/**************************************************************************/ /* animation.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "animation.h" #include "core/io/marshalls.h" #include "core/math/geometry_3d.h" #include "scene/scene_string_names.h" bool Animation::_set(const StringName &p_name, const Variant &p_value) { String prop_name = p_name; if (p_name == SNAME("_compression")) { ERR_FAIL_COND_V(tracks.size() > 0, false); //can only set compression if no tracks exist Dictionary comp = p_value; ERR_FAIL_COND_V(!comp.has("fps"), false); ERR_FAIL_COND_V(!comp.has("bounds"), false); ERR_FAIL_COND_V(!comp.has("pages"), false); ERR_FAIL_COND_V(!comp.has("format_version"), false); uint32_t format_version = comp["format_version"]; ERR_FAIL_COND_V(format_version > Compression::FORMAT_VERSION, false); // version does not match this supported version compression.fps = comp["fps"]; Array bounds = comp["bounds"]; compression.bounds.resize(bounds.size()); for (int i = 0; i < bounds.size(); i++) { compression.bounds[i] = bounds[i]; } Array pages = comp["pages"]; compression.pages.resize(pages.size()); for (int i = 0; i < pages.size(); i++) { Dictionary page = pages[i]; ERR_FAIL_COND_V(!page.has("data"), false); ERR_FAIL_COND_V(!page.has("time_offset"), false); compression.pages[i].data = page["data"]; compression.pages[i].time_offset = page["time_offset"]; } compression.enabled = true; return true; } else if (prop_name.begins_with("tracks/")) { int track = prop_name.get_slicec('/', 1).to_int(); String what = prop_name.get_slicec('/', 2); if (tracks.size() == track && what == "type") { String type = p_value; if (type == "position_3d") { add_track(TYPE_POSITION_3D); } else if (type == "rotation_3d") { add_track(TYPE_ROTATION_3D); } else if (type == "scale_3d") { add_track(TYPE_SCALE_3D); } else if (type == "blend_shape") { add_track(TYPE_BLEND_SHAPE); } else if (type == "value") { add_track(TYPE_VALUE); } else if (type == "method") { add_track(TYPE_METHOD); } else if (type == "bezier") { add_track(TYPE_BEZIER); } else if (type == "audio") { add_track(TYPE_AUDIO); } else if (type == "animation") { add_track(TYPE_ANIMATION); } else { return false; } return true; } ERR_FAIL_INDEX_V(track, tracks.size(), false); if (what == "path") { track_set_path(track, p_value); } else if (what == "compressed_track") { int index = p_value; ERR_FAIL_COND_V(!compression.enabled, false); ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)index, compression.bounds.size(), false); Track *t = tracks[track]; t->interpolation = INTERPOLATION_LINEAR; //only linear supported switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); tt->compressed_track = index; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); rt->compressed_track = index; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); st->compressed_track = index; } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); bst->compressed_track = index; } break; default: { return false; } } return true; } else if (what == "use_blend") { if (track_get_type(track) == TYPE_AUDIO) { audio_track_set_use_blend(track, p_value); } } else if (what == "interp") { track_set_interpolation_type(track, InterpolationType(p_value.operator int())); } else if (what == "loop_wrap") { track_set_interpolation_loop_wrap(track, p_value); } else if (what == "imported") { track_set_imported(track, p_value); } else if (what == "enabled") { track_set_enabled(track, p_value); } else if (what == "keys" || what == "key_values") { if (track_get_type(track) == TYPE_POSITION_3D) { PositionTrack *tt = static_cast(tracks[track]); Vector values = p_value; int vcount = values.size(); ERR_FAIL_COND_V(vcount % POSITION_TRACK_SIZE, false); const real_t *r = values.ptr(); int64_t count = vcount / POSITION_TRACK_SIZE; tt->positions.resize(count); TKey *tw = tt->positions.ptrw(); for (int i = 0; i < count; i++) { TKey &tk = tw[i]; const real_t *ofs = &r[i * POSITION_TRACK_SIZE]; tk.time = ofs[0]; tk.transition = ofs[1]; tk.value.x = ofs[2]; tk.value.y = ofs[3]; tk.value.z = ofs[4]; } } else if (track_get_type(track) == TYPE_ROTATION_3D) { RotationTrack *rt = static_cast(tracks[track]); Vector values = p_value; int vcount = values.size(); ERR_FAIL_COND_V(vcount % ROTATION_TRACK_SIZE, false); const real_t *r = values.ptr(); int64_t count = vcount / ROTATION_TRACK_SIZE; rt->rotations.resize(count); TKey *rw = rt->rotations.ptrw(); for (int i = 0; i < count; i++) { TKey &rk = rw[i]; const real_t *ofs = &r[i * ROTATION_TRACK_SIZE]; rk.time = ofs[0]; rk.transition = ofs[1]; rk.value.x = ofs[2]; rk.value.y = ofs[3]; rk.value.z = ofs[4]; rk.value.w = ofs[5]; } } else if (track_get_type(track) == TYPE_SCALE_3D) { ScaleTrack *st = static_cast(tracks[track]); Vector values = p_value; int vcount = values.size(); ERR_FAIL_COND_V(vcount % SCALE_TRACK_SIZE, false); const real_t *r = values.ptr(); int64_t count = vcount / SCALE_TRACK_SIZE; st->scales.resize(count); TKey *sw = st->scales.ptrw(); for (int i = 0; i < count; i++) { TKey &sk = sw[i]; const real_t *ofs = &r[i * SCALE_TRACK_SIZE]; sk.time = ofs[0]; sk.transition = ofs[1]; sk.value.x = ofs[2]; sk.value.y = ofs[3]; sk.value.z = ofs[4]; } } else if (track_get_type(track) == TYPE_BLEND_SHAPE) { BlendShapeTrack *st = static_cast(tracks[track]); Vector values = p_value; int vcount = values.size(); ERR_FAIL_COND_V(vcount % BLEND_SHAPE_TRACK_SIZE, false); const real_t *r = values.ptr(); int64_t count = vcount / BLEND_SHAPE_TRACK_SIZE; st->blend_shapes.resize(count); TKey *sw = st->blend_shapes.ptrw(); for (int i = 0; i < count; i++) { TKey &sk = sw[i]; const real_t *ofs = &r[i * BLEND_SHAPE_TRACK_SIZE]; sk.time = ofs[0]; sk.transition = ofs[1]; sk.value = ofs[2]; } } else if (track_get_type(track) == TYPE_VALUE) { ValueTrack *vt = static_cast(tracks[track]); Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"), false); ERR_FAIL_COND_V(!d.has("values"), false); if (d.has("cont")) { bool v = d["cont"]; vt->update_mode = v ? UPDATE_CONTINUOUS : UPDATE_DISCRETE; } if (d.has("update")) { int um = d["update"]; if (um < 0) { um = 0; } else if (um > 3) { um = 3; } vt->update_mode = UpdateMode(um); } Vector times = d["times"]; Array values = d["values"]; ERR_FAIL_COND_V(times.size() != values.size(), false); if (times.size()) { int valcount = times.size(); const real_t *rt = times.ptr(); vt->values.resize(valcount); for (int i = 0; i < valcount; i++) { vt->values.write[i].time = rt[i]; vt->values.write[i].value = values[i]; } if (d.has("transitions")) { Vector transitions = d["transitions"]; ERR_FAIL_COND_V(transitions.size() != valcount, false); const real_t *rtr = transitions.ptr(); for (int i = 0; i < valcount; i++) { vt->values.write[i].transition = rtr[i]; } } } return true; } else if (track_get_type(track) == TYPE_METHOD) { while (track_get_key_count(track)) { track_remove_key(track, 0); //well shouldn't be set anyway } Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"), false); ERR_FAIL_COND_V(!d.has("values"), false); Vector times = d["times"]; Array values = d["values"]; ERR_FAIL_COND_V(times.size() != values.size(), false); if (times.size()) { int valcount = times.size(); const real_t *rt = times.ptr(); for (int i = 0; i < valcount; i++) { track_insert_key(track, rt[i], values[i]); } if (d.has("transitions")) { Vector transitions = d["transitions"]; ERR_FAIL_COND_V(transitions.size() != valcount, false); const real_t *rtr = transitions.ptr(); for (int i = 0; i < valcount; i++) { track_set_key_transition(track, i, rtr[i]); } } } } else if (track_get_type(track) == TYPE_BEZIER) { BezierTrack *bt = static_cast(tracks[track]); Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"), false); ERR_FAIL_COND_V(!d.has("points"), false); Vector times = d["times"]; Vector values = d["points"]; #ifdef TOOLS_ENABLED ERR_FAIL_COND_V(!d.has("handle_modes"), false); Vector handle_modes = d["handle_modes"]; #endif // TOOLS_ENABLED ERR_FAIL_COND_V(times.size() * 5 != values.size(), false); if (times.size()) { int valcount = times.size(); const real_t *rt = times.ptr(); const real_t *rv = values.ptr(); #ifdef TOOLS_ENABLED const int *rh = handle_modes.ptr(); #endif // TOOLS_ENABLED bt->values.resize(valcount); for (int i = 0; i < valcount; i++) { bt->values.write[i].time = rt[i]; bt->values.write[i].transition = 0; //unused in bezier bt->values.write[i].value.value = rv[i * 5 + 0]; bt->values.write[i].value.in_handle.x = rv[i * 5 + 1]; bt->values.write[i].value.in_handle.y = rv[i * 5 + 2]; bt->values.write[i].value.out_handle.x = rv[i * 5 + 3]; bt->values.write[i].value.out_handle.y = rv[i * 5 + 4]; #ifdef TOOLS_ENABLED bt->values.write[i].value.handle_mode = static_cast(rh[i]); #endif // TOOLS_ENABLED } } return true; } else if (track_get_type(track) == TYPE_AUDIO) { AudioTrack *ad = static_cast(tracks[track]); Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"), false); ERR_FAIL_COND_V(!d.has("clips"), false); Vector times = d["times"]; Array clips = d["clips"]; ERR_FAIL_COND_V(clips.size() != times.size(), false); if (times.size()) { int valcount = times.size(); const real_t *rt = times.ptr(); ad->values.clear(); for (int i = 0; i < valcount; i++) { Dictionary d2 = clips[i]; if (!d2.has("start_offset")) { continue; } if (!d2.has("end_offset")) { continue; } if (!d2.has("stream")) { continue; } TKey ak; ak.time = rt[i]; ak.value.start_offset = d2["start_offset"]; ak.value.end_offset = d2["end_offset"]; ak.value.stream = d2["stream"]; ad->values.push_back(ak); } } return true; } else if (track_get_type(track) == TYPE_ANIMATION) { AnimationTrack *an = static_cast(tracks[track]); Dictionary d = p_value; ERR_FAIL_COND_V(!d.has("times"), false); ERR_FAIL_COND_V(!d.has("clips"), false); Vector times = d["times"]; Vector clips = d["clips"]; ERR_FAIL_COND_V(clips.size() != times.size(), false); if (times.size()) { int valcount = times.size(); const real_t *rt = times.ptr(); const String *rc = clips.ptr(); an->values.resize(valcount); for (int i = 0; i < valcount; i++) { TKey ak; ak.time = rt[i]; ak.value = rc[i]; an->values.write[i] = ak; } } return true; } else { return false; } } else { return false; } #ifndef DISABLE_DEPRECATED } else if (prop_name == "loop" && p_value.operator bool()) { // Compatibility with Godot 3.x. loop_mode = Animation::LoopMode::LOOP_LINEAR; return true; #endif // DISABLE_DEPRECATED } else { return false; } return true; } bool Animation::_get(const StringName &p_name, Variant &r_ret) const { String prop_name = p_name; if (p_name == SNAME("_compression")) { ERR_FAIL_COND_V(!compression.enabled, false); Dictionary comp; comp["fps"] = compression.fps; Array bounds; bounds.resize(compression.bounds.size()); for (uint32_t i = 0; i < compression.bounds.size(); i++) { bounds[i] = compression.bounds[i]; } comp["bounds"] = bounds; Array pages; pages.resize(compression.pages.size()); for (uint32_t i = 0; i < compression.pages.size(); i++) { Dictionary page; page["data"] = compression.pages[i].data; page["time_offset"] = compression.pages[i].time_offset; pages[i] = page; } comp["pages"] = pages; comp["format_version"] = Compression::FORMAT_VERSION; r_ret = comp; return true; } else if (prop_name == "length") { r_ret = length; } else if (prop_name == "loop_mode") { r_ret = loop_mode; } else if (prop_name == "step") { r_ret = step; } else if (prop_name.begins_with("tracks/")) { int track = prop_name.get_slicec('/', 1).to_int(); String what = prop_name.get_slicec('/', 2); ERR_FAIL_INDEX_V(track, tracks.size(), false); if (what == "type") { switch (track_get_type(track)) { case TYPE_POSITION_3D: r_ret = "position_3d"; break; case TYPE_ROTATION_3D: r_ret = "rotation_3d"; break; case TYPE_SCALE_3D: r_ret = "scale_3d"; break; case TYPE_BLEND_SHAPE: r_ret = "blend_shape"; break; case TYPE_VALUE: r_ret = "value"; break; case TYPE_METHOD: r_ret = "method"; break; case TYPE_BEZIER: r_ret = "bezier"; break; case TYPE_AUDIO: r_ret = "audio"; break; case TYPE_ANIMATION: r_ret = "animation"; break; } return true; } else if (what == "path") { r_ret = track_get_path(track); } else if (what == "compressed_track") { ERR_FAIL_COND_V(!compression.enabled, false); Track *t = tracks[track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); r_ret = tt->compressed_track; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); r_ret = rt->compressed_track; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); r_ret = st->compressed_track; } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); r_ret = bst->compressed_track; } break; default: { r_ret = Variant(); ERR_FAIL_V(false); } } return true; } else if (what == "use_blend") { if (track_get_type(track) == TYPE_AUDIO) { r_ret = audio_track_is_use_blend(track); } } else if (what == "interp") { r_ret = track_get_interpolation_type(track); } else if (what == "loop_wrap") { r_ret = track_get_interpolation_loop_wrap(track); } else if (what == "imported") { r_ret = track_is_imported(track); } else if (what == "enabled") { r_ret = track_is_enabled(track); } else if (what == "keys") { if (track_get_type(track) == TYPE_POSITION_3D) { Vector keys; int kk = track_get_key_count(track); keys.resize(kk * POSITION_TRACK_SIZE); real_t *w = keys.ptrw(); int idx = 0; for (int i = 0; i < track_get_key_count(track); i++) { Vector3 loc; position_track_get_key(track, i, &loc); w[idx++] = track_get_key_time(track, i); w[idx++] = track_get_key_transition(track, i); w[idx++] = loc.x; w[idx++] = loc.y; w[idx++] = loc.z; } r_ret = keys; return true; } else if (track_get_type(track) == TYPE_ROTATION_3D) { Vector keys; int kk = track_get_key_count(track); keys.resize(kk * ROTATION_TRACK_SIZE); real_t *w = keys.ptrw(); int idx = 0; for (int i = 0; i < track_get_key_count(track); i++) { Quaternion rot; rotation_track_get_key(track, i, &rot); w[idx++] = track_get_key_time(track, i); w[idx++] = track_get_key_transition(track, i); w[idx++] = rot.x; w[idx++] = rot.y; w[idx++] = rot.z; w[idx++] = rot.w; } r_ret = keys; return true; } else if (track_get_type(track) == TYPE_SCALE_3D) { Vector keys; int kk = track_get_key_count(track); keys.resize(kk * SCALE_TRACK_SIZE); real_t *w = keys.ptrw(); int idx = 0; for (int i = 0; i < track_get_key_count(track); i++) { Vector3 scale; scale_track_get_key(track, i, &scale); w[idx++] = track_get_key_time(track, i); w[idx++] = track_get_key_transition(track, i); w[idx++] = scale.x; w[idx++] = scale.y; w[idx++] = scale.z; } r_ret = keys; return true; } else if (track_get_type(track) == TYPE_BLEND_SHAPE) { Vector keys; int kk = track_get_key_count(track); keys.resize(kk * BLEND_SHAPE_TRACK_SIZE); real_t *w = keys.ptrw(); int idx = 0; for (int i = 0; i < track_get_key_count(track); i++) { float bs; blend_shape_track_get_key(track, i, &bs); w[idx++] = track_get_key_time(track, i); w[idx++] = track_get_key_transition(track, i); w[idx++] = bs; } r_ret = keys; return true; } else if (track_get_type(track) == TYPE_VALUE) { const ValueTrack *vt = static_cast(tracks[track]); Dictionary d; Vector key_times; Vector key_transitions; Array key_values; int kk = vt->values.size(); key_times.resize(kk); key_transitions.resize(kk); key_values.resize(kk); real_t *wti = key_times.ptrw(); real_t *wtr = key_transitions.ptrw(); int idx = 0; const TKey *vls = vt->values.ptr(); for (int i = 0; i < kk; i++) { wti[idx] = vls[i].time; wtr[idx] = vls[i].transition; key_values[idx] = vls[i].value; idx++; } d["times"] = key_times; d["transitions"] = key_transitions; d["values"] = key_values; if (track_get_type(track) == TYPE_VALUE) { d["update"] = value_track_get_update_mode(track); } r_ret = d; return true; } else if (track_get_type(track) == TYPE_METHOD) { Dictionary d; Vector key_times; Vector key_transitions; Array key_values; int kk = track_get_key_count(track); key_times.resize(kk); key_transitions.resize(kk); key_values.resize(kk); real_t *wti = key_times.ptrw(); real_t *wtr = key_transitions.ptrw(); int idx = 0; for (int i = 0; i < track_get_key_count(track); i++) { wti[idx] = track_get_key_time(track, i); wtr[idx] = track_get_key_transition(track, i); key_values[idx] = track_get_key_value(track, i); idx++; } d["times"] = key_times; d["transitions"] = key_transitions; d["values"] = key_values; if (track_get_type(track) == TYPE_VALUE) { d["update"] = value_track_get_update_mode(track); } r_ret = d; return true; } else if (track_get_type(track) == TYPE_BEZIER) { const BezierTrack *bt = static_cast(tracks[track]); Dictionary d; Vector key_times; Vector key_points; int kk = bt->values.size(); key_times.resize(kk); key_points.resize(kk * 5); real_t *wti = key_times.ptrw(); real_t *wpo = key_points.ptrw(); #ifdef TOOLS_ENABLED Vector handle_modes; handle_modes.resize(kk); int *whm = handle_modes.ptrw(); #endif // TOOLS_ENABLED int idx = 0; const TKey *vls = bt->values.ptr(); for (int i = 0; i < kk; i++) { wti[idx] = vls[i].time; wpo[idx * 5 + 0] = vls[i].value.value; wpo[idx * 5 + 1] = vls[i].value.in_handle.x; wpo[idx * 5 + 2] = vls[i].value.in_handle.y; wpo[idx * 5 + 3] = vls[i].value.out_handle.x; wpo[idx * 5 + 4] = vls[i].value.out_handle.y; #ifdef TOOLS_ENABLED whm[idx] = static_cast(vls[i].value.handle_mode); #endif // TOOLS_ENABLED idx++; } d["times"] = key_times; d["points"] = key_points; #ifdef TOOLS_ENABLED d["handle_modes"] = handle_modes; #endif // TOOLS_ENABLED r_ret = d; return true; } else if (track_get_type(track) == TYPE_AUDIO) { const AudioTrack *ad = static_cast(tracks[track]); Dictionary d; Vector key_times; Array clips; int kk = ad->values.size(); key_times.resize(kk); real_t *wti = key_times.ptrw(); int idx = 0; const TKey *vls = ad->values.ptr(); for (int i = 0; i < kk; i++) { wti[idx] = vls[i].time; Dictionary clip; clip["start_offset"] = vls[i].value.start_offset; clip["end_offset"] = vls[i].value.end_offset; clip["stream"] = vls[i].value.stream; clips.push_back(clip); idx++; } d["times"] = key_times; d["clips"] = clips; r_ret = d; return true; } else if (track_get_type(track) == TYPE_ANIMATION) { const AnimationTrack *an = static_cast(tracks[track]); Dictionary d; Vector key_times; Vector clips; int kk = an->values.size(); key_times.resize(kk); clips.resize(kk); real_t *wti = key_times.ptrw(); String *wcl = clips.ptrw(); const TKey *vls = an->values.ptr(); for (int i = 0; i < kk; i++) { wti[i] = vls[i].time; wcl[i] = vls[i].value; } d["times"] = key_times; d["clips"] = clips; r_ret = d; return true; } } else { return false; } } else { return false; } return true; } void Animation::_get_property_list(List *p_list) const { if (compression.enabled) { p_list->push_back(PropertyInfo(Variant::DICTIONARY, "_compression", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); } for (int i = 0; i < tracks.size(); i++) { p_list->push_back(PropertyInfo(Variant::STRING, "tracks/" + itos(i) + "/type", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/imported", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/enabled", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::NODE_PATH, "tracks/" + itos(i) + "/path", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); if (track_is_compressed(i)) { p_list->push_back(PropertyInfo(Variant::INT, "tracks/" + itos(i) + "/compressed_track", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); } else { p_list->push_back(PropertyInfo(Variant::INT, "tracks/" + itos(i) + "/interp", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/loop_wrap", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); p_list->push_back(PropertyInfo(Variant::ARRAY, "tracks/" + itos(i) + "/keys", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); } if (track_get_type(i) == TYPE_AUDIO) { p_list->push_back(PropertyInfo(Variant::BOOL, "tracks/" + itos(i) + "/use_blend", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NO_EDITOR | PROPERTY_USAGE_INTERNAL)); } } } void Animation::reset_state() { clear(); } int Animation::add_track(TrackType p_type, int p_at_pos) { if (p_at_pos < 0 || p_at_pos >= tracks.size()) { p_at_pos = tracks.size(); } switch (p_type) { case TYPE_POSITION_3D: { PositionTrack *tt = memnew(PositionTrack); tracks.insert(p_at_pos, tt); } break; case TYPE_ROTATION_3D: { RotationTrack *rt = memnew(RotationTrack); tracks.insert(p_at_pos, rt); } break; case TYPE_SCALE_3D: { ScaleTrack *st = memnew(ScaleTrack); tracks.insert(p_at_pos, st); } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = memnew(BlendShapeTrack); tracks.insert(p_at_pos, bst); } break; case TYPE_VALUE: { tracks.insert(p_at_pos, memnew(ValueTrack)); } break; case TYPE_METHOD: { tracks.insert(p_at_pos, memnew(MethodTrack)); } break; case TYPE_BEZIER: { tracks.insert(p_at_pos, memnew(BezierTrack)); } break; case TYPE_AUDIO: { tracks.insert(p_at_pos, memnew(AudioTrack)); } break; case TYPE_ANIMATION: { tracks.insert(p_at_pos, memnew(AnimationTrack)); } break; default: { ERR_PRINT("Unknown track type"); } } emit_changed(); return p_at_pos; } void Animation::remove_track(int p_track) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); ERR_FAIL_COND_MSG(tt->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first."); _clear(tt->positions); } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); ERR_FAIL_COND_MSG(rt->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first."); _clear(rt->rotations); } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); ERR_FAIL_COND_MSG(st->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first."); _clear(st->scales); } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); ERR_FAIL_COND_MSG(bst->compressed_track >= 0, "Compressed tracks can't be manually removed. Call clear() to get rid of compression first."); _clear(bst->blend_shapes); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); _clear(vt->values); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); _clear(mt->methods); } break; case TYPE_BEZIER: { BezierTrack *bz = static_cast(t); _clear(bz->values); } break; case TYPE_AUDIO: { AudioTrack *ad = static_cast(t); _clear(ad->values); } break; case TYPE_ANIMATION: { AnimationTrack *an = static_cast(t); _clear(an->values); } break; } memdelete(t); tracks.remove_at(p_track); emit_changed(); } int Animation::get_track_count() const { return tracks.size(); } Animation::TrackType Animation::track_get_type(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), TYPE_VALUE); return tracks[p_track]->type; } void Animation::track_set_path(int p_track, const NodePath &p_path) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->path = p_path; emit_changed(); } NodePath