#[vertex] #version 450 VERSION_DEFINES #include "scene_forward_clustered_inc.glsl" /* INPUT ATTRIBS */ layout(location = 0) in vec3 vertex_attrib; //only for pure render depth when normal is not used #ifdef NORMAL_USED layout(location = 1) in vec3 normal_attrib; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 2) in vec4 tangent_attrib; #endif #if defined(COLOR_USED) layout(location = 3) in vec4 color_attrib; #endif #ifdef UV_USED layout(location = 4) in vec2 uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) || defined(MODE_RENDER_MATERIAL) layout(location = 5) in vec2 uv2_attrib; #endif #if defined(CUSTOM0_USED) layout(location = 6) in vec4 custom0_attrib; #endif #if defined(CUSTOM1_USED) layout(location = 7) in vec4 custom1_attrib; #endif #if defined(CUSTOM2_USED) layout(location = 8) in vec4 custom2_attrib; #endif #if defined(CUSTOM3_USED) layout(location = 9) in vec4 custom3_attrib; #endif #if defined(BONES_USED) layout(location = 10) in uvec4 bone_attrib; #endif #if defined(WEIGHTS_USED) layout(location = 11) in vec4 weight_attrib; #endif /* Varyings */ layout(location = 0) out vec3 vertex_interp; #ifdef NORMAL_USED layout(location = 1) out vec3 normal_interp; #endif #if defined(COLOR_USED) layout(location = 2) out vec4 color_interp; #endif #ifdef UV_USED layout(location = 3) out vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) out vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) out vec3 tangent_interp; layout(location = 6) out vec3 binormal_interp; #endif #ifdef USE_MATERIAL_UNIFORMS layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ /* clang-format off */ MATERIAL_UNIFORMS /* clang-format on */ } material; #endif invariant gl_Position; #ifdef MODE_DUAL_PARABOLOID layout(location = 8) out float dp_clip; #endif layout(location = 9) out flat uint instance_index; /* clang-format off */ VERTEX_SHADER_GLOBALS /* clang-format on */ void main() { vec4 instance_custom = vec4(0.0); #if defined(COLOR_USED) color_interp = color_attrib; #endif instance_index = draw_call.instance_index; bool is_multimesh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH); if (!is_multimesh) { instance_index += gl_InstanceIndex; } mat4 world_matrix = instances.data[instance_index].transform; mat3 world_normal_matrix; if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_NON_UNIFORM_SCALE)) { world_normal_matrix = inverse(mat3(world_matrix)); } else { world_normal_matrix = mat3(world_matrix); } if (is_multimesh) { //multimesh, instances are for it uint offset = (instances.data[instance_index].flags >> INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT) & INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK; offset *= gl_InstanceIndex; mat4 matrix; if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); offset += 2; } else { matrix = mat4(transforms.data[offset + 0], transforms.data[offset + 1], transforms.data[offset + 2], vec4(0.0, 0.0, 0.0, 1.0)); offset += 3; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { #ifdef COLOR_USED color_interp *= transforms.data[offset]; #endif offset += 1; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { instance_custom = transforms.data[offset]; } //transpose matrix = transpose(matrix); world_matrix = world_matrix * matrix; world_normal_matrix = world_normal_matrix * mat3(matrix); } vec3 vertex = vertex_attrib; #ifdef NORMAL_USED vec3 normal = normal_attrib * 2.0 - 1.0; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 tangent = tangent_attrib.xyz * 2.0 - 1.0; float binormalf = tangent_attrib.a * 2.0 - 1.0; vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #if 0 if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) { //multimesh, instances are for it uvec2 bones_01 = uvec2(bone_attrib.x & 0xFFFF, bone_attrib.x >> 16) * 3; uvec2 bones_23 = uvec2(bone_attrib.y & 0xFFFF, bone_attrib.y >> 16) * 3; vec2 weights_01 = unpackUnorm2x16(bone_attrib.z); vec2 weights_23 = unpackUnorm2x16(bone_attrib.w); mat4 m = mat4(transforms.data[bones_01.x], transforms.data[bones_01.x + 1], transforms.data[bones_01.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.x; m += mat4(transforms.data[bones_01.y], transforms.data[bones_01.y + 1], transforms.data[bones_01.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_01.y; m += mat4(transforms.data[bones_23.x], transforms.data[bones_23.x + 1], transforms.data[bones_23.x + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.x; m += mat4(transforms.data[bones_23.y], transforms.data[bones_23.y + 1], transforms.data[bones_23.y + 2], vec4(0.0, 0.0, 0.0, 1.0)) * weights_23.y; //reverse order because its transposed vertex = (vec4(vertex, 1.0) * m).xyz; normal = (vec4(normal, 0.0) * m).xyz; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = (vec4(tangent, 0.0) * m).xyz; binormal = (vec4(binormal, 0.0) * m).xyz; #endif } #endif #ifdef UV_USED uv_interp = uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif #ifdef OVERRIDE_POSITION vec4 position; #endif mat4 projection_matrix = scene_data.projection_matrix; //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (world_matrix * vec4(vertex, 1.0)).xyz; normal = world_normal_matrix * normal; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = world_normal_matrix * tangent; binormal = world_normal_matrix * binormal; #endif #endif float roughness = 1.0; mat4 modelview = scene_data.inv_camera_matrix * world_matrix; mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix; { /* clang-format off */ VERTEX_SHADER_CODE /* clang-format on */ } // using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = (modelview * vec4(vertex, 1.0)).xyz; #ifdef NORMAL_USED normal = modelview_normal * normal; #endif #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = modelview_normal * binormal; tangent = modelview_normal * tangent; #endif //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (scene_data.inv_camera_matrix * vec4(vertex, 1.0)).xyz; normal = mat3(scene_data.inverse_normal_matrix) * normal; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal; tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent; #endif #endif vertex_interp = vertex; #ifdef NORMAL_USED normal_interp = normal; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef MODE_RENDER_DEPTH #ifdef MODE_DUAL_PARABOLOID vertex_interp.z *= scene_data.dual_paraboloid_side; dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges vec3 vtx = vertex_interp; float distance = length(vtx); vtx = normalize(vtx); vtx.xy /= 1.0 - vtx.z; vtx.z = (distance / scene_data.z_far); vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; #endif #endif //MODE_RENDER_DEPTH #ifdef OVERRIDE_POSITION gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif #ifdef MODE_RENDER_DEPTH if (scene_data.pancake_shadows) { if (gl_Position.z <= 0.00001) { gl_Position.z = 0.00001; } } #endif #ifdef MODE_RENDER_MATERIAL if (scene_data.material_uv2_mode) { vec2 uv_offset = unpackHalf2x16(draw_call.uv_offset); gl_Position.xy = (uv2_attrib.xy + uv_offset) * 2.0 - 1.0; gl_Position.z = 0.00001; gl_Position.w = 1.0; } #endif } #[fragment] #version 450 VERSION_DEFINES #include "scene_forward_clustered_inc.glsl" /* Varyings */ layout(location = 0) in vec3 vertex_interp; #ifdef NORMAL_USED layout(location = 1) in vec3 normal_interp; #endif #if defined(COLOR_USED) layout(location = 2) in vec4 color_interp; #endif #ifdef UV_USED layout(location = 3) in vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) in vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) in vec3 tangent_interp; layout(location = 6) in vec3 binormal_interp; #endif #ifdef MODE_DUAL_PARABOLOID layout(location = 8) in float dp_clip; #endif layout(location = 9) in flat uint instance_index; //defines to keep compatibility with vertex #define world_matrix instances.data[instance_index].transform #define projection_matrix scene_data.projection_matrix #if defined(ENABLE_SSS) && defined(ENABLE_TRANSMITTANCE) //both required for transmittance to be enabled #define LIGHT_TRANSMITTANCE_USED #endif #ifdef USE_MATERIAL_UNIFORMS layout(set = MATERIAL_UNIFORM_SET, binding = 0, std140) uniform MaterialUniforms{ /* clang-format off */ MATERIAL_UNIFORMS /* clang-format on */ } material; #endif /* clang-format off */ FRAGMENT_SHADER_GLOBALS /* clang-format on */ #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_MATERIAL layout(location = 0) out vec4 albedo_output_buffer; layout(location = 1) out vec4 normal_output_buffer; layout(location = 2) out vec4 orm_output_buffer; layout(location = 3) out vec4 emission_output_buffer; layout(location = 4) out float depth_output_buffer; #endif #ifdef MODE_RENDER_NORMAL_ROUGHNESS layout(location = 0) out vec4 normal_roughness_output_buffer; #ifdef MODE_RENDER_GIPROBE layout(location = 1) out uvec2 giprobe_buffer; #endif #endif //MODE_RENDER_NORMAL #else // RENDER DEPTH #ifdef MODE_MULTIPLE_RENDER_TARGETS layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter) #else layout(location = 0) out vec4 frag_color; #endif #endif // RENDER DEPTH #ifdef ALPHA_HASH_USED float hash_2d(vec2 p) { return fract(1.0e4 * sin(17.0 * p.x + 0.1 * p.y) * (0.1 + abs(sin(13.0 * p.y + p.x)))); } float hash_3d(vec3 p) { return hash_2d(vec2(hash_2d(p.xy), p.z)); } float compute_alpha_hash_threshold(vec3 pos, float hash_scale) { vec3 dx = dFdx(pos); vec3 dy = dFdx(pos); float delta_max_sqr = max(length(dx), length(dy)); float pix_scale = 1.0 / (hash_scale * delta_max_sqr); vec2 pix_scales = vec2(exp2(floor(log2(pix_scale))), exp2(ceil(log2(pix_scale)))); vec2 a_thresh = vec2(hash_3d(floor(pix_scales.x * pos.xyz)), hash_3d(floor(pix_scales.y * pos.xyz))); float lerp_factor = fract(log2(pix_scale)); float a_interp = (1.0 - lerp_factor) * a_thresh.x + lerp_factor * a_thresh.y; float min_lerp = min(lerp_factor, 1.0 - lerp_factor); vec3 cases = vec3(a_interp * a_interp / (2.0 * min_lerp * (1.0 - min_lerp)), (a_interp - 0.5 * min_lerp) / (1.0 - min_lerp), 1.0 - ((1.0 - a_interp) * (1.0 - a_interp) / (2.0 * min_lerp * (1.0 - min_lerp)))); float alpha_hash_threshold = (lerp_factor < (1.0 - min_lerp)) ? ((lerp_factor < min_lerp) ? cases.x : cases.y) : cases.z; return clamp(alpha_hash_threshold, 0.0, 1.0); } #endif // ALPHA_HASH_USED #ifdef ALPHA_ANTIALIASING_EDGE_USED float calc_mip_level(vec2 texture_coord) { vec2 dx = dFdx(texture_coord); vec2 dy = dFdy(texture_coord); float delta_max_sqr = max(dot(dx, dx), dot(dy, dy)); return max(0.0, 0.5 * log2(delta_max_sqr)); } float compute_alpha_antialiasing_edge(float input_alpha, vec2 texture_coord, float alpha_edge) { input_alpha *= 1.0 + max(0, calc_mip_level(texture_coord)) * 0.25; // 0.25 mip scale, magic number input_alpha = (input_alpha - alpha_edge) / max(fwidth(input_alpha), 0.0001) + 0.5; return clamp(input_alpha, 0.0, 1.0); } #endif // ALPHA_ANTIALIASING_USED // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. // We're dividing this factor off because the overall term we'll end up looks like // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): // // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) // // We're basically regouping this as // // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] // // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. // // The contents of the D and G (G1) functions (GGX) are taken from // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). // Eqns 71-72 and 85-86 (see also Eqns 43 and 80). #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) float G_GGX_2cos(float cos_theta_m, float alpha) { // Schlick's approximation // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) // Eq. (19), although see Heitz (2014) the about the problems with his derivation. // It nevertheless approximates GGX well with k = alpha/2. float k = 0.5 * alpha; return 0.5 / (cos_theta_m * (1.0 - k) + k); // float cos2 = cos_theta_m * cos_theta_m; // float sin2 = (1.0 - cos2); // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); } float D_GGX(float cos_theta_m, float alpha) { float alpha2 = alpha * alpha; float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; return alpha2 / (M_PI * d * d); } float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float s_x = alpha_x * cos_phi; float s_y = alpha_y * sin_phi; return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float r_x = cos_phi / alpha_x; float r_y = sin_phi / alpha_y; float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } float GTR1(float NdotH, float a) { if (a >= 1.0) return 1.0 / M_PI; float a2 = a * a; float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; return (a2 - 1.0) / (M_PI * log(a2) * t); } vec3 F0(float metallic, float specular, vec3 albedo) { float dielectric = 0.16 * specular * specular; // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; // see https://google.github.io/filament/Filament.md.html return mix(vec3(dielectric), albedo, vec3(metallic)); } void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, float attenuation, vec3 f0, uint orms, float specular_amount, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED vec4 transmittance_color, float transmittance_depth, float transmittance_curve, float transmittance_boost, float transmittance_z, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, vec3 rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 B, vec3 T, float anisotropy, #endif #ifdef USE_SOFT_SHADOWS float A, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light) { #if defined(USE_LIGHT_SHADER_CODE) // light is written by the light shader vec3 normal = N; vec3 light = L; vec3 view = V; /* clang-format off */ LIGHT_SHADER_CODE /* clang-format on */ #else #ifdef USE_SOFT_SHADOWS float NdotL = min(A + dot(N, L), 1.0); #else float NdotL = dot(N, L); #endif float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) vec3 H = normalize(V + L); #endif #if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) #ifdef USE_SOFT_SHADOWS float cNdotH = clamp(A + dot(N, H), 0.0, 1.0); #else float cNdotH = clamp(dot(N, H), 0.0, 1.0); #endif #endif #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) #ifdef USE_SOFT_SHADOWS float cLdotH = clamp(A + dot(L, H), 0.0, 1.0); #else float cLdotH = clamp(dot(L, H), 0.0, 1.0); #endif #endif float metallic = unpackUnorm4x8(orms).z; if (metallic < 1.0) { float roughness = unpackUnorm4x8(orms).y; #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; /* float energyBias = mix(roughness, 0.0, 0.5); float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); float fd90 = energyBias + 2.0 * VoH * VoH * roughness; float f0 = 1.0; float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; */ } #else // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif diffuse_light += light_color * diffuse_brdf_NL * attenuation; #if defined(LIGHT_BACKLIGHT_USED) diffuse_light += light_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * backlight * attenuation; #endif #if defined(LIGHT_RIM_USED) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), rim_color, rim_tint) * light_color; #endif #ifdef LIGHT_TRANSMITTANCE_USED #ifdef SSS_MODE_SKIN { float scale = 8.25 / transmittance_depth; float d = scale * abs(transmittance_z); float dd = -d * d; vec3 profile = vec3(0.233, 0.455, 0.649) * exp(dd / 0.0064) + vec3(0.1, 0.336, 0.344) * exp(dd / 0.0484) + vec3(0.118, 0.198, 0.0) * exp(dd / 0.187) + vec3(0.113, 0.007, 0.007) * exp(dd / 0.567) + vec3(0.358, 0.004, 0.0) * exp(dd / 1.99) + vec3(0.078, 0.0, 0.0) * exp(dd / 7.41); diffuse_light += profile * transmittance_color.a * light_color * clamp(transmittance_boost - NdotL, 0.0, 1.0) * (1.0 / M_PI); } #else if (transmittance_depth > 0.0) { float fade = clamp(abs(transmittance_z / transmittance_depth), 0.0, 1.0); fade = pow(max(0.0, 1.0 - fade), transmittance_curve); fade *= clamp(transmittance_boost - NdotL, 0.0, 1.0); diffuse_light += transmittance_color.rgb * light_color * (1.0 / M_PI) * transmittance_color.a * fade; } #endif //SSS_MODE_SKIN #endif //LIGHT_TRANSMITTANCE_USED } float roughness = unpackUnorm4x8(orms).y; if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely // D #if defined(SPECULAR_BLINN) //normalized blinn float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float blinn = pow(cNdotH, shininess) * cNdotL; blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float intensity = blinn; specular_light += light_color * intensity * attenuation * specular_amount; #elif defined(SPECULAR_PHONG) vec3 R = normalize(-reflect(L, N)); float cRdotV = clamp(A + dot(R, V), 0.0, 1.0); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float phong = pow(cRdotV, shininess); phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); specular_light += light_color * intensity * attenuation * specular_amount; #elif defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; diffuse_light += light_color * intensity * attenuation * specular_amount; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default #if defined(LIGHT_ANISOTROPY_USED) float alpha_ggx = roughness * roughness; float aspect = sqrt(1.0 - anisotropy * 0.9); float ax = alpha_ggx / aspect; float ay = alpha_ggx * aspect; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); #else float alpha_ggx = roughness * roughness; float D = D_GGX(cNdotH, alpha_ggx); float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); #endif // F float cLdotH5 = SchlickFresnel(cLdotH); vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); vec3 specular_brdf_NL = cNdotL * D * F * G; specular_light += specular_brdf_NL * light_color * attenuation * specular_amount; #endif #if defined(LIGHT_CLEARCOAT_USED) #if !defined(SPECULAR_SCHLICK_GGX) float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); float Fr = mix(.04, 1.0, cLdotH5); float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; specular_light += clearcoat_specular_brdf_NL * light_color * attenuation * specular_amount; #endif } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(1.0 - attenuation), 0.0, 1.0)); #endif #endif //defined(USE_LIGHT_SHADER_CODE) } #ifndef USE_NO_SHADOWS // Interleaved Gradient Noise // http://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare float quick_hash(vec2 pos) { const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f); return fract(magic.z * fract(dot(pos, magic.xy))); } float sample_directional_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { vec2 pos = coord.xy; float depth = coord.z; //if only one sample is taken, take it from the center if (scene_data.directional_soft_shadow_samples == 1) { return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); } mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } float avg = 0.0; for (uint i = 0; i < scene_data.directional_soft_shadow_samples; i++) { avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.directional_soft_shadow_kernel[i].xy), depth, 1.0)); } return avg * (1.0 / float(scene_data.directional_soft_shadow_samples)); } float sample_pcf_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { vec2 pos = coord.xy; float depth = coord.z; //if only one sample is taken, take it from the center if (scene_data.soft_shadow_samples == 1) { return textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos, depth, 1.0)); } mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } float avg = 0.0; for (uint i = 0; i < scene_data.soft_shadow_samples; i++) { avg += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(pos + shadow_pixel_size * (disk_rotation * scene_data.soft_shadow_kernel[i].xy), depth, 1.0)); } return avg * (1.0 / float(scene_data.soft_shadow_samples)); } float sample_directional_soft_shadow(texture2D shadow, vec3 pssm_coord, vec2 tex_scale) { //find blocker float blocker_count = 0.0; float blocker_average = 0.0; mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) { vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; float d = textureLod(sampler2D(shadow, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; if (d < pssm_coord.z) { blocker_average += d; blocker_count += 1.0; } } if (blocker_count > 0.0) { //blockers found, do soft shadow blocker_average /= blocker_count; float penumbra = (pssm_coord.z - blocker_average) / blocker_average; tex_scale *= penumbra; float s = 0.0; for (uint i = 0; i < scene_data.directional_penumbra_shadow_samples; i++) { vec2 suv = pssm_coord.xy + (disk_rotation * scene_data.directional_penumbra_shadow_kernel[i].xy) * tex_scale; s += textureProj(sampler2DShadow(shadow, shadow_sampler), vec4(suv, pssm_coord.z, 1.0)); } return s / float(scene_data.directional_penumbra_shadow_samples); } else { //no blockers found, so no shadow return 1.0; } } #endif //USE_NO_SHADOWS float get_omni_attenuation(float distance, float inv_range, float decay) { float nd = distance * inv_range; nd *= nd; nd *= nd; // nd^4 nd = max(1.0 - nd, 0.0); nd *= nd; // nd^2 return nd * pow(max(distance, 0.0001), -decay); } float light_process_omni_shadow(uint idx, vec3 vertex, vec3 normal) { #ifndef USE_NO_SHADOWS if (omni_lights.data[idx].shadow_enabled) { // there is a shadowmap vec3 light_rel_vec = omni_lights.data[idx].position - vertex; float light_length = length(light_rel_vec); vec4 v = vec4(vertex, 1.0); vec4 splane = (omni_lights.data[idx].shadow_matrix * v); float shadow_len = length(splane.xyz); //need to remember shadow len from here { vec3 nofs = normal_interp * omni_lights.data[idx].shadow_normal_bias / omni_lights.data[idx].inv_radius; nofs *= (1.0 - max(0.0, dot(normalize(light_rel_vec), normalize(normal_interp)))); v.xyz += nofs; splane = (omni_lights.data[idx].shadow_matrix * v); } float shadow; #ifdef USE_SOFT_SHADOWS if (omni_lights.data[idx].soft_shadow_size > 0.0) { //soft shadow //find blocker float blocker_count = 0.0; float blocker_average = 0.0; mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } vec3 normal = normalize(splane.xyz); vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); float z_norm = shadow_len * omni_lights.data[idx].inv_radius; tangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; bitangent *= omni_lights.data[idx].soft_shadow_size * omni_lights.data[idx].soft_shadow_scale; for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y; pos = normalize(pos); vec4 uv_rect = omni_lights.data[idx].atlas_rect; if (pos.z >= 0.0) { pos.z += 1.0; uv_rect.y += uv_rect.w; } else { pos.z = 1.0 - pos.z; } pos.xy /= pos.z; pos.xy = pos.xy * 0.5 + 0.5; pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), pos.xy, 0.0).r; if (d < z_norm) { blocker_average += d; blocker_count += 1.0; } } if (blocker_count > 0.0) { //blockers found, do soft shadow blocker_average /= blocker_count; float penumbra = (z_norm - blocker_average) / blocker_average; tangent *= penumbra; bitangent *= penumbra; z_norm -= omni_lights.data[idx].inv_radius * omni_lights.data[idx].shadow_bias; shadow = 0.0; for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { vec2 disk = disk_rotation * scene_data.penumbra_shadow_kernel[i].xy; vec3 pos = splane.xyz + tangent * disk.x + bitangent * disk.y; pos = normalize(pos); vec4 uv_rect = omni_lights.data[idx].atlas_rect; if (pos.z >= 0.0) { pos.z += 1.0; uv_rect.y += uv_rect.w; } else { pos.z = 1.0 - pos.z; } pos.xy /= pos.z; pos.xy = pos.xy * 0.5 + 0.5; pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(pos.xy, z_norm, 1.0)); } shadow /= float(scene_data.penumbra_shadow_samples); } else { //no blockers found, so no shadow shadow = 1.0; } } else { #endif splane.xyz = normalize(splane.xyz); vec4 clamp_rect = omni_lights.data[idx].atlas_rect; if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = (shadow_len - omni_lights.data[idx].shadow_bias) * omni_lights.data[idx].inv_radius; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; splane.w = 1.0; //needed? i think it should be 1 already shadow = sample_pcf_shadow(shadow_atlas, omni_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, splane); #ifdef USE_SOFT_SHADOWS } #endif return shadow; } #endif return 1.0; } void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED vec4 transmittance_color, float transmittance_depth, float transmittance_curve, float transmittance_boost, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, vec3 rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = omni_lights.data[idx].position - vertex; float light_length = length(light_rel_vec); float omni_attenuation = get_omni_attenuation(light_length, omni_lights.data[idx].inv_radius, omni_lights.data[idx].attenuation); float light_attenuation = omni_attenuation; vec3 color = omni_lights.data[idx].color; #ifdef USE_SOFT_SHADOWS float size_A = 0.0; if (omni_lights.data[idx].size > 0.0) { float t = omni_lights.data[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); } #endif #ifdef LIGHT_TRANSMITTANCE_USED float transmittance_z = transmittance_depth; //no transmittance by default transmittance_color.a *= light_attenuation; { vec4 clamp_rect = omni_lights.data[idx].atlas_rect; //redo shadowmapping, but shrink the model a bit to avoid arctifacts vec4 splane = (omni_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * omni_lights.data[idx].transmittance_bias, 1.0)); shadow_len = length(splane.xyz); splane = normalize(splane.xyz); if (splane.z >= 0.0) { splane.z += 1.0; } else { splane.z = 1.0 - splane.z; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len * omni_lights.data[idx].inv_radius; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; splane.w = 1.0; //needed? i think it should be 1 already float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; transmittance_z = (splane.z - shadow_z) / omni_lights.data[idx].inv_radius; } #endif #if 0 if (omni_lights.data[idx].projector_rect != vec4(0.0)) { vec3 local_v = (omni_lights.data[idx].shadow_matrix * vec4(vertex, 1.0)).xyz; local_v = normalize(local_v); vec4 atlas_rect = omni_lights.data[idx].projector_rect; if (local_v.z >= 0.0) { local_v.z += 1.0; atlas_rect.y += atlas_rect.w; } else { local_v.z = 1.0 - local_v.z; } local_v.xy /= local_v.z; local_v.xy = local_v.xy * 0.5 + 0.5; vec2 proj_uv = local_v.xy * atlas_rect.zw; vec2 proj_uv_ddx; vec2 proj_uv_ddy; { vec3 local_v_ddx = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddx, 1.0)).xyz; local_v_ddx = normalize(local_v_ddx); if (local_v_ddx.z >= 0.0) { local_v_ddx.z += 1.0; } else { local_v_ddx.z = 1.0 - local_v_ddx.z; } local_v_ddx.xy /= local_v_ddx.z; local_v_ddx.xy = local_v_ddx.xy * 0.5 + 0.5; proj_uv_ddx = local_v_ddx.xy * atlas_rect.zw - proj_uv; vec3 local_v_ddy = (omni_lights.data[idx].shadow_matrix * vec4(vertex + vertex_ddy, 1.0)).xyz; local_v_ddy = normalize(local_v_ddy); if (local_v_ddy.z >= 0.0) { local_v_ddy.z += 1.0; } else { local_v_ddy.z = 1.0 - local_v_ddy.z; } local_v_ddy.xy /= local_v_ddy.z; local_v_ddy.xy = local_v_ddy.xy * 0.5 + 0.5; proj_uv_ddy = local_v_ddy.xy * atlas_rect.zw - proj_uv; } vec4 proj = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), proj_uv + atlas_rect.xy, proj_uv_ddx, proj_uv_ddy); no_shadow = mix(no_shadow, proj.rgb, proj.a); } #endif light_attenuation *= shadow; light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, omni_lights.data[idx].specular_amount, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_curve, transmittance_boost, transmittance_z, #endif #ifdef LIGHT_RIM_USED rim * omni_attenuation, rim_tint, rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SOFT_SHADOWS size_A, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } float light_process_spot_shadow(uint idx, vec3 vertex, vec3 normal) { #ifndef USE_NO_SHADOWS if (spot_lights.data[idx].shadow_enabled) { vec3 light_rel_vec = spot_lights.data[idx].position - vertex; float light_length = length(light_rel_vec); vec3 spot_dir = spot_lights.data[idx].direction; //there is a shadowmap vec4 v = vec4(vertex, 1.0); v.xyz -= spot_dir * spot_lights.data[idx].shadow_bias; float z_norm = dot(spot_dir, -light_rel_vec) * spot_lights.data[idx].inv_radius; float depth_bias_scale = 1.0 / (max(0.0001, z_norm)); //the closer to the light origin, the more you have to offset to reach 1px in the map vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(spot_dir, -normalize(normal_interp)))) * spot_lights.data[idx].shadow_normal_bias * depth_bias_scale; normal_bias -= spot_dir * dot(spot_dir, normal_bias); //only XY, no Z v.xyz += normal_bias; //adjust with bias z_norm = dot(spot_dir, v.xyz - spot_lights.data[idx].position) * spot_lights.data[idx].inv_radius; float shadow; vec4 splane = (spot_lights.data[idx].shadow_matrix * v); splane /= splane.w; #ifdef USE_SOFT_SHADOWS if (spot_lights.data[idx].soft_shadow_size > 0.0) { //soft shadow //find blocker vec2 shadow_uv = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; float blocker_count = 0.0; float blocker_average = 0.0; mat2 disk_rotation; { float r = quick_hash(gl_FragCoord.xy) * 2.0 * M_PI; float sr = sin(r); float cr = cos(r); disk_rotation = mat2(vec2(cr, -sr), vec2(sr, cr)); } float uv_size = spot_lights.data[idx].soft_shadow_size * z_norm * spot_lights.data[idx].soft_shadow_scale; vec2 clamp_max = spot_lights.data[idx].atlas_rect.xy + spot_lights.data[idx].atlas_rect.zw; for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); float d = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), suv, 0.0).r; if (d < z_norm) { blocker_average += d; blocker_count += 1.0; } } if (blocker_count > 0.0) { //blockers found, do soft shadow blocker_average /= blocker_count; float penumbra = (z_norm - blocker_average) / blocker_average; uv_size *= penumbra; shadow = 0.0; for (uint i = 0; i < scene_data.penumbra_shadow_samples; i++) { vec2 