/**************************************************************************/ /* test_astar.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "test_astar.h" #include "core/math/a_star.h" #include "core/math/math_funcs.h" #include "core/os/os.h" #include #include namespace TestAStar { class ABCX : public AStar { public: enum { A, B, C, X }; ABCX() { add_point(A, Vector3(0, 0, 0)); add_point(B, Vector3(1, 0, 0)); add_point(C, Vector3(0, 1, 0)); add_point(X, Vector3(0, 0, 1)); connect_points(A, B); connect_points(A, C); connect_points(B, C); connect_points(X, A); } // Disable heuristic completely float _compute_cost(int p_from, int p_to) { if (p_from == A && p_to == C) { return 1000; } return 100; } }; bool test_abc() { ABCX abcx; PoolVector path = abcx.get_id_path(ABCX::A, ABCX::C); bool ok = path.size() == 3; int i = 0; ok = ok && path[i++] == ABCX::A; ok = ok && path[i++] == ABCX::B; ok = ok && path[i++] == ABCX::C; return ok; } bool test_abcx() { ABCX abcx; PoolVector path = abcx.get_id_path(ABCX::X, ABCX::C); bool ok = path.size() == 4; int i = 0; ok = ok && path[i++] == ABCX::X; ok = ok && path[i++] == ABCX::A; ok = ok && path[i++] == ABCX::B; ok = ok && path[i++] == ABCX::C; return ok; } bool test_add_remove() { AStar a; bool ok = true; // Manual tests a.add_point(1, Vector3(0, 0, 0)); a.add_point(2, Vector3(0, 1, 0)); a.add_point(3, Vector3(1, 1, 0)); a.add_point(4, Vector3(2, 0, 0)); a.connect_points(1, 2, true); a.connect_points(1, 3, true); a.connect_points(1, 4, false); ok = ok && (a.are_points_connected(2, 1)); ok = ok && (a.are_points_connected(4, 1)); ok = ok && (a.are_points_connected(2, 1, false)); ok = ok && (a.are_points_connected(4, 1, false) == false); a.disconnect_points(1, 2, true); ok = ok && (a.get_point_connections(1).size() == 2); // 3, 4 ok = ok && (a.get_point_connections(2).size() == 0); a.disconnect_points(4, 1, false); ok = ok && (a.get_point_connections(1).size() == 2); // 3, 4 ok = ok && (a.get_point_connections(4).size() == 0); a.disconnect_points(4, 1, true); ok = ok && (a.get_point_connections(1).size() == 1); // 3 ok = ok && (a.get_point_connections(4).size() == 0); a.connect_points(2, 3, false); ok = ok && (a.get_point_connections(2).size() == 1); // 3 ok = ok && (a.get_point_connections(3).size() == 1); // 1 a.connect_points(2, 3, true); ok = ok && (a.get_point_connections(2).size() == 1); // 3 ok = ok && (a.get_point_connections(3).size() == 2); // 1, 2 a.disconnect_points(2, 3, false); ok = ok && (a.get_point_connections(2).size() == 0); ok = ok && (a.get_point_connections(3).size() == 2); // 1, 2 a.connect_points(4, 3, true); ok = ok && (a.get_point_connections(3).size() == 3); // 1, 2, 4 ok = ok && (a.get_point_connections(4).size() == 1); // 3 a.disconnect_points(3, 4, false); ok = ok && (a.get_point_connections(3).size() == 2); // 1, 2 ok = ok && (a.get_point_connections(4).size() == 1); // 3 a.remove_point(3); ok = ok && (a.get_point_connections(1).size() == 0); ok = ok && (a.get_point_connections(2).size() == 0); ok = ok && (a.get_point_connections(4).size() == 0); a.add_point(0, Vector3(0, -1, 0)); a.add_point(3, Vector3(2, 1, 0)); // 0: (0, -1) // 1: (0, 0) // 2: (0, 1) // 3: (2, 1) // 4: (2, 0) // Tests for get_closest_position_in_segment a.connect_points(2, 3); ok = ok && (a.get_closest_position_in_segment(Vector3(0.5, 0.5, 0)) == Vector3(0.5, 1, 0)); a.connect_points(3, 4); a.connect_points(0, 3); a.connect_points(1, 4); a.disconnect_points(1, 4, false); a.disconnect_points(4, 3, false); a.disconnect_points(3, 4, false); // Remaining edges: <2, 3>, <0, 3>, <1, 4> (directed) ok = ok && (a.get_closest_position_in_segment(Vector3(2, 0.5, 0)) == Vector3(1.75, 0.75, 0)); ok = ok && (a.get_closest_position_in_segment(Vector3(-1, 0.2, 0)) == Vector3(0, 0, 0)); ok = ok && (a.get_closest_position_in_segment(Vector3(3, 2, 0)) == Vector3(2, 1, 0)); Math::seed(0); // Random tests for connectivity checks for (int i = 0; i < 20000; i++) { int u = Math::rand() % 5; int v = Math::rand() % 4; if (u == v) { v = 4; } if (Math::rand() % 2 == 1) { // Add a (possibly existing) directed edge and confirm connectivity a.connect_points(u, v, false); ok = ok && (a.are_points_connected(u, v, false)); } else { // Remove