#[vertex] #version 450 #VERSION_DEFINES /* Include our forward mobile UBOs definitions etc. */ #include "scene_forward_mobile_inc.glsl" #define SHADER_IS_SRGB false /* INPUT ATTRIBS */ layout(location = 0) in vec3 vertex_attrib; //only for pure render depth when normal is not used #ifdef NORMAL_USED layout(location = 1) in vec3 normal_attrib; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 2) in vec4 tangent_attrib; #endif #if defined(COLOR_USED) layout(location = 3) in vec4 color_attrib; #endif #ifdef UV_USED layout(location = 4) in vec2 uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL) layout(location = 5) in vec2 uv2_attrib; #endif // MODE_RENDER_MATERIAL #if defined(CUSTOM0_USED) layout(location = 6) in vec4 custom0_attrib; #endif #if defined(CUSTOM1_USED) layout(location = 7) in vec4 custom1_attrib; #endif #if defined(CUSTOM2_USED) layout(location = 8) in vec4 custom2_attrib; #endif #if defined(CUSTOM3_USED) layout(location = 9) in vec4 custom3_attrib; #endif #if defined(BONES_USED) || defined(USE_PARTICLE_TRAILS) layout(location = 10) in uvec4 bone_attrib; #endif #if defined(WEIGHTS_USED) || defined(USE_PARTICLE_TRAILS) layout(location = 11) in vec4 weight_attrib; #endif /* Varyings */ layout(location = 0) highp out vec3 vertex_interp; #ifdef NORMAL_USED layout(location = 1) mediump out vec3 normal_interp; #endif #if defined(COLOR_USED) layout(location = 2) mediump out vec4 color_interp; #endif #ifdef UV_USED layout(location = 3) mediump out vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) mediump out vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) mediump out vec3 tangent_interp; layout(location = 6) mediump out vec3 binormal_interp; #endif #ifdef MATERIAL_UNIFORMS_USED layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ #MATERIAL_UNIFORMS } material; #endif #ifdef MODE_DUAL_PARABOLOID layout(location = 8) out highp float dp_clip; #endif #ifdef USE_MULTIVIEW #ifdef has_VK_KHR_multiview #define ViewIndex gl_ViewIndex #else // !BAS! This needs to become an input once we implement our fallback! #define ViewIndex 0 #endif #else // Set to zero, not supported in non stereo #define ViewIndex 0 #endif //USE_MULTIVIEW invariant gl_Position; #GLOBALS void main() { vec4 instance_custom = vec4(0.0); #if defined(COLOR_USED) color_interp = color_attrib; #endif bool is_multimesh = bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH); mat4 world_matrix = draw_call.transform; mat3 world_normal_matrix; if (bool(draw_call.flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) { world_normal_matrix = transpose(inverse(mat3(world_matrix))); } else { world_normal_matrix = mat3(world_matrix); } if (is_multimesh) { //multimesh, instances are for it mat4 matrix; #ifdef USE_PARTICLE_TRAILS uint trail_size = (draw_call.flags >> INSTANCE_FLAGS_PARTICLE_TRAIL_SHIFT) & INSTANCE_FLAGS_PARTICLE_TRAIL_MASK; uint stride = 3 + 1 + 1; //particles always uses this format uint offset = trail_size * stride * gl_InstanceIndex; #ifdef COLOR_USED vec4 pcolor; #endif { uint boffset = offset + bone_attrib.x * stride; matrix = mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.x; #ifdef COLOR_USED pcolor = transforms.data[boffset + 3] * weight_attrib.x; #endif } if (weight_attrib.y > 0.001) { uint boffset = offset + bone_attrib.y * stride; matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.y; #ifdef COLOR_USED pcolor += transforms.data[boffset + 3] * weight_attrib.y; #endif } if (weight_attrib.z > 0.001) { uint boffset = offset + bone_attrib.z * stride; matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.z; #ifdef COLOR_USED pcolor += transforms.data[boffset + 3] * weight_attrib.z; #endif } if (weight_attrib.w > 0.001) { uint boffset = offset + bone_attrib.w * stride; matrix += mat4(transforms.data[boffset + 0], transforms.data[boffset + 1], transforms.data[boffset + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weight_attrib.w; #ifdef COLOR_USED pcolor += transforms.data[boffset + 3] * weight_attrib.w; #endif } instance_custom = transforms.data[offset + 4]; #ifdef COLOR_USED color_interp *= pcolor; #endif #else uint stride = 0; { //TODO implement a small lookup table for the stride if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { stride += 2; } else { stride += 3; } if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { stride += 1; } if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { stride += 1; } } uint offset = stride * gl_InstanceIndex; if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); offset += 2; } else { matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0)); offset += 3; } if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { #ifdef COLOR_USED color_interp *= transforms.data[offset]; #endif offset += 1; } if (bool(draw_call.flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { instance_custom = transforms.data[offset]; } #endif //transpose matrix = transpose(matrix); world_matrix = world_matrix * matrix; world_normal_matrix = world_normal_matrix * mat3(matrix); } vec3 vertex = vertex_attrib; #ifdef NORMAL_USED vec3 normal = normal_attrib * 2.0 - 1.0; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0; float binormalf = tangent_attrib.a * 2.0 - 1.0; vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #ifdef UV_USED uv_interp = uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif #ifdef OVERRIDE_POSITION vec4 position; #endif #ifdef USE_MULTIVIEW mat4 projection_matrix = scene_data.projection_matrix_view[ViewIndex]; mat4 inv_projection_matrix = scene_data.inv_projection_matrix_view[ViewIndex]; #else mat4 projection_matrix = scene_data.projection_matrix; mat4 inv_projection_matrix = scene_data.inv_projection_matrix; #endif //USE_MULTIVIEW //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (world_matrix * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = world_normal_matrix * normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = world_normal_matrix * tangent; binormal = world_normal_matrix * binormal; #endif #endif float roughness = 1.0; mat4 modelview = scene_data.inv_camera_matrix * world_matrix; mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix; { #CODE : VERTEX } /* output */ // using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = (modelview * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = modelview_normal * normal; #endif #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = modelview_normal * binormal; tangent = modelview_normal * tangent; #endif //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = (scene_data.inv_camera_matrix * vec4(normal, 0.0)).xyz; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = (scene_data.inv_camera_matrix * vec4(binormal, 0.0)).xyz; tangent = (scene_data.inv_camera_matrix * vec4(tangent, 0.0)).xyz; #endif #endif vertex_interp = vertex; #ifdef NORMAL_USED normal_interp = normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef MODE_RENDER_DEPTH #ifdef MODE_DUAL_PARABOLOID vertex_interp.z *= scene_data.dual_paraboloid_side; dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges vec3 vtx = vertex_interp; float distance = length(vtx); vtx = normalize(vtx); vtx.xy /= 1.0 - vtx.z; vtx.z = (distance / scene_data.z_far); vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; #endif #endif //MODE_RENDER_DEPTH #ifdef OVERRIDE_POSITION gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif // OVERRIDE_POSITION #ifdef MODE_RENDER_DEPTH if (scene_data.pancake_shadows) { if (gl_Position.z <= 0.00001) { gl_Position.z = 0.00001; } } #endif // MODE_RENDER_DEPTH #ifdef MODE_RENDER_MATERIAL if (scene_data.material_uv2_mode) { vec2 uv_offset = draw_call.lightmap_uv_scale.xy; // we are abusing lightmap_uv_scale here, we shouldn't have a lightmap during a depth pass... gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0; gl_Position.z = 0.00001; gl_Position.w = 1.0; } #endif // MODE_RENDER_MATERIAL } #[fragment] #version 450 #VERSION_DEFINES #define SHADER_IS_SRGB false /* Specialization Constants */ #if !defined(MODE_RENDER_DEPTH) #if !defined(MODE_UNSHADED) layout(constant_id = 0) const bool sc_use_light_projector = false; layout(constant_id = 1) const bool sc_use_light_soft_shadows = false; layout(constant_id = 2) const bool sc_use_directional_soft_shadows = false; layout(constant_id = 3) const uint sc_soft_shadow_samples = 4; layout(constant_id = 4) const uint sc_penumbra_shadow_samples = 4; layout(constant_id = 5) const uint sc_directional_soft_shadow_samples = 4; layout(constant_id = 6) const uint sc_directional_penumbra_shadow_samples = 4; layout(constant_id = 8) const bool sc_projector_use_mipmaps = true; layout(constant_id = 9) const bool sc_disable_omni_lights = false; layout(constant_id = 10) const bool sc_disable_spot_lights = false; layout(constant_id = 11) const bool sc_disable_reflection_probes = false; layout(constant_id = 12) const bool sc_disable_directional_lights = false; #endif //!MODE_UNSHADED layout(constant_id = 7) const bool sc_decal_use_mipmaps = true; layout(constant_id = 13) const bool sc_disable_decals = false; layout(constant_id = 14) const bool sc_disable_fog = false; #endif //!MODE_RENDER_DEPTH layout(constant_id = 15) const float sc_luminance_multiplier = 2.0; /* Include our forward mobile UBOs definitions etc. */ #include "scene_forward_mobile_inc.glsl" /* Varyings */ layout(location = 0) highp in vec3 vertex_interp; #ifdef NORMAL_USED layout(location = 1) mediump in vec3 normal_interp; #endif #if defined(COLOR_USED) layout(location = 2) mediump in vec4 color_interp; #endif #ifdef UV_USED layout(location = 3) mediump in vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) mediump in vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) mediump in vec3 tangent_interp; layout(location = 6) mediump in vec3 binormal_interp; #endif #ifdef MODE_DUAL_PARABOLOID layout(location = 8) highp in float dp_clip; #endif #ifdef USE_MULTIVIEW #ifdef has_VK_KHR_multiview #define ViewIndex gl_ViewIndex #else // !BAS! This needs to become an input once we implement our fallback! #define ViewIndex 0 #endif #else // Set to zero, not supported in non stereo #define ViewIndex 0 #endif //USE_MULTIVIEW //defines to keep compatibility with vertex #define world_matrix draw_call.transform #ifdef USE_MULTIVIEW #define projection_matrix scene_data.projection_matrix_view[ViewIndex] #else #define projection_matrix scene_data.projection_matrix #endif #if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE) //both required for transmittance to be enabled #define LIGHT_TRANSMITTANCE_USED #endif #ifdef MATERIAL_UNIFORMS_USED layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ #MATERIAL_UNIFORMS } material; #endif #GLOBALS /* clang-format on */ #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_MATERIAL layout(location = 0) out vec4 albedo_output_buffer; layout(location = 1) out vec4 normal_output_buffer; layout(location = 2) out vec4 orm_output_buffer; layout(location = 3) out vec4 emission_output_buffer; layout(location = 4) out float depth_output_buffer; #endif // MODE_RENDER_MATERIAL #else // RENDER DEPTH #ifdef MODE_MULTIPLE_RENDER_TARGETS layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter) #else layout(location = 0) out mediump vec4 frag_color; #endif // MODE_MULTIPLE_RENDER_TARGETS #endif // RENDER DEPTH #include "scene_forward_aa_inc.glsl" #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) // Default to SPECULAR_SCHLICK_GGX. #if !defined(SPECULAR_DISABLED) && !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_TOON) #define SPECULAR_SCHLICK_GGX #endif #include "scene_forward_lights_inc.glsl" #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifndef MODE_RENDER_DEPTH /* Only supporting normal fog here. */ vec4 fog_process(vec3 vertex) { vec3 fog_color = scene_data.fog_light_color; if (scene_data.fog_aerial_perspective > 0.0) { vec3 sky_fog_color = vec3(0.0); vec3 cube_view = scene_data.radiance_inverse_xform * vertex; // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)); #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod); sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb; sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend); #else sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective); } if (scene_data.fog_sun_scatter > 0.001) { vec4 sun_scatter = vec4(0.0); float sun_total = 0.0; vec3 view = normalize(vertex); for (uint i = 0; i < scene_data.directional_light_count; i++) { vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy; float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0); fog_color += light_color * light_amount * scene_data.fog_sun_scatter; } } float fog_amount = 1.0 - exp(min(0.0, -length(vertex) * scene_data.fog_density)); if (abs(scene_data.fog_height_density) >= 0.0001) { float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y; float y_dist = y - scene_data.fog_height; float vfog_amount = 1.0 - exp(min(0.0, y_dist * scene_data.fog_height_density)); fog_amount = max(vfog_amount, fog_amount); } return vec4(fog_color, fog_amount); } #endif //!MODE_RENDER DEPTH void main() { #ifdef MODE_DUAL_PARABOLOID if (dp_clip > 0.0) discard; #endif //lay out everything, whatever is unused is optimized away anyway vec3 vertex = vertex_interp; vec3 view = -normalize(vertex_interp); vec3 albedo = vec3(1.0); vec3 backlight = vec3(0.0); vec4 transmittance_color = vec4(0.0); float transmittance_depth = 0.0; float transmittance_boost = 0.0; float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_roughness = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); vec4 fog = vec4(0.0); #if defined(CUSTOM_RADIANCE_USED) vec4 custom_radiance = vec4(0.0); #endif #if defined(CUSTOM_IRRADIANCE_USED) vec4 custom_irradiance = vec4(0.0); #endif float ao = 1.0; float ao_light_affect = 0.0; float alpha = 1.0; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 binormal = normalize(binormal_interp); vec3 tangent = normalize(tangent_interp); #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif #ifdef NORMAL_USED vec3 normal = normalize(normal_interp); #if defined(DO_SIDE_CHECK) if (!gl_FrontFacing) { normal = -normal; } #endif #endif //NORMAL_USED #ifdef UV_USED vec2 uv = uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif #if defined(COLOR_USED) vec4 color = color_interp; #endif #if defined(NORMAL_MAP_USED) vec3 normal_map = vec3(0.5); #endif float normal_map_depth = 1.0; vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center float sss_strength = 0.0; #ifdef ALPHA_SCISSOR_USED float alpha_scissor_threshold = 1.0; #endif // ALPHA_SCISSOR_USED #ifdef ALPHA_HASH_USED float alpha_hash_scale = 1.0; #endif // ALPHA_HASH_USED #ifdef ALPHA_ANTIALIASING_EDGE_USED float alpha_antialiasing_edge = 0.0; vec2 alpha_texture_coordinate = vec2(0.0, 0.0); #endif // ALPHA_ANTIALIASING_EDGE_USED { #CODE : FRAGMENT } #ifdef LIGHT_TRANSMITTANCE_USED #ifdef SSS_MODE_SKIN transmittance_color.a = sss_strength; #else transmittance_color.a *= sss_strength; #endif #endif #ifndef USE_SHADOW_TO_OPACITY #ifdef ALPHA_SCISSOR_USED if (alpha < alpha_scissor_threshold) { discard; } #endif // ALPHA_SCISSOR_USED // alpha hash can be used in unison with alpha antialiasing #ifdef ALPHA_HASH_USED if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) { discard; } #endif // ALPHA_HASH_USED // If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash #if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED) alpha = 1.0; #endif #ifdef ALPHA_ANTIALIASING_EDGE_USED // If alpha scissor is used, we must further the edge threshold, otherwise we won't get any edge feather #ifdef ALPHA_SCISSOR_USED alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0); #endif alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge); #endif // ALPHA_ANTIALIASING_EDGE_USED #ifdef USE_OPAQUE_PREPASS if (alpha < scene_data.opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // !USE_SHADOW_TO_OPACITY #ifdef NORMAL_MAP_USED normal_map.xy = normal_map.xy * 2.0 - 1.0; normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth)); #endif #ifdef LIGHT_ANISOTROPY_USED if (anisotropy > 0.01) { //rotation matrix mat3 rot = mat3(tangent, binormal, normal); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifdef ENABLE_CLIP_ALPHA if (albedo.a < 0.99) { //used for doublepass and shadowmapping discard; } #endif /////////////////////// FOG ////////////////////// #ifndef MODE_RENDER_DEPTH #ifndef CUSTOM_FOG_USED // fog must be processed as early as possible and then packed. // to maximize VGPR usage // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. if (!sc_disable_fog && scene_data.fog_enabled) { fog = fog_process(vertex); } #endif //!CUSTOM_FOG_USED uint fog_rg = packHalf2x16(fog.rg); uint fog_ba = packHalf2x16(fog.ba); #endif //!MODE_RENDER_DEPTH /////////////////////// DECALS //////////////////////////////// #ifndef MODE_RENDER_DEPTH vec3 vertex_ddx = dFdx(vertex); vec3 vertex_ddy = dFdy(vertex); if (!sc_disable_decals) { //Decals // must implement uint decal_indices = draw_call.decals.x; for (uint i = 0; i < 8; i++) { uint decal_index = decal_indices & 0xFF; if (i == 4) { decal_indices = draw_call.decals.y; } else { decal_indices = decal_indices >> 8; } if (decal_index == 0xFF) { break; } vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz; if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) { continue; //out of decal } float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade); if (decals.data[decal_index].normal_fade > 0.0) { fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5); } //we need ddx/ddy for mipmaps, so simulate them vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz; vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz; if (decals.data[decal_index].albedo_rect != vec4(0.0)) { //has albedo vec4 decal_albedo; if (sc_decal_use_mipmaps) { decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw); } else { decal_albedo = textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, 0.0); } decal_albedo *= decals.data[decal_index].modulate; decal_albedo.a *= fade; albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix); if (decals.data[decal_index].normal_rect != vec4(0.0)) { vec3 decal_normal; if (sc_decal_use_mipmaps) { decal_normal = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz; } else { decal_normal = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, 0.0).xyz; } decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy))); //convert to view space, use xzy because y is up decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz; normal = normalize(mix(normal, decal_normal, decal_albedo.a)); } if (decals.data[decal_index].orm_rect != vec4(0.0)) { vec3 decal_orm; if (sc_decal_use_mipmaps) { decal_orm = textureGrad(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz; } else { decal_orm = textureLod(sampler2D(decal_atlas, decal_sampler), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, 0.0).xyz; } ao = mix(ao, decal_orm.r, decal_albedo.a); roughness = mix(roughness, decal_orm.g, decal_albedo.a); metallic = mix(metallic, decal_orm.b, decal_albedo.a); } } if (decals.data[decal_index].emission_rect != vec4(0.0)) { //emission is additive, so its independent from albedo if (sc_decal_use_mipmaps) { emission += textureGrad(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade; } else { emission += textureLod(sampler2D(decal_atlas_srgb, decal_sampler), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, 0.0).xyz * decals.data[decal_index].emission_energy * fade; } } } } //Decals #endif //!MODE_RENDER_DEPTH /////////////////////// LIGHTING ////////////////////////////// #ifdef NORMAL_USED if (scene_data.roughness_limiter_enabled) { //https://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf float roughness2 = roughness * roughness; vec3 dndu = dFdx(normal), dndv = dFdy(normal); float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv)); float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2); roughness = sqrt(filteredRoughness2); } #endif // NORMAL_USED //apply energy conservation vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) if (scene_data.use_reflection_cubemap) { #ifdef LIGHT_ANISOTROPY_USED // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent; vec3 anisotropic_tangent = cross(anisotropic_direction, view); vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction); vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0))); vec3 ref_vec = reflect(-view, bent_normal); #else vec3 ref_vec = reflect(-view, normal); #endif float horizon = min(1.0 + dot(ref_vec, normal), 1.0); ref_vec = scene_data.radiance_inverse_xform * ref_vec; #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(roughness * MAX_ROUGHNESS_LOD, lod); specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb; specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend); #else // USE_RADIANCE_CUBEMAP_ARRAY specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY specular_light *= horizon * horizon; specular_light *= scene_data.ambient_light_color_energy.a; } #if defined(CUSTOM_RADIANCE_USED) specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a); #endif // CUSTOM_RADIANCE_USED #ifndef USE_LIGHTMAP //lightmap overrides everything if (scene_data.use_ambient_light) { ambient_light = scene_data.ambient_light_color_energy.rgb; if (scene_data.use_ambient_cubemap) { vec3 ambient_dir = scene_data.radiance_inverse_xform * normal; #ifdef USE_RADIANCE_CUBEMAP_ARRAY vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb; #else vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix); } } #endif // !USE_LIGHTMAP #if defined(CUSTOM_IRRADIANCE_USED) ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a); #endif // CUSTOM_IRRADIANCE_USED #ifdef LIGHT_CLEARCOAT_USED if (scene_data.use_reflection_cubemap) { vec3 n = normalize(normal_interp); // We want to use geometric normal, not normal_map float NoV = max(dot(n, view), 0.0001); vec3 ref_vec = reflect(-view, n); // The clear coat layer assumes an IOR of 1.5 (4% reflectance) float Fc = clearcoat * (0.04 + 0.96 * SchlickFresnel(NoV)); float attenuation = 1.0 - Fc; ambient_light *= attenuation; specular_light *= attenuation; float horizon = min(1.0 + dot(ref_vec, normal), 1.0); ref_vec = scene_data.radiance_inverse_xform * ref_vec; float roughness_lod = mix(0.001, 0.1, clearcoat_roughness) * MAX_ROUGHNESS_LOD; #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(roughness_lod, lod); vec3 clearcoat_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb; clearcoat_light = mix(clearcoat_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend); #else vec3 clearcoat_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness_lod).