suv = shadow_uv + (disk_rotation * scene_data.penumbra_shadow_kernel[i].xy) * uv_size; suv = clamp(suv, spot_lights.data[idx].atlas_rect.xy, clamp_max); shadow += textureProj(sampler2DShadow(shadow_atlas, shadow_sampler), vec4(suv, z_norm, 1.0)); } shadow /= float(scene_data.penumbra_shadow_samples); } else { //no blockers found, so no shadow shadow = 1.0; } } else { #endif //hard shadow vec4 shadow_uv = vec4(splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy, splane.z, 1.0); shadow = sample_pcf_shadow(shadow_atlas, spot_lights.data[idx].soft_shadow_scale * scene_data.shadow_atlas_pixel_size, shadow_uv); #ifdef USE_SOFT_SHADOWS } #endif return shadow; } #endif //USE_NO_SHADOWS return 1.0; } void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 vertex_ddx, vec3 vertex_ddy, vec3 f0, uint orms, float shadow, #ifdef LIGHT_BACKLIGHT_USED vec3 backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED vec4 transmittance_color, float transmittance_depth, float transmittance_curve, float transmittance_boost, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, vec3 rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = spot_lights.data[idx].position - vertex; float light_length = length(light_rel_vec); float spot_attenuation = get_omni_attenuation(light_length, spot_lights.data[idx].inv_radius, spot_lights.data[idx].attenuation); vec3 spot_dir = spot_lights.data[idx].direction; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_lights.data[idx].cone_angle); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_lights.data[idx].cone_angle)); spot_attenuation *= 1.0 - pow(spot_rim, spot_lights.data[idx].cone_attenuation); float light_attenuation = spot_attenuation; vec3 color = spot_lights.data[idx].color; float specular_amount = spot_lights.data[idx].specular_amount; #ifdef USE_SOFT_SHADOWS float size_A = 0.0; if (spot_lights.data[idx].size > 0.0) { float t = spot_lights.data[idx].size / max(0.001, light_length); size_A = max(0.0, 1.0 - 1 / sqrt(1 + t * t)); } #endif /* if (spot_lights.data[idx].atlas_rect!=vec4(0.0)) { //use projector texture } */ #ifdef LIGHT_TRANSMITTANCE_USED float transmittance_z = transmittance_depth; transmittance_color.a *= light_attenuation; { splane = (spot_lights.data[idx].shadow_matrix * vec4(vertex - normalize(normal_interp) * spot_lights.data[idx].transmittance_bias, 1.0)); splane /= splane.w; splane.xy = splane.xy * spot_lights.data[idx].atlas_rect.zw + spot_lights.data[idx].atlas_rect.xy; float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r; //reconstruct depth shadow_z /= spot_lights.data[idx].inv_radius; //distance to light plane float z = dot(spot_dir, -light_rel_vec); transmittance_z = z - shadow_z; } #endif //LIGHT_TRANSMITTANCE_USED light_attenuation *= shadow; light_compute(normal, normalize(light_rel_vec), eye_vec, color, light_attenuation, f0, orms, spot_lights.data[idx].specular_amount, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_curve, transmittance_boost, transmittance_z, #endif #ifdef LIGHT_RIM_USED rim * spot_attenuation, rim_tint, rim_color, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SOFT_SHADOW size_A, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } void reflection_process(uint ref_index, vec3 vertex, vec3 normal, float roughness, vec3 ambient_light, vec3 specular_light, inout vec4 ambient_accum, inout vec4 reflection_accum) { vec3 box_extents = reflections.data[ref_index].box_extents; vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz; if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box return; } vec3 ref_vec = normalize(reflect(vertex, normal)); vec3 inner_pos = abs(local_pos / box_extents); float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); //make blend more rounded blend = mix(length(inner_pos), blend, blend); blend *= blend; blend = max(0.0, 1.0 - blend); if (reflections.data[ref_index].intensity > 0.0) { // compute reflection vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz; if (reflections.data[ref_index].box_project) { //box project vec3 nrdir = normalize(local_ref_vec); vec3 rbmax = (box_extents - local_pos) / nrdir; vec3 rbmin = (-box_extents - local_pos) / nrdir; vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); vec3 posonbox = local_pos + nrdir * fa; local_ref_vec = posonbox - reflections.data[ref_index].box_offset; } vec4 reflection; reflection.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec, reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb; if (reflections.data[ref_index].exterior) { reflection.rgb = mix(specular_light, reflection.rgb, blend); } reflection.rgb *= reflections.data[ref_index].intensity; //intensity reflection.a = blend; reflection.rgb *= reflection.a; reflection_accum += reflection; } switch (reflections.data[ref_index].ambient_mode) { case REFLECTION_AMBIENT_DISABLED: { //do nothing } break; case REFLECTION_AMBIENT_ENVIRONMENT: { //do nothing vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz; vec4 ambient_out; ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec, reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb; ambient_out.a = blend; if (reflections.data[ref_index].exterior) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } break; case REFLECTION_AMBIENT_COLOR: { vec4 ambient_out; ambient_out.a = blend; ambient_out.rgb = reflections.data[ref_index].ambient; if (reflections.data[ref_index].exterior) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } break; } } #ifdef USE_FORWARD_GI //standard voxel cone trace vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { float dist = p_bias; vec4 color = vec4(0.0); while (dist < max_distance && color.a < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); vec3 uvw_pos = (pos + dist * direction) * cell_size; float half_diameter = diameter * 0.5; //check if outside, then break if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + half_diameter * cell_size)))) { break; } vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter)); float a = (1.0 - color.a); color += a * scolor; dist += half_diameter; } return color; } vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { float dist = p_bias; vec4 color = vec4(0.0); float radius = max(0.5, tan_half_angle * dist); float lod_level = log2(radius * 2.0); while (dist < max_distance && color.a < 0.95) { vec3 uvw_pos = (pos + dist * direction) * cell_size; //check if outside, then break if (any(greaterThan(abs(uvw_pos - 0.5), vec3(0.5f + radius * cell_size)))) { break; } vec4 scolor = textureLod(sampler3D(probe, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level); lod_level += 1.0; float a = (1.0 - color.a); scolor *= a; color += scolor; dist += radius; radius = max(0.5, tan_half_angle * dist); } return color; } void gi_probe_compute(uint index, vec3 position, vec3 normal, vec3 ref_vec, mat3 normal_xform, float roughness, vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) { position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz; ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz); normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz); position += normal * gi_probes.data[index].normal_bias; //this causes corrupted pixels, i have no idea why.. if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) { return; } vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0); float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); //float blend=1.0; float max_distance = length(gi_probes.data[index].bounds); vec3 cell_size = 1.0 / gi_probes.data[index].bounds; //radiance #define MAX_CONE_DIRS 4 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0.707107, 0.0, 0.707107), vec3(0.0, 0.707107, 0.707107), vec3(-0.707107, 0.0, 0.707107), vec3(0.0, -0.707107, 0.707107)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); float cone_angle_tan = 0.98269; vec3 light = vec3(0.0); for (int i = 0; i < MAX_CONE_DIRS; i++) { vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz); vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[index], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); if (gi_probes.data[index].blend_ambient) { cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95)); } light += cone_weights[i] * cone_light.rgb; } light *= gi_probes.data[index].dynamic_range; out_diff += vec4(light * blend, blend); //irradiance vec4 irr_light = voxel_cone_trace(gi_probe_textures[index], cell_size, position, ref_vec, tan(roughness * 0.5 * M_PI * 0.99), max_distance, gi_probes.data[index].bias); if (gi_probes.data[index].blend_ambient) { irr_light.rgb = mix(environment, irr_light.rgb, min(1.0, irr_light.a / 0.95)); } irr_light.rgb *= gi_probes.data[index].dynamic_range; //irr_light=vec3(0.0); out_spec += vec4(irr_light.rgb * blend, blend); } vec2 octahedron_wrap(vec2 v) { vec2 signVal; signVal.x = v.x >= 0.0 ? 1.0 : -1.0; signVal.y = v.y >= 0.0 ? 1.0 : -1.0; return (1.0 - abs(v.yx)) * signVal; } vec2 octahedron_encode(vec3 n) { // https://twitter.com/Stubbesaurus/status/937994790553227264 n /= (abs(n.x) + abs(n.y) + abs(n.z)); n.xy = n.z >= 0.0 ? n.xy : octahedron_wrap(n.xy); n.xy = n.xy * 0.5 + 0.5; return n.xy; } void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal, vec3 cam_specular_normal, bool use_specular, float roughness, out vec3 diffuse_light, out vec3 specular_light, out float blend) { cascade_pos += cam_normal * sdfgi.normal_bias; vec3 base_pos = floor(cascade_pos); //cascade_pos += mix(vec3(0.0),vec3(0.01),lessThan(abs(cascade_pos-base_pos),vec3(0.01))) * cam_normal; ivec3 probe_base_pos = ivec3(base_pos); vec4 diffuse_accum = vec4(0.0); vec3 specular_accum; ivec3 tex_pos = ivec3(probe_base_pos.xy, int(cascade)); tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size; tex_pos.xy = tex_pos.xy * (SDFGI_OCT_SIZE + 2) + ivec2(1); vec3 diffuse_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; vec3 specular_posf; if (use_specular) { specular_accum = vec3(0.0); specular_posf = (vec3(tex_pos) + vec3(octahedron_encode(cam_specular_normal) * float(SDFGI_OCT_SIZE), 0.0)) * sdfgi.lightprobe_tex_pixel_size; } vec4 light_accum = vec4(0.0); float weight_accum = 0.0; for (uint j = 0; j < 8; j++) { ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1); ivec3 probe_posi = probe_base_pos; probe_posi += offset; // Compute weight vec3 probe_pos = vec3(probe_posi); vec3 probe_to_pos = cascade_pos - probe_pos; vec3 probe_dir = normalize(-probe_to_pos); vec3 trilinear = vec3(1.0) - abs(probe_to_pos); float weight = trilinear.x * trilinear.y * trilinear.z * max(0.005, dot(cam_normal, probe_dir)); // Compute lightprobe occlusion if (sdfgi.use_occlusion) { ivec3 occ_indexv = abs((sdfgi.cascades[cascade].