAT_RGBAF, s); img2->convert(Image::FORMAT_RGB8); img->blit_rect(img2, Rect2i(0, 0, 2, 2), Point2i((j % 3) * 2, (j / 3) * 2)); } img->save_png("res://3_light_probe_" + itos(i) + ".png"); } #endif /* DENOISE */ if (p_use_denoiser) { if (p_step_function) { p_step_function(0.8, RTR("Denoising"), p_bake_userdata, true); } { BakeError error; if (denoiser == 1) { // OIDN (external). error = _denoise_oidn(rd, light_accum_tex, normal_tex, light_accum_tex, atlas_size, atlas_slices, p_bake_sh, oidn_path); } else { // JNLM (built-in). SWAP(light_accum_tex, light_accum_tex2); error = _denoise(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, normal_tex, light_accum_tex, p_denoiser_strength, p_denoiser_range, atlas_size, atlas_slices, p_bake_sh, p_step_function, p_bake_userdata); } if (unlikely(error != BAKE_OK)) { return error; } } } { SWAP(light_accum_tex, light_accum_tex2); BakeError error = _dilate(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, light_accum_tex, atlas_size, atlas_slices * (p_bake_sh ? 4 : 1)); if (unlikely(error != BAKE_OK)) { return error; } } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i); Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->save_exr("res://4_light_secondary_" + itos(i) + ".exr", false); } #endif /* BLEND SEAMS */ //shaders Ref<RDShaderFile> blendseams_shader; blendseams_shader.instantiate(); err = blendseams_shader->parse_versions_from_text(lm_blendseams_shader_glsl); if (err != OK) { FREE_TEXTURES FREE_BUFFERS FREE_RASTER_RESOURCES FREE_COMPUTE_RESOURCES memdelete(rd); if (rcd != nullptr) { memdelete(rcd); } blendseams_shader->print_errors("blendseams_shader"); } ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID blendseams_line_raster_shader = rd->shader_create_from_spirv(blendseams_shader->get_spirv_stages("lines")); ERR_FAIL_COND_V(blendseams_line_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); RID blendseams_triangle_raster_shader = rd->shader_create_from_spirv(blendseams_shader->get_spirv_stages("triangles")); ERR_FAIL_COND_V(blendseams_triangle_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); #define FREE_BLENDSEAMS_RESOURCES \ rd->free(blendseams_line_raster_shader); \ rd->free(blendseams_triangle_raster_shader); { //pre copy for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { rd->texture_copy(light_accum_tex, light_accum_tex2, Vector3(), Vector3(), Vector3(atlas_size.width, atlas_size.height, 1), 0, 0, i, i); } Vector<RID> framebuffers; for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { RID slice_tex = rd->texture_create_shared_from_slice(RD::TextureView(), light_accum_tex, i, 0); Vector<RID> fb; fb.push_back(slice_tex); fb.push_back(raster_depth_buffer); framebuffers.push_back(rd->framebuffer_create(fb)); } Vector<RD::Uniform> uniforms; { { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.binding = 0; u.append_id(light_accum_tex2); uniforms.push_back(u); } } RID blendseams_raster_uniform = rd->uniform_set_create(uniforms, blendseams_line_raster_shader, 1); bool debug = false; RD::PipelineColorBlendState bs = RD::PipelineColorBlendState::create_blend(1); bs.attachments.write[0].src_alpha_blend_factor = RD::BLEND_FACTOR_ZERO; bs.attachments.write[0].dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE; RD::PipelineDepthStencilState ds; ds.enable_depth_test = true; ds.enable_depth_write = true; ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does not render same pixel twice, this avoids wrong blending RID blendseams_line_raster_pipeline = rd->render_pipeline_create(blendseams_line_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0); RID blendseams_triangle_raster_pipeline = rd->render_pipeline_create(blendseams_triangle_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0); uint32_t seam_offset = 0; uint32_t triangle_offset = 0; Vector<Color> clear_colors; clear_colors.push_back(Color(0, 0, 0, 1)); for (int i = 0; i < atlas_slices; i++) { int subslices = (p_bake_sh ? 