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY specular_light += clearcoat_light * horizon * horizon * Fc * scene_data.ambient_light_color_energy.a; } #endif #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) //radiance #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef USE_LIGHTMAP //lightmap if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture uint index = draw_call.gi_offset; vec3 wnormal = mat3(scene_data.camera_matrix) * normal; const float c1 = 0.429043; const float c2 = 0.511664; const float c3 = 0.743125; const float c4 = 0.886227; const float c5 = 0.247708; ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) + c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z + c4 * lightmap_captures.data[index].sh[0].rgb - c5 * lightmap_captures.data[index].sh[6].rgb + 2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y + 2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z + 2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z + 2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x + 2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y + 2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z); } else if (bool(draw_call.flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap bool uses_sh = bool(draw_call.flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP); uint ofs = draw_call.gi_offset & 0xFFFF; vec3 uvw; uvw.xy = uv2 * draw_call.lightmap_uv_scale.zw + draw_call.lightmap_uv_scale.xy; uvw.z = float((draw_call.gi_offset >> 16) & 0xFFFF); if (uses_sh) { uvw.z *= 4.0; //SH textures use 4 times more data vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb; vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb; vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb; vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb; uint idx = draw_call.gi_offset >> 20; vec3 n = normalize(lightmaps.data[idx].normal_xform * normal); ambient_light += lm_light_l0 * 0.282095f; ambient_light += lm_light_l1n1 * 0.32573 * n.y; ambient_light += lm_light_l1_0 * 0.32573 * n.z; ambient_light += lm_light_l1p1 * 0.32573 * n.x; if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick vec3 r = reflect(normalize(-vertex), normal); specular_light += lm_light_l1n1 * 0.32573 * r.y; specular_light += lm_light_l1_0 * 0.32573 * r.z; specular_light += lm_light_l1p1 * 0.32573 * r.x; } } else { ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb; } } // No GI nor non low end mode... #endif // USE_LIGHTMAP // skipping ssao, do we remove ssao totally? if (!sc_disable_reflection_probes) { //Reflection probes vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); uint reflection_indices = draw_call.reflection_probes.x; for (uint i = 0; i < 8; i++) { uint reflection_index = reflection_indices & 0xFF; if (i == 4) { reflection_indices = draw_call.reflection_probes.y; } else { reflection_indices = reflection_indices >> 8; } if (reflection_index == 0xFF) { break; } #ifdef LIGHT_ANISOTROPY_USED // https://google.github.io/filament/Filament.html#lighting/imagebasedlights/anisotropy vec3 anisotropic_direction = anisotropy >= 0.0 ? binormal : tangent; vec3 anisotropic_tangent = cross(anisotropic_direction, view); vec3 anisotropic_normal = cross(anisotropic_tangent, anisotropic_direction); vec3 bent_normal = normalize(mix(normal, anisotropic_normal, abs(anisotropy) * clamp(5.0 * roughness, 0.0, 1.0))); #else vec3 bent_normal = normal; #endif reflection_process(reflection_index, vertex, bent_normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum); } if (reflection_accum.a > 0.0) { specular_light = reflection_accum.rgb / reflection_accum.a; } } //Reflection probes // finalize ambient light here ambient_light *= albedo.rgb; ambient_light *= ao; // convert ao to direct light ao ao = mix(1.0, ao, ao_light_affect); //this saves some VGPRs vec3 f0 = F0(metallic, specular, albedo); { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else // scales the specular reflections, needs to be computed before lighting happens, // but after environment, GI, and reflection probes are added // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, view), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; specular_light *= env.x * f0 + env.y; #endif } #endif // !