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4); vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3))); vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw; occ_pos.z += float(cascade); if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures occ_pos.x += 1.0; } occ_pos *= sdfgi.occlusion_renormalize; float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_cascades, material_samplers[SAMPLER_LINEAR_CLAMP]), occ_pos, 0.0), occ_mask); weight *= max(occlusion, 0.01); } // Compute lightprobe texture position vec3 diffuse; vec3 pos_uvw = diffuse_posf; pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; diffuse = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb; diffuse_accum += vec4(diffuse * weight, weight); if (use_specular) { vec3 specular = vec3(0.0); vec3 pos_uvw = specular_posf; pos_uvw.xy += vec2(offset.xy) * sdfgi.lightprobe_uv_offset.xy; pos_uvw.x += float(offset.z) * sdfgi.lightprobe_uv_offset.z; if (roughness < 0.99) { specular = textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw + vec3(0, 0, float(sdfgi.max_cascades)), 0.0).rgb; } if (roughness > 0.5) { specular = mix(specular, textureLod(sampler2DArray(sdfgi_lightprobe_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), pos_uvw, 0.0).rgb, (roughness - 0.5) * 2.0); } specular_accum += specular * weight; } } if (diffuse_accum.a > 0.0) { diffuse_accum.rgb /= diffuse_accum.a; } diffuse_light = diffuse_accum.rgb; if (use_specular) { if (diffuse_accum.a > 0.0) { specular_accum /= diffuse_accum.a; } specular_light = specular_accum; } { //process blend float blend_from = (float(sdfgi.probe_axis_size - 1) / 2.0) - 2.5; float blend_to = blend_from + 2.0; vec3 inner_pos = cam_pos * sdfgi.cascades[cascade].to_probe; float len = length(inner_pos); inner_pos = abs(normalize(inner_pos)); len *= max(inner_pos.x, max(inner_pos.y, inner_pos.z)); if (len >= blend_from) { blend = smoothstep(blend_from, blend_to, len); } else { blend = 0.0; } } } #endif //USE_FORWARD_GI #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifndef MODE_RENDER_DEPTH #ifndef LOW_END_MODE vec4 volumetric_fog_process(vec2 screen_uv, float z) { vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length); if (fog_pos.z < 0.0) { return vec4(0.0); } else if (fog_pos.z < 1.0) { fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread); } return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos); } #endif vec4 fog_process(vec3 vertex) { vec3 fog_color = scene_data.fog_light_color; if (scene_data.fog_aerial_perspective > 0.0) { vec3 sky_fog_color = vec3(0.0); vec3 cube_view = scene_data.radiance_inverse_xform * vertex; // mip_level always reads from the second mipmap and higher so the fog is always slightly blurred float mip_level = mix(1.0 / MAX_ROUGHNESS_LOD, 1.0, 1.0 - (abs(vertex.z) - scene_data.z_near) / (scene_data.z_far - scene_data.z_near)); #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(mip_level * MAX_ROUGHNESS_LOD, lod); sky_fog_color = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod)).rgb; sky_fog_color = mix(sky_fog_color, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(cube_view, lod + 1)).rgb, blend); #else sky_fog_color = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_view, mip_level * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY fog_color = mix(fog_color, sky_fog_color, scene_data.fog_aerial_perspective); } if (scene_data.fog_sun_scatter > 0.001) { vec4 sun_scatter = vec4(0.0); float sun_total = 0.0; vec3 view = normalize(vertex); for (uint i = 0; i < scene_data.directional_light_count; i++) { vec3 light_color = directional_lights.data[i].color * directional_lights.data[i].energy; float light_amount = pow(max(dot(view, directional_lights.data[i].direction), 0.0), 8.0); fog_color += light_color * light_amount * scene_data.fog_sun_scatter; } } float fog_amount = 1.0 - exp(min(0.0, vertex.z * scene_data.fog_density)); if (abs(scene_data.fog_height_density) > 0.001) { float y = (scene_data.camera_matrix * vec4(vertex, 1.0)).y; float y_dist = scene_data.fog_height - y; float vfog_amount = clamp(exp(y_dist * scene_data.fog_height_density), 0.0, 1.0); fog_amount = max(vfog_amount, fog_amount); } return vec4(fog_color, fog_amount); } void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) { uint item_min_max = cluster_buffer.data[p_offset]; item_min = item_min_max & 0xFFFF; item_max = item_min_max >> 16; ; item_from = item_min >> 5; item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements } uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) { int local_min = clamp(int(z_min) - int(i) * 32, 0, 31); int mask_width = min(int(z_max) - int(z_min), 32 - local_min); return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width); } float blur_shadow(float shadow) { return shadow; #if 0 //disabling for now, will investigate later float interp_shadow = shadow; if (gl_HelperInvocation) { interp_shadow = -4.0; // technically anything below -4 will do but just to make sure } uvec2 fc2 = uvec2(gl_FragCoord.xy); interp_shadow -= dFdx(interp_shadow) * (float(fc2.x & 1) - 0.5); interp_shadow -= dFdy(interp_shadow) * (float(fc2.y & 1) - 0.5); if (interp_shadow >= 0.0) { shadow = interp_shadow; } return shadow; #endif } #endif //!MODE_RENDER DEPTH void main() { #ifdef MODE_DUAL_PARABOLOID if (dp_clip > 0.0) discard; #endif //lay out everything, whathever is unused is optimized away anyway vec3 vertex = vertex_interp; vec3 view = -normalize(vertex_interp); vec3 albedo = vec3(1.0); vec3 backlight = vec3(0.0); vec4 transmittance_color = vec4(0.0); float transmittance_depth = 0.0; float transmittance_curve = 1.0; float transmittance_boost = 0.0; float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); vec4 fog = vec4(0.0); #if defined(CUSTOM_RADIANCE_USED) vec4 custom_radiance = vec4(0.0); #endif #if defined(CUSTOM_IRRADIANCE_USED) vec4 custom_irradiance = vec4(0.0); #endif float ao = 1.0; float ao_light_affect = 0.0; float alpha = 1.0; #if defined(TANGENT_USED) || defined(NORMAL_MAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 binormal = normalize(binormal_interp); vec3 tangent = normalize(tangent_interp); #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif #ifdef NORMAL_USED vec3 normal = normalize(normal_interp); #if defined(DO_SIDE_CHECK) if (!gl_FrontFacing) { normal = -normal; } #endif #endif //NORMAL_USED #ifdef UV_USED vec2 uv = uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif #if defined(COLOR_USED) vec4 color = color_interp; #endif #if defined(NORMAL_MAP_USED) vec3 normal_map = vec3(0.5); #endif float normal_map_depth = 1.0; vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size + scene_data.screen_pixel_size * 0.5; //account for center float sss_strength = 0.0; #ifdef ALPHA_SCISSOR_USED float alpha_scissor_threshold = 1.0; #endif // ALPHA_SCISSOR_USED #ifdef ALPHA_HASH_USED float alpha_hash_scale = 1.0; #endif // ALPHA_HASH_USED #ifdef ALPHA_ANTIALIASING_EDGE_USED float alpha_antialiasing_edge = 0.0; vec2 alpha_texture_coordinate = vec2(0.0, 0.0); #endif // ALPHA_ANTIALIASING_EDGE_USED { /* clang-format off */ FRAGMENT_SHADER_CODE /* clang-format on */ } #ifdef LIGHT_TRANSMITTANCE_USED #ifdef SSS_MODE_SKIN transmittance_color.a = sss_strength; #else transmittance_color.a *= sss_strength; #endif #endif #ifndef USE_SHADOW_TO_OPACITY #ifdef ALPHA_SCISSOR_USED if (alpha < alpha_scissor_threshold) { discard; } #endif // ALPHA_SCISSOR_USED // alpha hash can be used in unison with alpha antialiasing #ifdef ALPHA_HASH_USED if (alpha < compute_alpha_hash_threshold(vertex, alpha_hash_scale)) { discard; } #endif // ALPHA_HASH_USED // If we are not edge antialiasing, we need to remove the output alpha channel from scissor and hash #if (defined(ALPHA_SCISSOR_USED) || defined(ALPHA_HASH_USED)) && !defined(ALPHA_ANTIALIASING_EDGE_USED) alpha = 1.0; #endif #ifdef ALPHA_ANTIALIASING_EDGE_USED // If alpha scissor is used, we must further the edge threshold, otherwise we wont get any edge feather #ifdef ALPHA_SCISSOR_USED alpha_antialiasing_edge = clamp(alpha_scissor_threshold + alpha_antialiasing_edge, 0.0, 1.0); #endif alpha = compute_alpha_antialiasing_edge(alpha, alpha_texture_coordinate, alpha_antialiasing_edge); #endif // ALPHA_ANTIALIASING_EDGE_USED #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // !USE_SHADOW_TO_OPACITY #ifdef NORMAL_MAP_USED normal_map.xy = normal_map.xy * 2.0 - 1.0; normal_map.z = sqrt(max(0.0, 1.0 - dot(normal_map.xy, normal_map.