a (possibly nonexistent) directed edge and confirm disconnectivity a.disconnect_points(u, v, false); ok = ok && (a.are_points_connected(u, v, false) == false); } } // Random tests for point removal for (int i = 0; i < 20000; i++) { a.clear(); for (int j = 0; j < 5; j++) { a.add_point(j, Vector3(0, 0, 0)); } // Add or remove random edges for (int j = 0; j < 10; j++) { int u = Math::rand() % 5; int v = Math::rand() % 4; if (u == v) { v = 4; } if (Math::rand() % 2 == 1) { a.connect_points(u, v, false); } else { a.disconnect_points(u, v, false); } } // Remove point 0 a.remove_point(0); // White box: this will check all edges remaining in the segments set for (int j = 1; j < 5; j++) { ok = ok && (a.are_points_connected(0, j, true) == false); } } // It's been great work, cheers \(^ ^)/ return ok; } bool test_solutions() { // Random stress tests with Floyd-Warshall const int N = 30; Math::seed(0); for (int test = 0; test < 1000; test++) { AStar a; Vector3 p[N]; bool adj[N][N] = { { false } }; // Assign initial coordinates for (int u = 0; u < N; u++) { p[u].x = Math::rand() % 100; p[u].y = Math::rand() % 100; p[u].z = Math::rand() % 100; a.add_point(u, p[u]); } // Generate a random sequence of operations for (int i = 0; i < 1000; i++) { // Pick two different vertices int u, v; u = Math::rand() % N; v = Math::rand() % (N - 1); if (u == v) { v = N - 1; } // Pick a random operation int op = Math::rand(); switch (op % 9) { case 0: case 1: case 2: case 3: case 4: case 5: // Add edge (u, v); possibly bidirectional a.connect_points(u, v, op % 2); adj[u][v] = true; if (op % 2) { adj[v][u] = true; } break; case 6: case 7: // Remove edge (u, v); possibly bidirectional a.disconnect_points(u, v, op % 2); adj[u][v] = false; if (op % 2) { adj[v][u] = false; } break; case 8: // Remove point u and add it back; clears adjacent edges and changes coordinates a.remove_point(u); p[u].x = Math::rand() % 100; p[u].y = Math::rand() % 100; p[u].z = Math::rand() % 100; a.add_point(u, p[u]); for (v = 0; v < N; v++) { adj[u][v] = adj[v][u] = false; } break; } } // Floyd-Warshall float d[N][N]; for (int u = 0; u < N; u++) { for (int v = 0; v < N; v++) { d[u][v] = (u == v || adj[u][v]) ? p[u].distance_to(p[v]) : INFINITY; } } for (int w = 0; w < N; w++) { for (int u = 0; u < N; u++) { for (int v = 0; v < N; v++) { if (d[u][v] > d[u][w] + d[w][v]) { d[u][v] = d[u][w] + d[w][v]; } } } } // Display statistics int count = 0; for (int u = 0; u < N; u++) { for (int v = 0; v < N; v++) { if (adj[u][v]) { count++; } } } printf("Test #%4d: %3d edges, ", test + 1, count); count = 0; for (int u = 0; u < N; u++) { for (int v = 0; v < N; v++) { if (!Math::is_inf(d[u][v])) { count++; } } } printf("%3d/%d pairs of reachable points\n", count - N, N * (N - 1)); // Check A*'s output bool match = true; for (int u = 0; u < N; u++) { for (int v = 0; v < N; v++) { if (u != v) { PoolVector route = a.get_id_path(u, v); if (!Math::is_inf(d[u][v])) { // Reachable if (route.size() == 0) { printf("From %d to %d: A* did not find a path\n", u, v); match = false; goto exit; } float astar_dist = 0; for (int i = 1; i < route.size(); i++) { if (!adj[route[i - 1]][route[i]]) { printf("From %d to %d: edge (%d, %d) does not exist\n", u, v, route[i - 1], route[i]); match = false; goto exit; } astar_dist += p[route[i - 1]].distance_to(p[route[i]]); } if (!Math::is_equal_approx(astar_dist, d[u][v])) { printf("From %d to %d: Floyd-Warshall gives %.6f, A* gives %.6f\n", u, v, d[u][v], astar_dist); match = false; goto exit; } } else { // Unreachable if (route.size() > 0) { printf("From %d to %d: A* somehow found a nonexistent path\n", u, v); match = false; goto exit; } } } } } exit: if (!match) { return false; } } return true; } typedef bool (*TestFunc)(); TestFunc test_funcs[] = { test_abc, test_abcx, test_add_remove, test_solutions, nullptr }; MainLoop *test() { int count = 0; int passed = 0; while (true) { if (!test_funcs[count]) { break; } bool pass = test_funcs[count](); if (pass) { passed++; } OS::get_singleton()->print("\t%s\n", pass ? "PASS" : "FAILED"); count++; } OS::get_singleton()->print("\n"); OS::get_singleton()->print("Passed %i of %i tests\n", passed, count); return nullptr; } } // namespace TestAStar