Animation::track_get_path(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), NodePath()); return tracks[p_track]->path; } int Animation::find_track(const NodePath &p_path, const TrackType p_type) const { for (int i = 0; i < tracks.size(); i++) { if (tracks[i]->path == p_path && tracks[i]->type == p_type) { return i; } }; return -1; }; void Animation::track_set_interpolation_type(int p_track, InterpolationType p_interp) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->interpolation = p_interp; emit_changed(); } Animation::InterpolationType Animation::track_get_interpolation_type(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), INTERPOLATION_NEAREST); return tracks[p_track]->interpolation; } void Animation::track_set_interpolation_loop_wrap(int p_track, bool p_enable) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->loop_wrap = p_enable; emit_changed(); } bool Animation::track_get_interpolation_loop_wrap(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), INTERPOLATION_NEAREST); return tracks[p_track]->loop_wrap; } template int Animation::_insert(double p_time, T &p_keys, const V &p_value) { int idx = p_keys.size(); while (true) { // Condition for replacement. if (idx > 0 && Math::is_equal_approx((double)p_keys[idx - 1].time, p_time)) { float transition = p_keys[idx - 1].transition; p_keys.write[idx - 1] = p_value; p_keys.write[idx - 1].transition = transition; return idx - 1; // Condition for insert. } else if (idx == 0 || p_keys[idx - 1].time < p_time) { p_keys.insert(idx, p_value); return idx; } idx--; } return -1; } template void Animation::_clear(T &p_keys) { p_keys.clear(); } //// int Animation::position_track_insert_key(int p_track, double p_time, const Vector3 &p_position) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_POSITION_3D, -1); PositionTrack *tt = static_cast(t); ERR_FAIL_COND_V(tt->compressed_track >= 0, -1); TKey tkey; tkey.time = p_time; tkey.value = p_position; int ret = _insert(p_time, tt->positions, tkey); emit_changed(); return ret; } Error Animation::position_track_get_key(int p_track, int p_key, Vector3 *r_position) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; PositionTrack *tt = static_cast(t); ERR_FAIL_COND_V(t->type != TYPE_POSITION_3D, ERR_INVALID_PARAMETER); if (tt->compressed_track >= 0) { Vector3i key; double time; bool fetch_success = _fetch_compressed_by_index<3>(tt->compressed_track, p_key, key, time); if (!fetch_success) { return ERR_INVALID_PARAMETER; } *r_position = _uncompress_pos_scale(tt->compressed_track, key); return OK; } ERR_FAIL_INDEX_V(p_key, tt->positions.size(), ERR_INVALID_PARAMETER); *r_position = tt->positions[p_key].value; return OK; } Error Animation::try_position_track_interpolate(int p_track, double p_time, Vector3 *r_interpolation) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_POSITION_3D, ERR_INVALID_PARAMETER); PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { if (_pos_scale_interpolate_compressed(tt->compressed_track, p_time, *r_interpolation)) { return OK; } else { return ERR_UNAVAILABLE; } } bool ok = false; Vector3 tk = _interpolate(tt->positions, p_time, tt->interpolation, tt->loop_wrap, &ok); if (!ok) { return ERR_UNAVAILABLE; } *r_interpolation = tk; return OK; } Vector3 Animation::position_track_interpolate(int p_track, double p_time) const { Vector3 ret = Vector3(0, 0, 0); ERR_FAIL_INDEX_V(p_track, tracks.size(), ret); bool err = try_position_track_interpolate(p_track, p_time, &ret); ERR_FAIL_COND_V_MSG(err, ret, "3D Position Track: '" + tracks[p_track]->path + "' is unavailable."); return ret; } //// int Animation::rotation_track_insert_key(int p_track, double p_time, const Quaternion &p_rotation) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_ROTATION_3D, -1); RotationTrack *rt = static_cast(t); ERR_FAIL_COND_V(rt->compressed_track >= 0, -1); TKey tkey; tkey.time = p_time; tkey.value = p_rotation; int ret = _insert(p_time, rt->rotations, tkey); emit_changed(); return ret; } Error Animation::rotation_track_get_key(int p_track, int p_key, Quaternion *r_rotation) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; RotationTrack *rt = static_cast(t); ERR_FAIL_COND_V(t->type != TYPE_ROTATION_3D, ERR_INVALID_PARAMETER); if (rt->compressed_track >= 0) { Vector3i key; double time; bool fetch_success = _fetch_compressed_by_index<3>(rt->compressed_track, p_key, key, time); if (!fetch_success) { return ERR_INVALID_PARAMETER; } *r_rotation = _uncompress_quaternion(key); return OK; } ERR_FAIL_INDEX_V(p_key, rt->rotations.size(), ERR_INVALID_PARAMETER); *r_rotation = rt->rotations[p_key].value; return OK; } Error Animation::try_rotation_track_interpolate(int p_track, double p_time, Quaternion *r_interpolation) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_ROTATION_3D, ERR_INVALID_PARAMETER); RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { if (_rotation_interpolate_compressed(rt->compressed_track, p_time, *r_interpolation)) { return OK; } else { return ERR_UNAVAILABLE; } } bool ok = false; Quaternion tk = _interpolate(rt->rotations, p_time, rt->interpolation, rt->loop_wrap, &ok); if (!ok) { return ERR_UNAVAILABLE; } *r_interpolation = tk; return OK; } Quaternion Animation::rotation_track_interpolate(int p_track, double p_time) const { Quaternion ret = Quaternion(0, 0, 0, 1); ERR_FAIL_INDEX_V(p_track, tracks.size(), ret); bool err = try_rotation_track_interpolate(p_track, p_time, &ret); ERR_FAIL_COND_V_MSG(err, ret, "3D Rotation Track: '" + tracks[p_track]->path + "' is unavailable."); return ret; } //// int Animation::scale_track_insert_key(int p_track, double p_time, const Vector3 &p_scale) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_SCALE_3D, -1); ScaleTrack *st = static_cast(t); ERR_FAIL_COND_V(st->compressed_track >= 0, -1); TKey tkey; tkey.time = p_time; tkey.value = p_scale; int ret = _insert(p_time, st->scales, tkey); emit_changed(); return ret; } Error Animation::scale_track_get_key(int p_track, int p_key, Vector3 *r_scale) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; ScaleTrack *st = static_cast(t); ERR_FAIL_COND_V(t->type != TYPE_SCALE_3D, ERR_INVALID_PARAMETER); if (st->compressed_track >= 0) { Vector3i key; double time; bool fetch_success = _fetch_compressed_by_index<3>(st->compressed_track, p_key, key, time); if (!fetch_success) { return ERR_INVALID_PARAMETER; } *r_scale = _uncompress_pos_scale(st->compressed_track, key); return OK; } ERR_FAIL_INDEX_V(p_key, st->scales.size(), ERR_INVALID_PARAMETER); *r_scale = st->scales[p_key].value; return OK; } Error Animation::try_scale_track_interpolate(int p_track, double p_time, Vector3 *r_interpolation) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_SCALE_3D, ERR_INVALID_PARAMETER); ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { if (_pos_scale_interpolate_compressed(st->compressed_track, p_time, *r_interpolation)) { return OK; } else { return ERR_UNAVAILABLE; } } bool ok = false; Vector3 tk = _interpolate(st->scales, p_time, st->interpolation, st->loop_wrap, &ok); if (!ok) { return ERR_UNAVAILABLE; } *r_interpolation = tk; return OK; } Vector3 Animation::scale_track_interpolate(int p_track, double p_time) const { Vector3 ret = Vector3(1, 1, 1); ERR_FAIL_INDEX_V(p_track, tracks.size(), ret); bool err = try_scale_track_interpolate(p_track, p_time, &ret); ERR_FAIL_COND_V_MSG(err, ret, "3D Scale Track: '" + tracks[p_track]->path + "' is unavailable."); return ret; } //// int Animation::blend_shape_track_insert_key(int p_track, double p_time, float p_blend_shape) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_BLEND_SHAPE, -1); BlendShapeTrack *st = static_cast(t); ERR_FAIL_COND_V(st->compressed_track >= 0, -1); TKey tkey; tkey.time = p_time; tkey.value = p_blend_shape; int ret = _insert(p_time, st->blend_shapes, tkey); emit_changed(); return ret; } Error Animation::blend_shape_track_get_key(int p_track, int p_key, float *r_blend_shape) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; BlendShapeTrack *bst = static_cast(t); ERR_FAIL_COND_V(t->type != TYPE_BLEND_SHAPE, ERR_INVALID_PARAMETER); if (bst->compressed_track >= 0) { Vector3i key; double time; bool fetch_success = _fetch_compressed_by_index<1>(bst->compressed_track, p_key, key, time); if (!fetch_success) { return ERR_INVALID_PARAMETER; } *r_blend_shape = _uncompress_blend_shape(key); return OK; } ERR_FAIL_INDEX_V(p_key, bst->blend_shapes.size(), ERR_INVALID_PARAMETER); *r_blend_shape = bst->blend_shapes[p_key].value; return OK; } Error Animation::try_blend_shape_track_interpolate(int p_track, double p_time, float *r_interpolation) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), ERR_INVALID_PARAMETER); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_BLEND_SHAPE, ERR_INVALID_PARAMETER); BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { if (_blend_shape_interpolate_compressed(bst->compressed_track, p_time, *r_interpolation)) { return OK; } else { return ERR_UNAVAILABLE; } } bool ok = false; float tk = _interpolate(bst->blend_shapes, p_time, bst->interpolation, bst->loop_wrap, &ok); if (!ok) { return ERR_UNAVAILABLE; } *r_interpolation = tk; return OK; } float Animation::blend_shape_track_interpolate(int p_track, double p_time) const { float ret = 0; ERR_FAIL_INDEX_V(p_track, tracks.size(), ret); bool err = try_blend_shape_track_interpolate(p_track, p_time, &ret); ERR_FAIL_COND_V_MSG(err, ret, "Blend Shape Track: '" + tracks[p_track]->path + "' is unavailable."); return ret; } //// void Animation::track_remove_key_at_time(int p_track, double p_time) { int idx = track_find_key(p_track, p_time, FIND_MODE_APPROX); ERR_FAIL_COND(idx < 0); track_remove_key(p_track, idx); } void Animation::track_remove_key(int p_track, int p_idx) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); ERR_FAIL_COND(tt->compressed_track >= 0); ERR_FAIL_INDEX(p_idx, tt->positions.size()); tt->positions.remove_at(p_idx); } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); ERR_FAIL_COND(rt->compressed_track >= 0); ERR_FAIL_INDEX(p_idx, rt->rotations.size()); rt->rotations.remove_at(p_idx); } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); ERR_FAIL_COND(st->compressed_track >= 0); ERR_FAIL_INDEX(p_idx, st->scales.size()); st->scales.remove_at(p_idx); } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); ERR_FAIL_COND(bst->compressed_track >= 0); ERR_FAIL_INDEX(p_idx, bst->blend_shapes.size()); bst->blend_shapes.remove_at(p_idx); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX(p_idx, vt->values.size()); vt->values.remove_at(p_idx); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX(p_idx, mt->methods.size()); mt->methods.remove_at(p_idx); } break; case TYPE_BEZIER: { BezierTrack *bz = static_cast(t); ERR_FAIL_INDEX(p_idx, bz->values.size()); bz->values.remove_at(p_idx); } break; case TYPE_AUDIO: { AudioTrack *ad = static_cast(t); ERR_FAIL_INDEX(p_idx, ad->values.size()); ad->values.remove_at(p_idx); } break; case TYPE_ANIMATION: { AnimationTrack *an = static_cast(t); ERR_FAIL_INDEX(p_idx, an->values.size()); an->values.remove_at(p_idx); } break; } emit_changed(); } int Animation::track_find_key(int p_track, double p_time, FindMode p_find_mode) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { double time; double time_next; Vector3i key; Vector3i key_next; uint32_t key_index; bool fetch_compressed_success = _fetch_compressed<3>(tt->compressed_track, p_time, key, time, key_next, time_next, &key_index); ERR_FAIL_COND_V(!fetch_compressed_success, -1); if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) { return -1; } return key_index; } int k = _find(tt->positions, p_time); if (k < 0 || k >= tt->positions.