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize(mix(normal, tangent * normal_map.x + binormal * normal_map.y + normal * normal_map.z, normal_map_depth)); #endif #ifdef LIGHT_ANISOTROPY_USED if (anisotropy > 0.01) { //rotation matrix mat3 rot = mat3(tangent, binormal, normal); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifdef ENABLE_CLIP_ALPHA if (albedo.a < 0.99) { //used for doublepass and shadowmapping discard; } #endif /////////////////////// FOG ////////////////////// #ifndef MODE_RENDER_DEPTH #ifndef CUSTOM_FOG_USED // fog must be processed as early as possible and then packed. // to maximize VGPR usage // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. if (scene_data.fog_enabled) { fog = fog_process(vertex); } #ifndef LOW_END_MODE if (scene_data.volumetric_fog_enabled) { vec4 volumetric_fog = volumetric_fog_process(screen_uv, -vertex.z); if (scene_data.fog_enabled) { //must use the full blending equation here to blend fogs vec4 res; float sa = 1.0 - volumetric_fog.a; res.a = fog.a * sa + volumetric_fog.a; if (res.a == 0.0) { res.rgb = vec3(0.0); } else { res.rgb = (fog.rgb * fog.a * sa + volumetric_fog.rgb * volumetric_fog.a) / res.a; } fog = res; } else { fog = volumetric_fog; } } #endif //!LOW_END_MODE #endif //!CUSTOM_FOG_USED uint fog_rg = packHalf2x16(fog.rg); uint fog_ba = packHalf2x16(fog.ba); #endif //!MODE_RENDER_DEPTH /////////////////////// DECALS //////////////////////////////// #ifndef MODE_RENDER_DEPTH uvec2 cluster_pos = uvec2(gl_FragCoord.xy) >> scene_data.cluster_shift; uint cluster_offset = (scene_data.cluster_width * cluster_pos.y + cluster_pos.x) * (scene_data.max_cluster_element_count_div_32 + 32); uint cluster_z = uint(clamp((-vertex.z / scene_data.z_far) * 32.0, 0.0, 31.0)); //used for interpolating anything cluster related vec3 vertex_ddx = dFdx(vertex); vec3 vertex_ddy = dFdy(vertex); { // process decals uint cluster_decal_offset = cluster_offset + scene_data.cluster_type_size * 2; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_decal_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_decal_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint decal_index = 32 * i + bit; if (!bool(decals.data[decal_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } vec3 uv_local = (decals.data[decal_index].xform * vec4(vertex, 1.0)).xyz; if (any(lessThan(uv_local, vec3(0.0, -1.0, 0.0))) || any(greaterThan(uv_local, vec3(1.0)))) { continue; //out of decal } //we need ddx/ddy for mipmaps, so simulate them vec2 ddx = (decals.data[decal_index].xform * vec4(vertex_ddx, 0.0)).xz; vec2 ddy = (decals.data[decal_index].xform * vec4(vertex_ddy, 0.0)).xz; float fade = pow(1.0 - (uv_local.y > 0.0 ? uv_local.y : -uv_local.y), uv_local.y > 0.0 ? decals.data[decal_index].upper_fade : decals.data[decal_index].lower_fade); if (decals.data[decal_index].normal_fade > 0.0) { fade *= smoothstep(decals.data[decal_index].normal_fade, 1.0, dot(normal_interp, decals.data[decal_index].normal) * 0.5 + 0.5); } if (decals.data[decal_index].albedo_rect != vec4(0.0)) { //has albedo vec4 decal_albedo = textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].albedo_rect.zw + decals.data[decal_index].albedo_rect.xy, ddx * decals.data[decal_index].albedo_rect.zw, ddy * decals.data[decal_index].albedo_rect.zw); decal_albedo *= decals.data[decal_index].modulate; decal_albedo.a *= fade; albedo = mix(albedo, decal_albedo.rgb, decal_albedo.a * decals.data[decal_index].albedo_mix); if (decals.data[decal_index].normal_rect != vec4(0.0)) { vec3 decal_normal = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].normal_rect.zw + decals.data[decal_index].normal_rect.xy, ddx * decals.data[decal_index].normal_rect.zw, ddy * decals.data[decal_index].normal_rect.zw).xyz; decal_normal.xy = decal_normal.xy * vec2(2.0, -2.0) - vec2(1.0, -1.0); //users prefer flipped y normal maps in most authoring software decal_normal.z = sqrt(max(0.0, 1.0 - dot(decal_normal.xy, decal_normal.xy))); //convert to view space, use xzy because y is up decal_normal = (decals.data[decal_index].normal_xform * decal_normal.xzy).xyz; normal = normalize(mix(normal, decal_normal, decal_albedo.a)); } if (decals.data[decal_index].orm_rect != vec4(0.0)) { vec3 decal_orm = textureGrad(sampler2D(decal_atlas, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].orm_rect.zw + decals.data[decal_index].orm_rect.xy, ddx * decals.data[decal_index].orm_rect.zw, ddy * decals.data[decal_index].orm_rect.zw).xyz; ao = mix(ao, decal_orm.r, decal_albedo.a); roughness = mix(roughness, decal_orm.g, decal_albedo.a); metallic = mix(metallic, decal_orm.b, decal_albedo.a); } } if (decals.data[decal_index].emission_rect != vec4(0.0)) { //emission is additive, so its independent from albedo emission += textureGrad(sampler2D(decal_atlas_srgb, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uv_local.xz * decals.data[decal_index].emission_rect.zw + decals.data[decal_index].emission_rect.xy, ddx * decals.data[decal_index].emission_rect.zw, ddy * decals.data[decal_index].emission_rect.zw).xyz * decals.data[decal_index].emission_energy * fade; } } } } //pack albedo until needed again, saves 2 VGPRs in the meantime #endif //not render depth /////////////////////// LIGHTING ////////////////////////////// #ifdef NORMAL_USED if (scene_data.roughness_limiter_enabled) { //http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf float roughness2 = roughness * roughness; vec3 dndu = dFdx(normal), dndv = dFdx(normal); float variance = scene_data.roughness_limiter_amount * (dot(dndu, dndu) + dot(dndv, dndv)); float kernelRoughness2 = min(2.0 * variance, scene_data.roughness_limiter_limit); //limit effect float filteredRoughness2 = min(1.0, roughness2 + kernelRoughness2); roughness = sqrt(filteredRoughness2); } #endif //apply energy conservation vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) if (scene_data.use_reflection_cubemap) { vec3 ref_vec = reflect(-view, normal); ref_vec = scene_data.radiance_inverse_xform * ref_vec; #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod, blend; blend = modf(roughness * MAX_ROUGHNESS_LOD, lod); specular_light = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb; specular_light = mix(specular_light, texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod + 1)).rgb, blend); #else specular_light = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY specular_light *= scene_data.ambient_light_color_energy.a; } #if defined(CUSTOM_RADIANCE_USED) specular_light = mix(specular_light, custom_radiance.rgb, custom_radiance.a); #endif #ifndef USE_LIGHTMAP //lightmap overrides everything if (scene_data.use_ambient_light) { ambient_light = scene_data.ambient_light_color_energy.rgb; if (scene_data.use_ambient_cubemap) { vec3 ambient_dir = scene_data.radiance_inverse_xform * normal; #ifdef USE_RADIANCE_CUBEMAP_ARRAY vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb; #else vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY ambient_light = mix(ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix); } } #endif // USE_LIGHTMAP #if defined(CUSTOM_IRRADIANCE_USED) ambient_light = mix(specular_light, custom_irradiance.rgb, custom_irradiance.a); #endif #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) //radiance /// GI /// #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef USE_LIGHTMAP //lightmap if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP_CAPTURE)) { //has lightmap capture uint index = instances.data[instance_index].gi_offset; vec3 wnormal = mat3(scene_data.camera_matrix) * normal; const float c1 = 0.429043; const float c2 = 0.511664; const float c3 = 0.743125; const float c4 = 0.886227; const float c5 = 0.247708; ambient_light += (c1 * lightmap_captures.data[index].sh[8].rgb * (wnormal.x * wnormal.x - wnormal.y * wnormal.y) + c3 * lightmap_captures.data[index].sh[6].rgb * wnormal.z * wnormal.z + c4 * lightmap_captures.data[index].sh[0].rgb - c5 * lightmap_captures.data[index].sh[6].rgb + 2.0 * c1 * lightmap_captures.data[index].sh[4].rgb * wnormal.x * wnormal.y + 2.0 * c1 * lightmap_captures.data[index].sh[7].rgb * wnormal.x * wnormal.z + 2.0 * c1 * lightmap_captures.data[index].sh[5].rgb * wnormal.y * wnormal.z + 2.0 * c2 * lightmap_captures.data[index].sh[3].rgb * wnormal.x + 2.0 * c2 * lightmap_captures.data[index].sh[1].rgb * wnormal.y + 2.0 * c2 * lightmap_captures.data[index].sh[2].rgb * wnormal.z); } else if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_LIGHTMAP)) { // has actual lightmap bool uses_sh = bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SH_LIGHTMAP); uint ofs = instances.data[instance_index].gi_offset & 0xFFFF; vec3 uvw; uvw.xy = uv2 * instances.data[instance_index].lightmap_uv_scale.zw + instances.data[instance_index].lightmap_uv_scale.xy; uvw.z = float((instances.data[instance_index].gi_offset >> 16) & 0xFFFF); if (uses_sh) { uvw.z *= 4.0; //SH textures use 4 times more data vec3 lm_light_l0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 0.0), 0.0).rgb; vec3 lm_light_l1n1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 1.0), 0.0).rgb; vec3 lm_light_l1_0 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 2.0), 0.0).rgb; vec3 lm_light_l1p1 = textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw + vec3(0.0, 0.0, 3.0), 0.0).rgb; uint idx = instances.data[instance_index].gi_offset >> 20; vec3 n = normalize(lightmaps.data[idx].normal_xform * normal); ambient_light += lm_light_l0 * 0.282095f; ambient_light += lm_light_l1n1 * 0.32573 * n.y; ambient_light += lm_light_l1_0 * 0.32573 * n.z; ambient_light += lm_light_l1p1 * 0.32573 * n.x; if (metallic > 0.01) { // since the more direct bounced light is lost, we can kind of fake it with this trick vec3 r = reflect(normalize(-vertex), normal); specular_light += lm_light_l1n1 * 0.32573 * r.y; specular_light += lm_light_l1_0 * 0.32573 * r.z; specular_light += lm_light_l1p1 * 0.32573 * r.x; } } else { ambient_light += textureLod(sampler2DArray(lightmap_textures[ofs], material_samplers[SAMPLER_LINEAR_CLAMP]), uvw, 0.0).rgb; } } #elif defined(USE_FORWARD_GI) if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_SDFGI)) { //has lightmap capture //make vertex orientation the world one, but still align to camera vec3 cam_pos = mat3(scene_data.camera_matrix) * vertex; vec3 cam_normal = mat3(scene_data.camera_matrix) * normal; vec3 cam_reflection = mat3(scene_data.camera_matrix) * reflect(-view, normal); //apply y-mult cam_pos.y *= sdfgi.y_mult; cam_normal.y *= sdfgi.y_mult; cam_normal = normalize(cam_normal); cam_reflection.y *= sdfgi.y_mult; cam_normal = normalize(cam_normal); cam_reflection = normalize(cam_reflection); vec4 light_accum = vec4(0.0); float weight_accum = 0.0; vec4 light_blend_accum = vec4(0.0); float weight_blend_accum = 0.0; float blend = -1.0; // helper constants, compute once uint cascade = 0xFFFFFFFF; vec3 cascade_pos; vec3 cascade_normal; for (uint i = 0; i < sdfgi.max_cascades; i++) { cascade_pos = (cam_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe; if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) { continue; //skip cascade } cascade = i; break; } if (cascade < SDFGI_MAX_CASCADES) { bool use_specular = true; float blend; vec3 diffuse, specular; sdfgi_process(cascade, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse, specular, blend); if (blend > 0.0) { //blend if (cascade == sdfgi.max_cascades - 1) { diffuse = mix(diffuse, ambient_light, blend); if (use_specular) { specular = mix(specular, specular_light, blend); } } else { vec3 diffuse2, specular2; float blend2; cascade_pos = (cam_pos - sdfgi.cascades[cascade + 1].position) * sdfgi.cascades[cascade + 1].to_probe; sdfgi_process(cascade + 1, cascade_pos, cam_pos, cam_normal, cam_reflection, use_specular, roughness, diffuse2, specular2, blend2); diffuse = mix(diffuse, diffuse2, blend); if (use_specular) { specular = mix(specular, specular2, blend); } } } ambient_light = diffuse; if (use_specular) { specular_light = specular; } } } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes uint index1 = instances.data[instance_index].gi_offset & 0xFFFF; vec3 ref_vec = normalize(reflect(normalize(vertex), normal)); //find arbitrary tangent and bitangent, then build a matrix vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); mat3 normal_mat = mat3(tangent, bitangent, normal); vec4 amb_accum = vec4(0.0); vec4 spec_accum = vec4(0.0); gi_probe_compute(index1, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum); uint index2 = instances.data[instance_index].gi_offset >> 16; if (index2 != 0xFFFF) { gi_probe_compute(index2, vertex, normal, ref_vec, normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum); } if (amb_accum.a > 0.0) { amb_accum.rgb /= amb_accum.a; } if (spec_accum.a > 0.0) { spec_accum.rgb /= spec_accum.a; } specular_light = spec_accum.rgb; ambient_light = amb_accum.rgb; } #elif !defined(LOW_END_MODE) if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GI_BUFFERS)) { //use GI buffers vec2 coord; if (scene_data.gi_upscale_for_msaa) { vec2 base_coord = screen_uv; vec2 closest_coord = base_coord; float closest_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), base_coord, 0.0).xyz * 2.0 - 1.0); for (int i = 0; i < 4; i++) { const vec2 neighbours[4] = vec2[](vec2(-1, 0), vec2(1, 0), vec2(0, -1), vec2(0, 1)); vec2 neighbour_coord = base_coord + neighbours[i] * scene_data.screen_pixel_size; float neighbour_ang = dot(normal, textureLod(sampler2D(normal_roughness_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), neighbour_coord, 0.0).xyz * 2.0 - 1.0); if (neighbour_ang > closest_ang) { closest_ang = neighbour_ang; closest_coord = neighbour_coord; } } coord = closest_coord; } else { coord = screen_uv; } vec4 buffer_ambient = textureLod(sampler2D(ambient_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0); vec4 buffer_reflection = textureLod(sampler2D(reflection_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), coord, 0.0); ambient_light = mix(ambient_light, buffer_ambient.rgb, buffer_ambient.a); specular_light = mix(specular_light, buffer_reflection.rgb, buffer_reflection.a); } #endif #ifndef LOW_END_MODE if (scene_data.ssao_enabled) { float ssao = texture(sampler2D(ao_buffer, material_samplers[SAMPLER_LINEAR_CLAMP]), screen_uv).r; ao = min(ao, ssao); ao_light_affect = mix(ao_light_affect, max(ao_light_affect, scene_data.ssao_light_affect), scene_data.ssao_ao_affect); } #endif //LOW_END_MODE { // process reflections vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); uint cluster_reflection_offset = cluster_offset + scene_data.cluster_type_size * 3; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_reflection_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_reflection_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint reflection_index = 32 * i + bit; if (!bool(reflections.data[reflection_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } reflection_process(reflection_index, vertex, normal, roughness, ambient_light, specular_light, ambient_accum, reflection_accum); } } if (reflection_accum.a > 0.0) { specular_light = reflection_accum.rgb / reflection_accum.a; } #if !defined(USE_LIGHTMAP) if (ambient_accum.a > 0.0) { ambient_light = ambient_accum.rgb / ambient_accum.a; } #endif } //finalize ambient light here ambient_light *= albedo.rgb; ambient_light *= ao; // convert ao to direct light ao ao = mix(1.0, ao, ao_light_affect); //this saves some VGPRs vec3 f0 = F0(metallic, specular, albedo); { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else // scales the specular reflections, needs to be be computed before lighting happens, // but after environment, GI, and reflection probes are added // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, view), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; specular_light *= env.x * f0 + env.y; #endif } #endif //GI !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #if !defined(MODE_RENDER_DEPTH) //this saves some VGPRs uint orms = packUnorm4x8(vec4(ao, roughness, metallic, specular)); #endif // LIGHTING #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) { //directional light // Do shadow and lighting in two passes to reduce register pressure uint shadow0 = 0; uint shadow1 = 0; for (uint i = 0; i < 8; i++) { if (i >= scene_data.directional_light_count) { break; } if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } float shadow = 1.0; #ifdef USE_SOFT_SHADOWS //version with soft shadows, more expensive if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; vec4 pssm_coord; vec3 shadow_color = vec3(0.0); vec3 light_dir = directional_lights.data[i].direction; #define BIAS_FUNC(m_var, m_idx) \ m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ vec3 normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))) * directional_lights.data[i].shadow_normal_bias[m_idx]; \ normal_bias -= light_dir * dot(light_dir, normal_bias); \ m_var.xyz += normal_bias; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 0) pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.x; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale1 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color1.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.y; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color2.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.z; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color3.rgb; } else { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.w; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius; shadow = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } shadow_color = directional_lights.data[i].shadow_color4.rgb; } if (directional_lights.data[i].blend_splits) { vec3 shadow_color_blend = vec3(0.0); float pssm_blend; float shadow2; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.y; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale2 * test_radius; shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); shadow_color_blend = directional_lights.data[i].shadow_color2.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.z; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale3 * test_radius; shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); shadow_color_blend = directional_lights.data[i].shadow_color3.rgb; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_coord /= pssm_coord.w; if (directional_lights.data[i].softshadow_angle > 0) { float range_pos = dot(directional_lights.data[i].direction, v.xyz); float range_begin = directional_lights.data[i].shadow_range_begin.w; float test_radius = (range_pos - range_begin) * directional_lights.data[i].softshadow_angle; vec2 tex_scale = directional_lights.data[i].uv_scale4 * test_radius; shadow2 = sample_directional_soft_shadow(directional_shadow_atlas, pssm_coord.xyz, tex_scale * directional_lights.data[i].soft_shadow_scale); } else { shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); } pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); shadow_color_blend = directional_lights.data[i].shadow_color4.rgb; } else { pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) } pssm_blend = sqrt(pssm_blend); shadow = mix(shadow, shadow2, pssm_blend); shadow_color = mix(shadow_color, shadow_color_blend, pssm_blend); } shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance #undef BIAS_FUNC } #else // Soft shadow disabled version if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; vec4 pssm_coord; vec3 light_dir = directional_lights.data[i].direction; vec3 base_normal_bias = normalize(normal_interp) * (1.0 - max(0.0, dot(light_dir, -normalize(normal_interp)))); #define BIAS_FUNC(m_var, m_idx) \ m_var.xyz += light_dir * directional_lights.data[i].shadow_bias[m_idx]; \ vec3 normal_bias = base_normal_bias * directional_lights.data[i].shadow_normal_bias[m_idx]; \ normal_bias -= light_dir * dot(light_dir, normal_bias); \ m_var.xyz += normal_bias; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 0) pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); #ifdef LIGHT_TRANSMITTANCE_USED { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x; transmittance_z = z - shadow_z; } #endif } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); #ifdef LIGHT_TRANSMITTANCE_USED { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y; transmittance_z = z - shadow_z; } #endif } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); #ifdef LIGHT_TRANSMITTANCE_USED { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z; transmittance_z = z - shadow_z; } #endif } else { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); #ifdef LIGHT_TRANSMITTANCE_USED { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w; transmittance_z = z - shadow_z; } #endif } pssm_coord /= pssm_coord.w; shadow = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); if (directional_lights.data[i].blend_splits) { float pssm_blend; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 1) pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 2) pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 v = vec4(vertex, 1.0); BIAS_FUNC(v, 3) pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); } else { pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) } pssm_coord /= pssm_coord.w; float shadow2 = sample_directional_pcf_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size * directional_lights.data[i].soft_shadow_scale, pssm_coord); shadow = mix(shadow, shadow2, pssm_blend); } shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, vertex.z)); //done with negative values for performance #undef BIAS_FUNC } #endif if (i < 4) { shadow0 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << (i * 8); } else { shadow1 |= uint(clamp(shadow * 255.0, 0.0, 255.0)) << ((i - 4) * 8); } } for (uint i = 0; i < 8; i++) { if (i >= scene_data.directional_light_count) { break; } if (!bool(directional_lights.data[i].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } #ifdef LIGHT_TRANSMITTANCE_USED float transmittance_z = transmittance_depth; if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.x, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix1 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x; transmittance_z = z - shadow_z; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.y, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix2 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y; transmittance_z = z - shadow_z; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.z, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix3 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z; transmittance_z = z - shadow_z; } else { vec4 trans_vertex = vec4(vertex - normalize(normal_interp) * directional_lights.data[i].shadow_transmittance_bias.w, 1.0); vec4 trans_coord = directional_lights.data[i].shadow_matrix4 * trans_vertex; trans_coord /= trans_coord.w; float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r; shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w; float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w; transmittance_z = z - shadow_z; } #endif float shadow = 1.0; if (i < 4) { shadow = float(shadow0 >> (i * 8) & 0xFF) / 255.0; } else { shadow = float(shadow1 >> ((i - 4) * 8) & 0xFF) / 255.0; } blur_shadow(shadow); light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, shadow, f0, orms, 1.0, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_curve, transmittance_boost, transmittance_z, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, albedo, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SOFT_SHADOW directional_lights.data[i].size, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } { //omni lights uint cluster_omni_offset = cluster_offset; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_omni_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_omni_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint light_index = 32 * i + bit; if (!bool(omni_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } float shadow = light_process_omni_shadow(light_index, vertex, view); shadow = blur_shadow(shadow); light_process_omni(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_curve, transmittance_boost, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, albedo, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } } { //spot lights uint cluster_spot_offset = cluster_offset + scene_data.cluster_type_size; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_spot_offset + scene_data.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_spot_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint light_index = 32 * i + bit; if (!bool(spot_lights.data[light_index].mask & instances.data[instance_index].layer_mask)) { continue; //not masked } float shadow = light_process_spot_shadow(light_index, vertex, view); shadow = blur_shadow(shadow); light_process_spot(light_index, vertex, view, normal, vertex_ddx, vertex_ddy, f0, orms, shadow, #ifdef LIGHT_BACKLIGHT_USED backlight, #endif #ifdef LIGHT_TRANSMITTANCE_USED transmittance_color, transmittance_depth, transmittance_curve, transmittance_boost, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, albedo, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // USE_SHADOW_TO_OPACITY #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_SDF { vec3 local_pos = (scene_data.sdf_to_bounds * vec4(vertex, 1.0)).xyz; ivec3 grid_pos = scene_data.sdf_offset + ivec3(local_pos * vec3(scene_data.sdf_size)); uint albedo16 = 0x1; //solid flag albedo16 |= clamp(uint(albedo.r * 31.0), 0, 31) << 11; albedo16 |= clamp(uint(albedo.g * 31.0), 0, 31) << 6; albedo16 |= clamp(uint(albedo.b * 31.0), 0, 31) << 1; imageStore(albedo_volume_grid, grid_pos, uvec4(albedo16)); uint facing_bits = 0; const vec3 aniso_dir[6] = vec3[]( vec3(1, 0, 0), vec3(0, 1, 0), vec3(0, 0, 1), vec3(-1, 0, 0), vec3(0, -1, 0), vec3(0, 0, -1)); vec3 cam_normal = mat3(scene_data.camera_matrix) * normalize(normal_interp); float closest_dist = -1e20; for (uint i = 0; i < 6; i++) { float d = dot(cam_normal, aniso_dir[i]); if (d > closest_dist) { closest_dist = d; facing_bits = (1 << i); } } imageAtomicOr(geom_facing_grid, grid_pos, facing_bits); //store facing bits if (length(emission) > 0.001) { float lumas[6]; vec3 light_total = vec3(0); for (int i = 0; i < 6; i++) { float strength = max(0.0, dot(cam_normal, aniso_dir[i])); vec3 light = emission * strength; light_total += light; lumas[i] = max(light.r, max(light.g, light.b)); } float luma_total = max(light_total.r, max(light_total.g, light_total.b)); uint light_aniso = 0; for (int i = 0; i < 6; i++) { light_aniso |= min(31, uint((lumas[i] / luma_total) * 31.0)) << (i * 5); } //compress to RGBE9995 to save space const float pow2to9 = 512.0f; const float B = 15.0f; const float N = 9.0f; const float LN2 = 0.6931471805599453094172321215; float cRed = clamp(light_total.r, 0.0, 65408.0); float cGreen = clamp(light_total.g, 0.0, 65408.0); float cBlue = clamp(light_total.b, 0.0, 65408.0); float cMax = max(cRed, max(cGreen, cBlue)); float expp = max(-B - 1.0f, floor(log(cMax) / LN2)) + 1.0f + B; float sMax = floor((cMax / pow(2.0f, expp - B - N)) + 0.5f); float exps = expp + 1.0f; if (0.0 <= sMax && sMax < pow2to9) { exps = expp; } float sRed = floor((cRed / pow(2.0f, exps - B - N)) + 0.5f); float sGreen = floor((cGreen / pow(2.0f, exps - B - N)) + 0.5f); float sBlue = floor((cBlue / pow(2.0f, exps - B - N)) + 0.5f); //store as 8985 to have 2 extra neighbour bits uint light_rgbe = ((uint(sRed) & 0x1FF) >> 1) | ((uint(sGreen) & 0x1FF) << 8) | (((uint(sBlue) & 0x1FF) >> 1) << 17) | ((uint(exps) & 0x1F) << 25); imageStore(emission_grid, grid_pos, uvec4(light_rgbe)); imageStore(emission_aniso_grid, grid_pos, uvec4(light_aniso)); } } #endif #ifdef MODE_RENDER_MATERIAL albedo_output_buffer.rgb = albedo; albedo_output_buffer.a = alpha; normal_output_buffer.rgb = normal * 0.5 + 0.5; normal_output_buffer.a = 0.0; depth_output_buffer.r = -vertex.z; orm_output_buffer.r = ao; orm_output_buffer.g = roughness; orm_output_buffer.b = metallic; orm_output_buffer.a = sss_strength; emission_output_buffer.rgb = emission; emission_output_buffer.a = 0.0; #endif #ifdef MODE_RENDER_NORMAL_ROUGHNESS normal_roughness_output_buffer = vec4(normal * 0.5 + 0.5, roughness); #ifdef MODE_RENDER_GIPROBE if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_USE_GIPROBE)) { // process giprobes uint index1 = instances.data[instance_index].gi_offset & 0xFFFF; uint index2 = instances.data[instance_index].gi_offset >> 16; giprobe_buffer.x = index1 & 0xFF; giprobe_buffer.y = index2 & 0xFF; } else { giprobe_buffer.x = 0xFF; giprobe_buffer.y = 0xFF; } #endif #endif //MODE_RENDER_NORMAL_ROUGHNESS //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else // multiply by albedo diffuse_light *= albedo; // ambient must be multiplied by albedo at the end // apply direct light AO ao = unpackUnorm4x8(orms).x; specular_light *= ao; diffuse_light *= ao; // apply metallic metallic = unpackUnorm4x8(orms).z; diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; //restore fog fog = vec4(unpackHalf2x16(fog_rg), unpackHalf2x16(fog_ba)); #ifdef MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED diffuse_buffer = vec4(albedo.rgb, 0.0); specular_buffer = vec4(0.0); #else #ifdef SSS_MODE_SKIN sss_strength = -sss_strength; #endif diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength); specular_buffer = vec4(specular_light, metallic); #endif diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a); specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a); #else //MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED frag_color = vec4(albedo, alpha); #else frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); //frag_color = vec4(1.0); #endif //USE_NO_SHADING // Draw "fixed" fog before volumetric fog to ensure volumetric fog can appear in front of the sky. frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a); ; #endif //MODE_MULTIPLE_RENDER_TARGETS #endif //MODE_RENDER_DEPTH }