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #if !defined(MODE_RENDER_DEPTH) //this saves some VGPRs uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular)); #endif // LIGHTING #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) if (!sc_disable_directional_lights) { //directional light #ifndef SHADOWS_DISABLED // Do shadow and lighting in two passes to reduce register pressure uint shadow0 = 0; uint shadow1 = 0; for (uint i = 0; i < 8; i++) { if (i >= scene_data.directional_light_count) { break; } if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) { continue; //not masked } float shadow = 1.0; // Directional light shadow code is basically the same as forward clustered at this point in time minus `LIGHT_TRANSMITTANCE_USED` support. // Not sure if there is a reason to change this seeing directional lights are part of our global data // Should think about whether we may want to move this code into an include file or function?? #ifdef USE_SOFT_SHADOWS //version with soft shadows, more expensive if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; vec4 pssm_coord; vec3 shadow_color = vec3(0.0); vec3 light_dir = directional_lights.data[i].direction; #define BIAS_FUNC(m_var, m_idx) \ m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \ normal_bias -= light_dir * dot(light_dir, normal_bias); \ m_var.xyz += normal_bias; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 0) pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.x; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color1.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.y; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color2.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.z; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color3.rgb; } else { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.w; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color4.rgb; } if (directional_lights.data[i].blend_splits) { vec3 shadow_color_blend = vec3(0.0); float pssm_blend; float shadow2; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.y; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius; shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); shadow_color_blend = directional_lights.data[i].shadow_color2.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.z; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius; shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); shadow_color_blend = directional_lights.data[i].shadow_color3.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.w; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius; shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); shadow_color_blend = directional_lights.data[i].shadow_color4.rgb; } else { pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) } pssm_blend = sqrt(pssm_blend); shadow = mix(shadow, shadow2, pssm_blend); shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend); } shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance #undef BIAS_FUNC } #else // Soft shadow disabled version if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; vec4 pssm_coord; vec3 light_dir = directional_lights.data[i].direction; vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))); #define BIAS_FUNC(m_var, m_idx) \ m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \ normal_bias -= light_dir * dot(light_dir, normal_bias); \ m_var.xyz += normal_bias; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 0) pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); } else { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); } pssm_coord /= pssm_coord.w; shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); if (directional_lights.data[i].blend_splits) { float pssm_blend; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); } else { pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) } pssm_coord /= pssm_coord.w; float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); shadow = mix(shadow, shadow2, pssm_blend); } shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance #undef BIAS_FUNC } #endif if (i < 4) { shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8); } else { shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8); } } #endif // SHADOWS_DISABLED