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(tt->positions[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && tt->positions[k].time != p_time)) { return -1; } return k; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { double time; double time_next; Vector3i key; Vector3i key_next; uint32_t key_index; bool fetch_compressed_success = _fetch_compressed<3>(rt->compressed_track, p_time, key, time, key_next, time_next, &key_index); ERR_FAIL_COND_V(!fetch_compressed_success, -1); if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) { return -1; } return key_index; } int k = _find(rt->rotations, p_time); if (k < 0 || k >= rt->rotations.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(rt->rotations[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && rt->rotations[k].time != p_time)) { return -1; } return k; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { double time; double time_next; Vector3i key; Vector3i key_next; uint32_t key_index; bool fetch_compressed_success = _fetch_compressed<3>(st->compressed_track, p_time, key, time, key_next, time_next, &key_index); ERR_FAIL_COND_V(!fetch_compressed_success, -1); if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) { return -1; } return key_index; } int k = _find(st->scales, p_time); if (k < 0 || k >= st->scales.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(st->scales[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && st->scales[k].time != p_time)) { return -1; } return k; } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { double time; double time_next; Vector3i key; Vector3i key_next; uint32_t key_index; bool fetch_compressed_success = _fetch_compressed<1>(bst->compressed_track, p_time, key, time, key_next, time_next, &key_index); ERR_FAIL_COND_V(!fetch_compressed_success, -1); if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(time, p_time)) || (p_find_mode == FIND_MODE_EXACT && time != p_time)) { return -1; } return key_index; } int k = _find(bst->blend_shapes, p_time); if (k < 0 || k >= bst->blend_shapes.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(bst->blend_shapes[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && bst->blend_shapes[k].time != p_time)) { return -1; } return k; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); int k = _find(vt->values, p_time); if (k < 0 || k >= vt->values.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(vt->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && vt->values[k].time != p_time)) { return -1; } return k; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); int k = _find(mt->methods, p_time); if (k < 0 || k >= mt->methods.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(mt->methods[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && mt->methods[k].time != p_time)) { return -1; } return k; } break; case TYPE_BEZIER: { BezierTrack *bt = static_cast(t); int k = _find(bt->values, p_time); if (k < 0 || k >= bt->values.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(bt->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && bt->values[k].time != p_time)) { return -1; } return k; } break; case TYPE_AUDIO: { AudioTrack *at = static_cast(t); int k = _find(at->values, p_time); if (k < 0 || k >= at->values.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(at->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && at->values[k].time != p_time)) { return -1; } return k; } break; case TYPE_ANIMATION: { AnimationTrack *at = static_cast(t); int k = _find(at->values, p_time); if (k < 0 || k >= at->values.size()) { return -1; } if ((p_find_mode == FIND_MODE_APPROX && !Math::is_equal_approx(at->values[k].time, p_time)) || (p_find_mode == FIND_MODE_EXACT && at->values[k].time != p_time)) { return -1; } return k; } break; } return -1; } int Animation::track_insert_key(int p_track, double p_time, const Variant &p_key, real_t p_transition) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; int ret = -1; switch (t->type) { case TYPE_POSITION_3D: { ERR_FAIL_COND_V((p_key.get_type() != Variant::VECTOR3) && (p_key.get_type() != Variant::VECTOR3I), -1); ret = position_track_insert_key(p_track, p_time, p_key); track_set_key_transition(p_track, ret, p_transition); } break; case TYPE_ROTATION_3D: { ERR_FAIL_COND_V((p_key.get_type() != Variant::QUATERNION) && (p_key.get_type() != Variant::BASIS), -1); ret = rotation_track_insert_key(p_track, p_time, p_key); track_set_key_transition(p_track, ret, p_transition); } break; case TYPE_SCALE_3D: { ERR_FAIL_COND_V((p_key.get_type() != Variant::VECTOR3) && (p_key.get_type() != Variant::VECTOR3I), -1); ret = scale_track_insert_key(p_track, p_time, p_key); track_set_key_transition(p_track, ret, p_transition); } break; case TYPE_BLEND_SHAPE: { ERR_FAIL_COND_V((p_key.get_type() != Variant::FLOAT) && (p_key.get_type() != Variant::INT), -1); ret = blend_shape_track_insert_key(p_track, p_time, p_key); track_set_key_transition(p_track, ret, p_transition); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); TKey k; k.time = p_time; k.transition = p_transition; k.value = p_key; ret = _insert(p_time, vt->values, k); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_COND_V(p_key.get_type() != Variant::DICTIONARY, -1); Dictionary d = p_key; ERR_FAIL_COND_V(!d.has("method") || (d["method"].get_type() != Variant::STRING_NAME && d["method"].get_type() != Variant::STRING), -1); ERR_FAIL_COND_V(!d.has("args") || !d["args"].is_array(), -1); MethodKey k; k.time = p_time; k.transition = p_transition; k.method = d["method"]; k.params = d["args"]; ret = _insert(p_time, mt->methods, k); } break; case TYPE_BEZIER: { BezierTrack *bt = static_cast(t); Array arr = p_key; ERR_FAIL_COND_V(arr.size() != 5, -1); TKey k; k.time = p_time; k.value.value = arr[0]; k.value.in_handle.x = arr[1]; k.value.in_handle.y = arr[2]; k.value.out_handle.x = arr[3]; k.value.out_handle.y = arr[4]; ret = _insert(p_time, bt->values, k); Vector key_neighborhood; key_neighborhood.push_back(ret); if (ret > 0) { key_neighborhood.push_back(ret - 1); } if (ret < track_get_key_count(p_track) - 1) { key_neighborhood.push_back(ret + 1); } } break; case TYPE_AUDIO: { AudioTrack *at = static_cast(t); Dictionary k = p_key; ERR_FAIL_COND_V(!k.has("start_offset"), -1); ERR_FAIL_COND_V(!k.has("end_offset"), -1); ERR_FAIL_COND_V(!k.has("stream"), -1); TKey ak; ak.time = p_time; ak.value.start_offset = k["start_offset"]; ak.value.end_offset = k["end_offset"]; ak.value.stream = k["stream"]; ret = _insert(p_time, at->values, ak); } break; case TYPE_ANIMATION: { AnimationTrack *at = static_cast(t); TKey ak; ak.time = p_time; ak.value = p_key; ret = _insert(p_time, at->values, ak); } break; } emit_changed(); return ret; } int Animation::track_get_key_count(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { return _get_compressed_key_count(tt->compressed_track); } return tt->positions.size(); } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { return _get_compressed_key_count(rt->compressed_track); } return rt->rotations.size(); } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { return _get_compressed_key_count(st->compressed_track); } return st->scales.size(); } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { return _get_compressed_key_count(bst->compressed_track); } return bst->blend_shapes.size(); } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); return vt->values.size(); } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); return mt->methods.size(); } break; case TYPE_BEZIER: { BezierTrack *bt = static_cast(t); return bt->values.size(); } break; case TYPE_AUDIO: { AudioTrack *at = static_cast(t); return at->values.size(); } break; case TYPE_ANIMATION: { AnimationTrack *at = static_cast(t); return at->values.size(); } break; } ERR_FAIL_V(-1); } Variant Animation::track_get_key_value(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Variant()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { Vector3 value; position_track_get_key(p_track, p_key_idx, &value); return value; } break; case TYPE_ROTATION_3D: { Quaternion value; rotation_track_get_key(p_track, p_key_idx, &value); return value; } break; case TYPE_SCALE_3D: { Vector3 value; scale_track_get_key(p_track, p_key_idx, &value); return value; } break; case TYPE_BLEND_SHAPE: { float value; blend_shape_track_get_key(p_track, p_key_idx, &value); return value; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), Variant()); return vt->values[p_key_idx].value; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), Variant()); Dictionary d; d["method"] = mt->methods[p_key_idx].method; d["args"] = mt->methods[p_key_idx].params; return d; } break; case TYPE_BEZIER: { BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, bt->values.size(), Variant()); Array arr; arr.resize(5); arr[0] = bt->values[p_key_idx].value.value; arr[1] = bt->values[p_key_idx].value.in_handle.x; arr[2] = bt->values[p_key_idx].value.in_handle.y; arr[3] = bt->values[p_key_idx].value.out_handle.x; arr[4] = bt->values[p_key_idx].value.out_handle.y; return arr; } break; case TYPE_AUDIO: { AudioTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), Variant()); Dictionary k; k["start_offset"] = at->values[p_key_idx].value.start_offset; k["end_offset"] = at->values[p_key_idx].value.end_offset; k["stream"] = at->values[p_key_idx].value.stream; return k; } break; case TYPE_ANIMATION: { AnimationTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), Variant()); return at->values[p_key_idx].value; } break; } ERR_FAIL_V(Variant()); } double Animation::track_get_key_time(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { Vector3i value; double time; bool fetch_compressed_success = _fetch_compressed_by_index<3>(tt->compressed_track, p_key_idx, value, time); ERR_FAIL_COND_V(!fetch_compressed_success, false); return time; } ERR_FAIL_INDEX_V(p_key_idx, tt->positions.size(), -1); return tt->positions[p_key_idx].time; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { Vector3i value; double time; bool fetch_compressed_success = _fetch_compressed_by_index<3>(rt->compressed_track, p_key_idx, value, time); ERR_FAIL_COND_V(!fetch_compressed_success, false); return time; } ERR_FAIL_INDEX_V(p_key_idx, rt->rotations.size(), -1); return rt->rotations[p_key_idx].time; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { Vector3i value; double time; bool fetch_compressed_success = _fetch_compressed_by_index<3>(st->compressed_track, p_key_idx, value, time); ERR_FAIL_COND_V(!fetch_compressed_success, false); return time; } ERR_FAIL_INDEX_V(p_key_idx, st->scales.size(), -1); return st->scales[p_key_idx].time; } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { Vector3i value; double time; bool fetch_compressed_success = _fetch_compressed_by_index<1>(bst->compressed_track, p_key_idx, value, time); ERR_FAIL_COND_V(!fetch_compressed_success, false); return