4 : 1); if (slice_seam_count[i] == 0) { continue; } for (int k = 0; k < subslices; k++) { RasterSeamsPushConstant seams_push_constant; seams_push_constant.slice = uint32_t(i * subslices + k); seams_push_constant.debug = debug; // Store the current subslice in the breadcrumb. RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i * subslices + k], RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_DISCARD, clear_colors, 1.0, 0, Rect2(), RDD::BreadcrumbMarker::LIGHTMAPPER_PASS | seams_push_constant.slice); rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0); rd->draw_list_bind_uniform_set(draw_list, blendseams_raster_uniform, 1); const int uv_offset_count = 9; static const Vector3 uv_offsets[uv_offset_count] = { Vector3(0, 0, 0.5), //using zbuffer, so go inwards-outwards Vector3(0, 1, 0.2), Vector3(0, -1, 0.2), Vector3(1, 0, 0.2), Vector3(-1, 0, 0.2), Vector3(-1, -1, 0.1), Vector3(1, -1, 0.1), Vector3(1, 1, 0.1), Vector3(-1, 1, 0.1), }; /* step 1 use lines to blend the edges */ { seams_push_constant.base_index = seam_offset; rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline); seams_push_constant.uv_offset[0] = (uv_offsets[0].x - 0.5f) / float(atlas_size.width); seams_push_constant.uv_offset[1] = (uv_offsets[0].y - 0.5f) / float(atlas_size.height); seams_push_constant.blend = uv_offsets[0].z; rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4); } /* step 2 use triangles to mask the interior */ { seams_push_constant.base_index = triangle_offset; rd->draw_list_bind_render_pipeline(draw_list, blendseams_triangle_raster_pipeline); seams_push_constant.blend = 0; //do not draw them, just fill the z-buffer so its used as a mask rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3); } /* step 3 blend around the triangle */ rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline); for (int j = 1; j < uv_offset_count; j++) { seams_push_constant.base_index = seam_offset; seams_push_constant.uv_offset[0] = (uv_offsets[j].x - 0.5f) / float(atlas_size.width); seams_push_constant.uv_offset[1] = (uv_offsets[j].y - 0.5f) / float(atlas_size.height); seams_push_constant.blend = uv_offsets[0].z; rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant)); rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4); } rd->draw_list_end(); } seam_offset += slice_seam_count[i]; triangle_offset += slice_triangle_count[i]; } } #ifdef DEBUG_TEXTURES for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i); Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->save_exr("res://5_blendseams" + itos(i) + ".exr", false); } #endif if (p_step_function) { p_step_function(0.9, RTR("Retrieving textures"), p_bake_userdata, true); } for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) { Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i); Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s); img->convert(Image::FORMAT_RGBH); //remove alpha bake_textures.push_back(img); } if (probe_positions.size() > 0) { probe_values.resize(probe_positions.size() * 9); Vector<uint8_t> probe_data = rd->buffer_get_data(light_probe_buffer); memcpy(probe_values.ptrw(), probe_data.ptr(), probe_data.size()); rd->free(light_probe_buffer); #ifdef DEBUG_TEXTURES { Ref<Image> img2 = Image::create_from_data(probe_values.size(), 1, false, Image::FORMAT_RGBAF, probe_data); img2->save_exr("res://6_lightprobes.exr", false); } #endif } FREE_TEXTURES FREE_BUFFERS FREE_RASTER_RESOURCES FREE_COMPUTE_RESOURCES FREE_BLENDSEAMS_RESOURCES memdelete(rd); if (rcd != nullptr) { memdelete(rcd); } return BAKE_OK; } int LightmapperRD::get_bake_texture_count() const { return bake_textures.size(); } Ref<Image> LightmapperRD::get_bake_texture(int p_index) const { ERR_FAIL_INDEX_V(p_index, bake_textures.size(), Ref<Image>()); return bake_textures[p_index]; } int LightmapperRD::get_bake_mesh_count() const { return mesh_instances.size(); } Variant LightmapperRD::get_bake_mesh_userdata(int p_index) const { ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant()); return mesh_instances[p_index].data.userdata; } Rect2 LightmapperRD::get_bake_mesh_uv_scale(int p_index) const { ERR_FAIL_COND_V(bake_textures.is_empty(), Rect2()); Rect2 uv_ofs; Vector2 atlas_size = Vector2(bake_textures[0]->get_width(), bake_textures[0]->get_height()); uv_ofs.position = Vector2(mesh_instances[p_index].offset) / atlas_size; uv_ofs.size = Vector2(mesh_instances[p_index].data.albedo_on_uv2->get_width(), mesh_instances[p_index].data.albedo_on_uv2->get_height()) / atlas_size; return uv_ofs; } int LightmapperRD::get_bake_mesh_texture_slice(int p_index) const { ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant()); return mesh_instances[p_index].slice; } int LightmapperRD::get_bake_probe_count() const { return probe_positions.size(); } Vector3 LightmapperRD::get_bake_probe_point(int p_probe) const { ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Variant()); return Vector3(probe_positions[p_probe].position[0], probe_positions[p_probe].position[1], probe_positions[p_probe].position[2]); } Vector<Color> LightmapperRD::get_bake_probe_sh(int p_probe) const { ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Vector<Color>()); Vector<Color> ret; ret.resize(9); memcpy(ret.ptrw(), &probe_values[p_probe * 9], sizeof(Color) * 9); return ret; } LightmapperRD::LightmapperRD() { }