for (uint i = 0; i < 8; i++) { if (i >= scene_data.directional_light_count) { break; } if (!bool(directional_lights.data[i].mask & draw_call.layer_mask)) { continue; //not masked } // We're not doing light transmittence float shadow = 1.0; #ifndef SHADOWS_DISABLED if (i < 4) { shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0; } else { shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0; } #endif blur_shadow(shadow); light_compute(normal, directional_lights.data[i].direction, normalize(view), 0.0, directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif /* not supported here #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, transmittance_z, #endif */ #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SOFT_SHADOW directional_lights.data[i].size, #endif diffuse_light, specular_light); } } //directional light if (!sc_disable_omni_lights) { //omni lights uint light_indices = draw_call.omni_lights.x; for (uint i = 0; i < 8; i++) { uint light_index = light_indices & 0xFF; if (i == 4) { light_indices = draw_call.omni_lights.y; } else { light_indices = light_indices >> 8; } if (light_index == 0xFF) { break; } float shadow = light_process_omni_shadow(light_index, vertex, normal); shadow = blur_shadow(shadow); light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif /* #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, #endif */ #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif diffuse_light, specular_light); } } //omni lights if (!sc_disable_spot_lights) { //spot lights uint light_indices = draw_call.spot_lights.x; for (uint i = 0; i < 8; i++) { uint light_index = light_indices & 0xFF; if (i == 4) { light_indices = draw_call.spot_lights.y; } else { light_indices = light_indices >> 8; } if (light_index == 0xFF) { break; } float shadow = light_process_spot_shadow(light_index, vertex, normal); shadow = blur_shadow(shadow); light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, albedo, alpha, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif /* #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_boost, #endif */ #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_roughness, normalize(normal_interp), #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif diffuse_light, specular_light); } } //spot lights #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS if (alpha < scene_data.opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // USE_SHADOW_TO_OPACITY #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_MATERIAL albedo_output_buffer.rgb = albedo; albedo_output_buffer.a = alpha; normal_output_buffer.rgb = normal * 0.5 + 0.5; normal_output_buffer.a = 0.0; depth_output_buffer.r = -vertex.z; orm_output_buffer.r = ao; orm_output_buffer.g = roughness; orm_output_buffer.b = metallic; orm_output_buffer.a = sss_strength; emission_output_buffer.rgb = emission; emission_output_buffer.a = 0.0; #endif // MODE_RENDER_MATERIAL #else // MODE_RENDER_DEPTH // multiply by albedo diffuse_light *= albedo; // ambient must be multiplied by albedo at the end // apply direct light AO ao = unpackUnorm4x8(orms).x; specular_light *= ao; diffuse_light *= ao; // apply metallic metallic = unpackUnorm4x8(orms).z; diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; //restore fog fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba)); #ifdef MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED diffuse_buffer = vec4(albedo.rgb, 0.0); specular_buffer = vec4(0.0); #else // MODE_UNSHADED #ifdef SSS_MODE_SKIN sss_strength = -sss_strength; #endif // SSS_MODE_SKIN diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength); specular_buffer = vec4(specular_light, metallic); #endif // MODE_UNSHADED diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a); specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a); #else //MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED frag_color = vec4(albedo, alpha); #else // MODE_UNSHADED frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); #endif // MODE_UNSHADED // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); // On mobile we use a UNORM buffer with 10bpp which results in a range from 0.0 - 1.0 resulting in HDR breaking // We divide by sc_luminance_multiplier to support a range from 0.0 - 2.0 both increasing precision on bright and darker images frag_color.rgb = frag_color.rgb / sc_luminance_multiplier; #endif //MODE_MULTIPLE_RENDER_TARGETS #endif //MODE_RENDER_DEPTH }