time; } ERR_FAIL_INDEX_V(p_key_idx, bst->blend_shapes.size(), -1); return bst->blend_shapes[p_key_idx].time; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1); return vt->values[p_key_idx].time; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1); return mt->methods[p_key_idx].time; } break; case TYPE_BEZIER: { BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, bt->values.size(), -1); return bt->values[p_key_idx].time; } break; case TYPE_AUDIO: { AudioTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), -1); return at->values[p_key_idx].time; } break; case TYPE_ANIMATION: { AnimationTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, at->values.size(), -1); return at->values[p_key_idx].time; } break; } ERR_FAIL_V(-1); } void Animation::track_set_key_time(int p_track, int p_key_idx, double p_time) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); ERR_FAIL_COND(tt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, tt->positions.size()); TKey key = tt->positions[p_key_idx]; key.time = p_time; tt->positions.remove_at(p_key_idx); _insert(p_time, tt->positions, key); return; } case TYPE_ROTATION_3D: { RotationTrack *tt = static_cast(t); ERR_FAIL_COND(tt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, tt->rotations.size()); TKey key = tt->rotations[p_key_idx]; key.time = p_time; tt->rotations.remove_at(p_key_idx); _insert(p_time, tt->rotations, key); return; } case TYPE_SCALE_3D: { ScaleTrack *tt = static_cast(t); ERR_FAIL_COND(tt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, tt->scales.size()); TKey key = tt->scales[p_key_idx]; key.time = p_time; tt->scales.remove_at(p_key_idx); _insert(p_time, tt->scales, key); return; } case TYPE_BLEND_SHAPE: { BlendShapeTrack *tt = static_cast(t); ERR_FAIL_COND(tt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, tt->blend_shapes.size()); TKey key = tt->blend_shapes[p_key_idx]; key.time = p_time; tt->blend_shapes.remove_at(p_key_idx); _insert(p_time, tt->blend_shapes, key); return; } case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, vt->values.size()); TKey key = vt->values[p_key_idx]; key.time = p_time; vt->values.remove_at(p_key_idx); _insert(p_time, vt->values, key); return; } case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, mt->methods.size()); MethodKey key = mt->methods[p_key_idx]; key.time = p_time; mt->methods.remove_at(p_key_idx); _insert(p_time, mt->methods, key); return; } case TYPE_BEZIER: { BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, bt->values.size()); TKey key = bt->values[p_key_idx]; key.time = p_time; bt->values.remove_at(p_key_idx); _insert(p_time, bt->values, key); return; } case TYPE_AUDIO: { AudioTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key_idx, at->values.size()); TKey key = at->values[p_key_idx]; key.time = p_time; at->values.remove_at(p_key_idx); _insert(p_time, at->values, key); return; } case TYPE_ANIMATION: { AnimationTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key_idx, at->values.size()); TKey key = at->values[p_key_idx]; key.time = p_time; at->values.remove_at(p_key_idx); _insert(p_time, at->values, key); return; } } ERR_FAIL(); } real_t Animation::track_get_key_transition(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { return 1.0; } ERR_FAIL_INDEX_V(p_key_idx, tt->positions.size(), -1); return tt->positions[p_key_idx].transition; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { return 1.0; } ERR_FAIL_INDEX_V(p_key_idx, rt->rotations.size(), -1); return rt->rotations[p_key_idx].transition; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { return 1.0; } ERR_FAIL_INDEX_V(p_key_idx, st->scales.size(), -1); return st->scales[p_key_idx].transition; } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { return 1.0; } ERR_FAIL_INDEX_V(p_key_idx, bst->blend_shapes.size(), -1); return bst->blend_shapes[p_key_idx].transition; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, vt->values.size(), -1); return vt->values[p_key_idx].transition; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, mt->methods.size(), -1); return mt->methods[p_key_idx].transition; } break; case TYPE_BEZIER: { return 1; //bezier does not really use transitions } break; case TYPE_AUDIO: { return 1; //audio does not really use transitions } break; case TYPE_ANIMATION: { return 1; //animation does not really use transitions } break; } ERR_FAIL_V(0); } bool Animation::track_is_compressed(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), false); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); return tt->compressed_track >= 0; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); return rt->compressed_track >= 0; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); return st->compressed_track >= 0; } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); return bst->compressed_track >= 0; } break; default: { return false; // Animation does not really use transitions. } break; } } void Animation::track_set_key_value(int p_track, int p_key_idx, const Variant &p_value) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { ERR_FAIL_COND((p_value.get_type() != Variant::VECTOR3) && (p_value.get_type() != Variant::VECTOR3I)); PositionTrack *tt = static_cast(t); ERR_FAIL_COND(tt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, tt->positions.size()); tt->positions.write[p_key_idx].value = p_value; } break; case TYPE_ROTATION_3D: { ERR_FAIL_COND((p_value.get_type() != Variant::QUATERNION) && (p_value.get_type() != Variant::BASIS)); RotationTrack *rt = static_cast(t); ERR_FAIL_COND(rt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, rt->rotations.size()); rt->rotations.write[p_key_idx].value = p_value; } break; case TYPE_SCALE_3D: { ERR_FAIL_COND((p_value.get_type() != Variant::VECTOR3) && (p_value.get_type() != Variant::VECTOR3I)); ScaleTrack *st = static_cast(t); ERR_FAIL_COND(st->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, st->scales.size()); st->scales.write[p_key_idx].value = p_value; } break; case TYPE_BLEND_SHAPE: { ERR_FAIL_COND((p_value.get_type() != Variant::FLOAT) && (p_value.get_type() != Variant::INT)); BlendShapeTrack *bst = static_cast(t); ERR_FAIL_COND(bst->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, bst->blend_shapes.size()); bst->blend_shapes.write[p_key_idx].value = p_value; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, vt->values.size()); vt->values.write[p_key_idx].value = p_value; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, mt->methods.size()); Dictionary d = p_value; if (d.has("method")) { mt->methods.write[p_key_idx].method = d["method"]; } if (d.has("args")) { mt->methods.write[p_key_idx].params = d["args"]; } } break; case TYPE_BEZIER: { BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, bt->values.size()); Array arr = p_value; ERR_FAIL_COND(arr.size() != 5); bt->values.write[p_key_idx].value.value = arr[0]; bt->values.write[p_key_idx].value.in_handle.x = arr[1]; bt->values.write[p_key_idx].value.in_handle.y = arr[2]; bt->values.write[p_key_idx].value.out_handle.x = arr[3]; bt->values.write[p_key_idx].value.out_handle.y = arr[4]; } break; case TYPE_AUDIO: { AudioTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key_idx, at->values.size()); Dictionary k = p_value; ERR_FAIL_COND(!k.has("start_offset")); ERR_FAIL_COND(!k.has("end_offset")); ERR_FAIL_COND(!k.has("stream")); at->values.write[p_key_idx].value.start_offset = k["start_offset"]; at->values.write[p_key_idx].value.end_offset = k["end_offset"]; at->values.write[p_key_idx].value.stream = k["stream"]; } break; case TYPE_ANIMATION: { AnimationTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key_idx, at->values.size()); at->values.write[p_key_idx].value = p_value; } break; } emit_changed(); } void Animation::track_set_key_transition(int p_track, int p_key_idx, real_t p_transition) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); ERR_FAIL_COND(tt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, tt->positions.size()); tt->positions.write[p_key_idx].transition = p_transition; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); ERR_FAIL_COND(rt->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, rt->rotations.size()); rt->rotations.write[p_key_idx].transition = p_transition; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); ERR_FAIL_COND(st->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, st->scales.size()); st->scales.write[p_key_idx].transition = p_transition; } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); ERR_FAIL_COND(bst->compressed_track >= 0); ERR_FAIL_INDEX(p_key_idx, bst->blend_shapes.size()); bst->blend_shapes.write[p_key_idx].transition = p_transition; } break; case TYPE_VALUE: { ValueTrack *vt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, vt->values.size()); vt->values.write[p_key_idx].transition = p_transition; } break; case TYPE_METHOD: { MethodTrack *mt = static_cast(t); ERR_FAIL_INDEX(p_key_idx, mt->methods.size()); mt->methods.write[p_key_idx].transition = p_transition; } break; case TYPE_BEZIER: case TYPE_AUDIO: case TYPE_ANIMATION: { // they don't use transition } break; } emit_changed(); } template int Animation::_find(const Vector &p_keys, double p_time, bool p_backward) const { int len = p_keys.size(); if (len == 0) { return -2; } int low = 0; int high = len - 1; int middle = 0; #ifdef DEBUG_ENABLED if (low > high) { ERR_PRINT("low > high, this may be a bug"); } #endif const K *keys = &p_keys[0]; while (low <= high) { middle = (low + high) / 2; if (Math::is_equal_approx(p_time, (double)keys[middle].time)) { //match return middle; } else if (p_time < keys[middle].time) { high = middle - 1; //search low end of array } else { low = middle + 1; //search high end of array } } if (!p_backward) { if (keys[middle].time > p_time) { middle--; } } else { if (keys[middle].time < p_time) { middle++; } } return middle; } // Linear interpolation for anytype. Vector3 Animation::_interpolate(const Vector3 &p_a, const Vector3 &p_b, real_t p_c) const { return p_a.lerp(p_b, p_c); } Quaternion Animation::_interpolate(const Quaternion &p_a, const Quaternion &p_b, real_t p_c) const { return p_a.slerp(p_b, p_c); } Variant Animation::_interpolate(const Variant &p_a, const Variant &p_b, real_t p_c) const { return interpolate_variant(p_a, p_b, p_c); } real_t Animation::_interpolate(const real_t &p_a, const real_t &p_b, real_t p_c) const { return Math::lerp(p_a, p_b, p_c); } Variant Animation::_interpolate_angle(const Variant &p_a, const Variant &p_b, real_t p_c) const { Variant::Type type_a = p_a.get_type(); Variant::Type type_b = p_b.get_type(); uint32_t vformat = 1 << type_a; vformat |= 1 << type_b; if (vformat == ((1 << Variant::INT) | (1 << Variant::FLOAT)) || vformat == (1 << Variant::FLOAT)) { real_t a = p_a; real_t b = p_b; return Math::fposmod((float)Math::lerp_angle(a, b, p_c), (float)Math_TAU); } return _interpolate(p_a, p_b, p_c); } // Cubic interpolation for anytype. Vector3 Animation::_cubic_interpolate_in_time(const Vector3 &p_pre_a, const Vector3 &p_a, const Vector3 &p_b, const Vector3 &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { return p_a.cubic_interpolate_in_time(p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t); } Quaternion Animation::_cubic_interpolate_in_time(const Quaternion &p_pre_a, const Quaternion &p_a, const Quaternion &p_b, const Quaternion &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { return p_a.spherical_cubic_interpolate_in_time(p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t); } Variant Animation::_cubic_interpolate_in_time(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { return cubic_interpolate_in_time_variant(p_pre_a, p_a, p_b, p_post_b, p_c, p_pre_a_t, p_b_t, p_post_b_t); } real_t Animation::_cubic_interpolate_in_time(const real_t &p_pre_a, const real_t &p_a, const real_t &p_b, const real_t &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { return Math::cubic_interpolate_in_time(p_a, p_b, p_pre_a, p_post_b, p_c, p_b_t, p_pre_a_t, p_post_b_t); } Variant Animation::_cubic_interpolate_angle_in_time(const Variant &p_pre_a, const Variant &p_a, const Variant &p_b, const Variant &p_post_b, real_t p_c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t) const { Variant::Type type_a = p_a.get_type(); Variant::Type type_b = p_b.get_type(); Variant::Type type_pa = p_pre_a.get_type(); Variant::Type type_pb = p_post_b.get_type(); uint32_t vformat = 1 << type_a; vformat |= 1 << type_b; vformat |= 1 << type_pa; vformat |= 1 << type_pb; if (vformat == ((1 << Variant::INT) | (1 << Variant::FLOAT)) || vformat == (1 << Variant::FLOAT)) { real_t a = p_a; real_t b = p_b; real_t pa = p_pre_a; real_t pb = p_post_b; return Math::fposmod((float)Math::cubic_interpolate_angle_in_time(a, b, pa, pb, p_c, p_b_t, p_pre_a_t, p_post_b_t), (float)Math_TAU); } return _cubic_interpolate_in_time(p_pre_a, p_a, p_b, p_post_b, p_c, p_pre_a_t, p_b_t, p_post_b_t); } template T Animation::_interpolate(const Vector> &p_keys, double p_time, InterpolationType p_interp, bool p_loop_wrap, bool *p_ok, bool p_backward) const { int len = _find(p_keys, length) + 1; // try to find last key (there may be more past the end) if (len <= 0) { // (-1 or -2 returned originally) (plus one above) // meaning no keys, or only key time is larger than length if (p_ok) { *p_ok = false; } return T(); } else if (len == 1) { // one key found (0+1), return it if (p_ok) { *p_ok = true; } return p_keys[0].value; } int idx = _find(p_keys, p_time, p_backward); ERR_FAIL_COND_V(idx == -2, T()); int maxi = len - 1; bool is_start_edge = idx == -1; bool is_end_edge = p_backward ? idx == 0 : idx >= maxi; real_t c = 0.0; // Prepare for all cases of interpolation. real_t delta = 0.0; real_t from = 0.0; int pre = -1; int next = -1; int post = -1; real_t pre_t = 0.0; real_t to_t = 0.0; real_t post_t = 0.0; bool use_cubic = p_interp == INTERPOLATION_CUBIC || p_interp == INTERPOLATION_CUBIC_ANGLE; if (!p_loop_wrap || loop_mode == LOOP_NONE) { if (is_start_edge) { idx = p_backward ? maxi : 0; } next = CLAMP(idx + (p_backward ? -1 : 1), 0, maxi); if (use_cubic) { pre = CLAMP(idx + (p_backward ? 1 : -1), 0, maxi); post = CLAMP(idx + (p_backward ? -2 : 2), 0, maxi); } } else if (loop_mode == LOOP_LINEAR) { if (is_start_edge) { idx = p_backward ? 0 : maxi; } next = Math::posmod(idx + (p_backward ? -1 : 1), len); if (use_cubic) { pre = Math::posmod(idx + (p_backward ? 1 : -1), len); post = Math::posmod(idx + (p_backward ? -2 : 2), len); } if (is_start_edge) { if (!p_backward) { real_t endtime = (length - p_keys[idx].time); if (endtime < 0) { // may be keys past the end endtime = 0; } delta = endtime + p_keys[next].time; from = endtime + p_time; } else { real_t endtime = p_keys[idx].time; if (endtime > length) { // may be keys past the end endtime = length; } delta = endtime + length - p_keys[next].time; from = endtime + length - p_time; } } else if (is_end_edge) { if (!p_backward) { delta = (length - p_keys[idx].time) + p_keys[next].time; from = p_time - p_keys[idx].time; } else { delta = p_keys[idx].time + (length - p_keys[next].time); from = (length - p_time) - (length - p_keys[idx].time); } } } else { if (is_start_edge) { idx = p_backward ? len : -1; } next = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -1 : 1)) + 0.5f, (float)len) - 0.5f); if (use_cubic) { pre = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? 1 : -1)) + 0.5f, (float)len) - 0.5f); post = (int)Math::round(Math::pingpong((float)(idx + (p_backward ? -2 : 2)) + 0.5f, (float)len) - 0.5f); } idx = (int)Math::round(Math::pingpong((float)idx + 0.5f, (float)len) - 0.5f); if (is_start_edge) { if (!p_backward) { real_t endtime = p_keys[idx].time; if (endtime < 0) { // may be keys past the end endtime = 0; } delta = endtime + p_keys[next].time; from = endtime + p_time; } else { real_t endtime = length - p_keys[idx].time; if (endtime > length) { // may be keys past the end endtime = length; } delta = endtime + length - p_keys[next].time; from = endtime + length - p_time; } } else if (is_end_edge) { if (!p_backward) { delta = length * 2.0 - p_keys[idx].time - p_keys[next].time; from = p_time - p_keys[idx].time; } else { delta = p_keys[idx].time + p_keys[next].time; from = (length - p_time) - (length - p_keys[idx].time); } } } if (!is_start_edge && !is_end_edge) { if (!p_backward) { delta = p_keys[next].time - p_keys[idx].time; from = p_time - p_keys[idx].time; } else { delta = (length - p_keys[next].time) - (length - p_keys[idx].time); from = (length - p_time) - (length - p_keys[idx].time); } } if (Math::is_zero_approx(delta)) { c = 0; } else { c = from / delta; } if (p_ok) { *p_ok = true; } real_t tr = p_keys[idx].transition; if (tr == 0) { // Don't interpolate if not needed. return p_keys[idx].value; } if (tr != 1.0) { c = Math::ease(c, tr); } switch (p_interp) { case INTERPOLATION_NEAREST: { return p_keys[idx].value; } break; case INTERPOLATION_LINEAR: { return _interpolate(p_keys[idx].value, p_keys[next].value, c); } break; case INTERPOLATION_LINEAR_ANGLE: { return _interpolate_angle(p_keys[idx].value, p_keys[next].value, c); } break; case INTERPOLATION_CUBIC: case INTERPOLATION_CUBIC_ANGLE: { if (!p_loop_wrap || loop_mode == LOOP_NONE) { pre_t = p_keys[pre].time - p_keys[idx].time; to_t = p_keys[next].time - p_keys[idx].time; post_t = p_keys[post].time - p_keys[idx].time; } else if (loop_mode == LOOP_LINEAR) { pre_t = pre > idx ? -length + p_keys[pre].time - p_keys[idx].time : p_keys[pre].time - p_keys[idx].time; to_t = next < idx ? length + p_keys[next].time - p_keys[idx].time : p_keys[next].time - p_keys[idx].time; post_t = next < idx || post <= idx ? length + p_keys[post].time - p_keys[idx].time : p_keys[post].time - p_keys[idx].time; } else { pre_t = p_keys[pre].time - p_keys[idx].time; to_t = p_keys[next].time - p_keys[idx].time; post_t = p_keys[post].time - p_keys[idx].time; if ((pre > idx && idx == next && post < next) || (pre < idx && idx == next && post > next)) { pre_t = p_keys[idx].time - p_keys[pre].time; } else if (pre == idx) { pre_t = idx < next ? -p_keys[idx].time * 2.0 : (length - p_keys[idx].time) * 2.0; } if (idx == next) { to_t = pre < idx ? (length - p_keys[idx].time) * 2.0 : -p_keys[idx].time * 2.0; post_t = p_keys[next].time - p_keys[post].time + to_t; } else if (next == post) { post_t = idx < next ? (length - p_keys[next].time) * 2.0 + to_t : -p_keys[next].time * 2.0 + to_t; } } if (p_interp == INTERPOLATION_CUBIC_ANGLE) { return _cubic_interpolate_angle_in_time( p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c, pre_t, to_t, post_t); } return _cubic_interpolate_in_time( p_keys[pre].value, p_keys[idx].value, p_keys[next].value, p_keys[post].value, c, pre_t, to_t, post_t); } break; default: return p_keys[idx].value; } // do a barrel roll } Variant Animation::value_track_interpolate(int p_track, double p_time) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), 0); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_VALUE, Variant()); ValueTrack *vt = static_cast(t); bool ok = false; Variant res = _interpolate(vt->values, p_time, (vt->update_mode == UPDATE_CONTINUOUS || vt->update_mode == UPDATE_CAPTURE) ? vt->interpolation : INTERPOLATION_NEAREST, vt->loop_wrap, &ok); if (ok) { return res; } return Variant(); } void Animation::value_track_set_update_mode(int p_track, UpdateMode p_mode) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_VALUE); ERR_FAIL_INDEX((int)p_mode, 3); ValueTrack *vt = static_cast(t); vt->update_mode = p_mode; emit_changed(); } Animation::UpdateMode Animation::value_track_get_update_mode(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), UPDATE_CONTINUOUS); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_VALUE, UPDATE_CONTINUOUS); ValueTrack *vt = static_cast(t); return vt->update_mode; } template void Animation::_track_get_key_indices_in_range(const Vector &p_array, double from_time, double to_time, List *p_indices, bool p_is_backward) const { int len = p_array.size(); if (len == 0) { return; } int from = 0; int to = len - 1; if (!p_is_backward) { while (p_array[from].time < from_time || Math::is_equal_approx(p_array[from].time, from_time)) { from++; if (to < from) { return; } } while (p_array[to].time > to_time && !Math::is_equal_approx(p_array[to].time, to_time)) { to--; if (to < from) { return; } } } else { while (p_array[from].time < from_time && !Math::is_equal_approx(p_array[from].time, from_time)) { from++; if (to < from) { return; } } while (p_array[to].time > to_time || Math::is_equal_approx(p_array[to].time, to_time)) { to--; if (to < from) { return; } } } if (from == to) { p_indices->push_back(from); return; } if (!p_is_backward) { for (int i = from; i <= to; i++) { p_indices->push_back(i); } } else { for (int i = to; i >= from; i--) { p_indices->push_back(i); } } } void Animation::track_get_key_indices_in_range(int p_track, double p_time, double p_delta, List *p_indices, Animation::LoopedFlag p_looped_flag) const { ERR_FAIL_INDEX(p_track, tracks.size()); if (p_delta == 0) { return; // Prevent to get key continuously. } const Track *t = tracks[p_track]; double from_time = p_time - p_delta; double to_time = p_time; bool is_backward = false; if (from_time > to_time) { is_backward = true; SWAP(from_time, to_time); } switch (loop_mode) { case LOOP_NONE: { if (from_time < 0) { from_time = 0; } if (from_time > length) { from_time = length; } if (to_time < 0) { to_time = 0; } if (to_time > length) { to_time = length; } } break; case LOOP_LINEAR: { if (from_time > length || from_time < 0) { from_time = Math::fposmod(from_time, length); } if (to_time > length || to_time < 0) { to_time = Math::fposmod(to_time, length); } if (from_time > to_time) { // Handle loop by splitting. double anim_end = length + CMP_EPSILON; double anim_start = -CMP_EPSILON; switch (t->type) { case TYPE_POSITION_3D: { const PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(tt->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<3>(tt->compressed_track, 0, to_time, p_indices); } else { if (!is_backward) { _track_get_key_indices_in_range(tt->positions, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(tt->positions, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(tt->positions, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(tt->positions, from_time, anim_end, p_indices, is_backward); } } } break; case TYPE_ROTATION_3D: { const RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(rt->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<3>(rt->compressed_track, 0, to_time, p_indices); } else { if (!is_backward) { _track_get_key_indices_in_range(rt->rotations, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(rt->rotations, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(rt->rotations, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(rt->rotations, from_time, anim_end, p_indices, is_backward); } } } break; case TYPE_SCALE_3D: { const ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(st->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<3>(st->compressed_track, 0, to_time, p_indices); } else { if (!is_backward) { _track_get_key_indices_in_range(st->scales, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(st->scales, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(st->scales, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(st->scales, from_time, anim_end, p_indices, is_backward); } } } break; case TYPE_BLEND_SHAPE: { const BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { _get_compressed_key_indices_in_range<1>(bst->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<1>(bst->compressed_track, 0, to_time, p_indices); } else { if (!is_backward) { _track_get_key_indices_in_range(bst->blend_shapes, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(bst->blend_shapes, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(bst->blend_shapes, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(bst->blend_shapes, from_time, anim_end, p_indices, is_backward); } } } break; case TYPE_VALUE: { const ValueTrack *vt = static_cast(t); if (!is_backward) { _track_get_key_indices_in_range(vt->values, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(vt->values, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(vt->values, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(vt->values, from_time, anim_end, p_indices, is_backward); } } break; case TYPE_METHOD: { const MethodTrack *mt = static_cast(t); if (!is_backward) { _track_get_key_indices_in_range(mt->methods, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(mt->methods, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(mt->methods, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(mt->methods, from_time, anim_end, p_indices, is_backward); } } break; case TYPE_BEZIER: { const BezierTrack *bz = static_cast(t); if (!is_backward) { _track_get_key_indices_in_range(bz->values, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(bz->values, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(bz->values, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(bz->values, from_time, anim_end, p_indices, is_backward); } } break; case TYPE_AUDIO: { const AudioTrack *ad = static_cast(t); if (!is_backward) { _track_get_key_indices_in_range(ad->values, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(ad->values, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(ad->values, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(ad->values, from_time, anim_end, p_indices, is_backward); } } break; case TYPE_ANIMATION: { const AnimationTrack *an = static_cast(t); if (!is_backward) { _track_get_key_indices_in_range(an->values, from_time, anim_end, p_indices, is_backward); _track_get_key_indices_in_range(an->values, anim_start, to_time, p_indices, is_backward); } else { _track_get_key_indices_in_range(an->values, anim_start, to_time, p_indices, is_backward); _track_get_key_indices_in_range(an->values, from_time, anim_end, p_indices, is_backward); } } break; } return; } // Not from_time > to_time but most recent of looping... if (p_looped_flag != Animation::LOOPED_FLAG_NONE) { if (!is_backward && Math::is_equal_approx(from_time, 0)) { int edge = track_find_key(p_track, 0, FIND_MODE_EXACT); if (edge >= 0) { p_indices->push_back(edge); } } else if (is_backward && Math::is_equal_approx(to_time, length)) { int edge = track_find_key(p_track, length, FIND_MODE_EXACT); if (edge >= 0) { p_indices->push_back(edge); } } } } break; case LOOP_PINGPONG: { if (from_time > length || from_time < 0) { from_time = Math::pingpong(from_time, length); } if (to_time > length || to_time < 0) { to_time = Math::pingpong(to_time, length); } if (p_looped_flag == Animation::LOOPED_FLAG_START) { // Handle loop by splitting. switch (t->type) { case TYPE_POSITION_3D: { const PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(tt->compressed_track, 0, from_time, p_indices); _get_compressed_key_indices_in_range<3>(tt->compressed_track, 0, to_time, p_indices); } else { _track_get_key_indices_in_range(tt->positions, 0, from_time, p_indices, true); _track_get_key_indices_in_range(tt->positions, 0, to_time, p_indices, false); } } break; case TYPE_ROTATION_3D: { const RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(rt->compressed_track, 0, from_time, p_indices); _get_compressed_key_indices_in_range<3>(rt->compressed_track, 0, to_time, p_indices); } else { _track_get_key_indices_in_range(rt->rotations, 0, from_time, p_indices, true); _track_get_key_indices_in_range(rt->rotations, 0, to_time, p_indices, false); } } break; case TYPE_SCALE_3D: { const ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(st->compressed_track, 0, from_time, p_indices); _get_compressed_key_indices_in_range<3>(st->compressed_track, 0, to_time, p_indices); } else { _track_get_key_indices_in_range(st->scales, 0, from_time, p_indices, true); _track_get_key_indices_in_range(st->scales, 0, to_time, p_indices, false); } } break; case TYPE_BLEND_SHAPE: { const BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { _get_compressed_key_indices_in_range<1>(bst->compressed_track, 0, from_time, p_indices); _get_compressed_key_indices_in_range<1>(bst->compressed_track, 0, to_time, p_indices); } else { _track_get_key_indices_in_range(bst->blend_shapes, 0, from_time, p_indices, true); _track_get_key_indices_in_range(bst->blend_shapes, 0, to_time, p_indices, false); } } break; case TYPE_VALUE: { const ValueTrack *vt = static_cast(t); _track_get_key_indices_in_range(vt->values, 0, from_time, p_indices, true); _track_get_key_indices_in_range(vt->values, 0, to_time, p_indices, false); } break; case TYPE_METHOD: { const MethodTrack *mt = static_cast(t); _track_get_key_indices_in_range(mt->methods, 0, from_time, p_indices, true); _track_get_key_indices_in_range(mt->methods, 0, to_time, p_indices, false); } break; case TYPE_BEZIER: { const BezierTrack *bz = static_cast(t); _track_get_key_indices_in_range(bz->values, 0, from_time, p_indices, true); _track_get_key_indices_in_range(bz->values, 0, to_time, p_indices, false); } break; case TYPE_AUDIO: { const AudioTrack *ad = static_cast(t); _track_get_key_indices_in_range(ad->values, 0, from_time, p_indices, true); _track_get_key_indices_in_range(ad->values, 0, to_time, p_indices, false); } break; case TYPE_ANIMATION: { const AnimationTrack *an = static_cast(t); _track_get_key_indices_in_range(an->values, 0, from_time, p_indices, true); _track_get_key_indices_in_range(an->values, 0, to_time, p_indices, false); } break; } return; } if (p_looped_flag == Animation::LOOPED_FLAG_END) { // Handle loop by splitting. switch (t->type) { case TYPE_POSITION_3D: { const PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(tt->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<3>(tt->compressed_track, to_time, length, p_indices); } else { _track_get_key_indices_in_range(tt->positions, from_time, length, p_indices, false); _track_get_key_indices_in_range(tt->positions, to_time, length, p_indices, true); } } break; case TYPE_ROTATION_3D: { const RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(rt->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<3>(rt->compressed_track, to_time, length, p_indices); } else { _track_get_key_indices_in_range(rt->rotations, from_time, length, p_indices, false); _track_get_key_indices_in_range(rt->rotations, to_time, length, p_indices, true); } } break; case TYPE_SCALE_3D: { const ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(st->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<3>(st->compressed_track, to_time, length, p_indices); } else { _track_get_key_indices_in_range(st->scales, from_time, length, p_indices, false); _track_get_key_indices_in_range(st->scales, to_time, length, p_indices, true); } } break; case TYPE_BLEND_SHAPE: { const BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { _get_compressed_key_indices_in_range<1>(bst->compressed_track, from_time, length, p_indices); _get_compressed_key_indices_in_range<1>(bst->compressed_track, to_time, length, p_indices); } else { _track_get_key_indices_in_range(bst->blend_shapes, from_time, length, p_indices, false); _track_get_key_indices_in_range(bst->blend_shapes, to_time, length, p_indices, true); } } break; case TYPE_VALUE: { const ValueTrack *vt = static_cast(t); _track_get_key_indices_in_range(vt->values, from_time, length, p_indices, false); _track_get_key_indices_in_range(vt->values, to_time, length, p_indices, true); } break; case TYPE_METHOD: { const MethodTrack *mt = static_cast(t); _track_get_key_indices_in_range(mt->methods, from_time, length, p_indices, false); _track_get_key_indices_in_range(mt->methods, to_time, length, p_indices, true); } break; case TYPE_BEZIER: { const BezierTrack *bz = static_cast(t); _track_get_key_indices_in_range(bz->values, from_time, length, p_indices, false); _track_get_key_indices_in_range(bz->values, to_time, length, p_indices, true); } break; case TYPE_AUDIO: { const AudioTrack *ad = static_cast(t); _track_get_key_indices_in_range(ad->values, from_time, length, p_indices, false); _track_get_key_indices_in_range(ad->values, to_time, length, p_indices, true); } break; case TYPE_ANIMATION: { const AnimationTrack *an = static_cast(t); _track_get_key_indices_in_range(an->values, from_time, length, p_indices, false); _track_get_key_indices_in_range(an->values, to_time, length, p_indices, true); } break; } return; } // The edge will be pingponged in the next frame and processed there, so let's ignore it now... if (!is_backward && Math::is_equal_approx(to_time, length)) { to_time -= CMP_EPSILON; } else if (is_backward && Math::is_equal_approx(from_time, 0)) { from_time += CMP_EPSILON; } } break; } switch (t->type) { case TYPE_POSITION_3D: { const PositionTrack *tt = static_cast(t); if (tt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(tt->compressed_track, from_time, to_time - from_time, p_indices); } else { _track_get_key_indices_in_range(tt->positions, from_time, to_time, p_indices, is_backward); } } break; case TYPE_ROTATION_3D: { const RotationTrack *rt = static_cast(t); if (rt->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(rt->compressed_track, from_time, to_time - from_time, p_indices); } else { _track_get_key_indices_in_range(rt->rotations, from_time, to_time, p_indices, is_backward); } } break; case TYPE_SCALE_3D: { const ScaleTrack *st = static_cast(t); if (st->compressed_track >= 0) { _get_compressed_key_indices_in_range<3>(st->compressed_track, from_time, to_time - from_time, p_indices); } else { _track_get_key_indices_in_range(st->scales, from_time, to_time, p_indices, is_backward); } } break; case TYPE_BLEND_SHAPE: { const BlendShapeTrack *bst = static_cast(t); if (bst->compressed_track >= 0) { _get_compressed_key_indices_in_range<1>(bst->compressed_track, from_time, to_time - from_time, p_indices); } else { _track_get_key_indices_in_range(bst->blend_shapes, from_time, to_time, p_indices, is_backward); } } break; case TYPE_VALUE: { const ValueTrack *vt = static_cast(t); _track_get_key_indices_in_range(vt->values, from_time, to_time, p_indices, is_backward); } break; case TYPE_METHOD: { const MethodTrack *mt = static_cast(t); _track_get_key_indices_in_range(mt->methods, from_time, to_time, p_indices, is_backward); } break; case TYPE_BEZIER: { const BezierTrack *bz = static_cast(t); _track_get_key_indices_in_range(bz->values, from_time, to_time, p_indices, is_backward); } break; case TYPE_AUDIO: { const AudioTrack *ad = static_cast(t); _track_get_key_indices_in_range(ad->values, from_time, to_time, p_indices, is_backward); } break; case TYPE_ANIMATION: { const AnimationTrack *an = static_cast(t); _track_get_key_indices_in_range(an->values, from_time, to_time, p_indices, is_backward); } break; } } Vector Animation::method_track_get_params(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector()); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_METHOD, Vector()); MethodTrack *pm = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), Vector()); const MethodKey &mk = pm->methods[p_key_idx]; return mk.params; } StringName Animation::method_track_get_name(int p_track, int p_key_idx) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), StringName()); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_METHOD, StringName()); MethodTrack *pm = static_cast(t); ERR_FAIL_INDEX_V(p_key_idx, pm->methods.size(), StringName()); return pm->methods[p_key_idx].method; } int Animation::bezier_track_insert_key(int p_track, double p_time, real_t p_value, const Vector2 &p_in_handle, const Vector2 &p_out_handle) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_BEZIER, -1); BezierTrack *bt = static_cast(t); TKey k; k.time = p_time; k.value.value = p_value; k.value.in_handle = p_in_handle; if (k.value.in_handle.x > 0) { k.value.in_handle.x = 0; } k.value.out_handle = p_out_handle; if (k.value.out_handle.x < 0) { k.value.out_handle.x = 0; } int key = _insert(p_time, bt->values, k); emit_changed(); return key; } void Animation::bezier_track_set_key_value(int p_track, int p_index, real_t p_value) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_BEZIER); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX(p_index, bt->values.size()); bt->values.write[p_index].value.value = p_value; emit_changed(); } void Animation::bezier_track_set_key_in_handle(int p_track, int p_index, const Vector2 &p_handle, real_t p_balanced_value_time_ratio) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_BEZIER); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX(p_index, bt->values.size()); Vector2 in_handle = p_handle; if (in_handle.x > 0) { in_handle.x = 0; } bt->values.write[p_index].value.in_handle = in_handle; #ifdef TOOLS_ENABLED if (bt->values[p_index].value.handle_mode == HANDLE_MODE_LINEAR) { bt->values.write[p_index].value.in_handle = Vector2(); bt->values.write[p_index].value.out_handle = Vector2(); } else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_BALANCED) { Transform2D xform; xform.set_scale(Vector2(1.0, 1.0 / p_balanced_value_time_ratio)); Vector2 vec_out = xform.xform(bt->values[p_index].value.out_handle); Vector2 vec_in = xform.xform(in_handle); bt->values.write[p_index].value.out_handle = xform.affine_inverse().xform(-vec_in.normalized() * vec_out.length()); } else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_MIRRORED) { bt->values.write[p_index].value.out_handle = -in_handle; } #endif // TOOLS_ENABLED emit_changed(); } void Animation::bezier_track_set_key_out_handle(int p_track, int p_index, const Vector2 &p_handle, real_t p_balanced_value_time_ratio) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_BEZIER); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX(p_index, bt->values.size()); Vector2 out_handle = p_handle; if (out_handle.x < 0) { out_handle.x = 0; } bt->values.write[p_index].value.out_handle = out_handle; #ifdef TOOLS_ENABLED if (bt->values[p_index].value.handle_mode == HANDLE_MODE_LINEAR) { bt->values.write[p_index].value.in_handle = Vector2(); bt->values.write[p_index].value.out_handle = Vector2(); } else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_BALANCED) { Transform2D xform; xform.set_scale(Vector2(1.0, 1.0 / p_balanced_value_time_ratio)); Vector2 vec_in = xform.xform(bt->values[p_index].value.in_handle); Vector2 vec_out = xform.xform(out_handle); bt->values.write[p_index].value.in_handle = xform.affine_inverse().xform(-vec_out.normalized() * vec_in.length()); } else if (bt->values[p_index].value.handle_mode == HANDLE_MODE_MIRRORED) { bt->values.write[p_index].value.in_handle = -out_handle; } #endif // TOOLS_ENABLED emit_changed(); } real_t Animation::bezier_track_get_key_value(int p_track, int p_index) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), 0); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_BEZIER, 0); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX_V(p_index, bt->values.size(), 0); return bt->values[p_index].value.value; } Vector2 Animation::bezier_track_get_key_in_handle(int p_track, int p_index) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector2()); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_BEZIER, Vector2()); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX_V(p_index, bt->values.size(), Vector2()); return bt->values[p_index].value.in_handle; } Vector2 Animation::bezier_track_get_key_out_handle(int p_track, int p_index) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Vector2()); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_BEZIER, Vector2()); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX_V(p_index, bt->values.size(), Vector2()); return bt->values[p_index].value.out_handle; } #ifdef TOOLS_ENABLED void Animation::bezier_track_set_key_handle_mode(int p_track, int p_index, HandleMode p_mode, HandleSetMode p_set_mode) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_BEZIER); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX(p_index, bt->values.size()); bt->values.write[p_index].value.handle_mode = p_mode; switch (p_mode) { case HANDLE_MODE_LINEAR: { bt->values.write[p_index].value.in_handle = Vector2(0, 0); bt->values.write[p_index].value.out_handle = Vector2(0, 0); } break; case HANDLE_MODE_BALANCED: case HANDLE_MODE_MIRRORED: { int prev_key = MAX(0, p_index - 1); int next_key = MIN(bt->values.size() - 1, p_index + 1); if (prev_key == next_key) { break; // Exists only one key. } real_t in_handle_x = 0; real_t in_handle_y = 0; real_t out_handle_x = 0; real_t out_handle_y = 0; if (p_mode == HANDLE_MODE_BALANCED) { // Note: // If p_set_mode == HANDLE_SET_MODE_NONE, I don't know if it should change the Tangent implicitly. // At the least, we need to avoid corrupting the handles when loading animation from the resource. // However, changes made by the Inspector do not go through the BezierEditor, // so if you change from Free to Balanced or Mirrored in Inspector, there is no guarantee that // it is Balanced or Mirrored until there is a handle operation. if (p_set_mode == HANDLE_SET_MODE_RESET) { real_t handle_length = 1.0 / 3.0; in_handle_x = (bt->values[prev_key].time - bt->values[p_index].time) * handle_length; in_handle_y = 0; out_handle_x = (bt->values[next_key].time - bt->values[p_index].time) * handle_length; out_handle_y = 0; bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y); bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y); } else if (p_set_mode == HANDLE_SET_MODE_AUTO) { real_t handle_length = 1.0 / 6.0; real_t tangent = (bt->values[next_key].value.value - bt->values[prev_key].value.value) / (bt->values[next_key].time - bt->values[prev_key].time); in_handle_x = (bt->values[prev_key].time - bt->values[p_index].time) * handle_length; in_handle_y = in_handle_x * tangent; out_handle_x = (bt->values[next_key].time - bt->values[p_index].time) * handle_length; out_handle_y = out_handle_x * tangent; bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y); bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y); } } else { real_t handle_length = 1.0 / 4.0; real_t prev_interval = Math::abs(bt->values[p_index].time - bt->values[prev_key].time); real_t next_interval = Math::abs(bt->values[p_index].time - bt->values[next_key].time); real_t min_time = 0; if (Math::is_zero_approx(prev_interval)) { min_time = next_interval; } else if (Math::is_zero_approx(next_interval)) { min_time = prev_interval; } else { min_time = MIN(prev_interval, next_interval); } if (p_set_mode == HANDLE_SET_MODE_RESET) { in_handle_x = -min_time * handle_length; in_handle_y = 0; out_handle_x = min_time * handle_length; out_handle_y = 0; bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y); bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y); } else if (p_set_mode == HANDLE_SET_MODE_AUTO) { real_t tangent = (bt->values[next_key].value.value - bt->values[prev_key].value.value) / min_time; in_handle_x = -min_time * handle_length; in_handle_y = in_handle_x * tangent; out_handle_x = min_time * handle_length; out_handle_y = out_handle_x * tangent; bt->values.write[p_index].value.in_handle = Vector2(in_handle_x, in_handle_y); bt->values.write[p_index].value.out_handle = Vector2(out_handle_x, out_handle_y); } } } break; default: { } break; } emit_changed(); } Animation::HandleMode Animation::bezier_track_get_key_handle_mode(int p_track, int p_index) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), HANDLE_MODE_FREE); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_BEZIER, HANDLE_MODE_FREE); BezierTrack *bt = static_cast(t); ERR_FAIL_INDEX_V(p_index, bt->values.size(), HANDLE_MODE_FREE); return bt->values[p_index].value.handle_mode; } #endif // TOOLS_ENABLED real_t Animation::bezier_track_interpolate(int p_track, double p_time) const { //this uses a different interpolation scheme ERR_FAIL_INDEX_V(p_track, tracks.size(), 0); Track *track = tracks[p_track]; ERR_FAIL_COND_V(track->type != TYPE_BEZIER, 0); BezierTrack *bt = static_cast(track); int len = _find(bt->values, length) + 1; // try to find last key (there may be more past the end) if (len <= 0) { // (-1 or -2 returned originally) (plus one above) return 0; } else if (len == 1) { // one key found (0+1), return it return bt->values[0].value.value; } int idx = _find(bt->values, p_time); ERR_FAIL_COND_V(idx == -2, 0); //there really is no looping interpolation on bezier if (idx < 0) { return bt->values[0].value.value; } if (idx >= bt->values.size() - 1) { return bt->values[bt->values.size() - 1].value.value; } double t = p_time - bt->values[idx].time; int iterations = 10; real_t duration = bt->values[idx + 1].time - bt->values[idx].time; // time duration between our two keyframes real_t low = 0.0; // 0% of the current animation segment real_t high = 1.0; // 100% of the current animation segment Vector2 start(0, bt->values[idx].value.value); Vector2 start_out = start + bt->values[idx].value.out_handle; Vector2 end(duration, bt->values[idx + 1].value.value); Vector2 end_in = end + bt->values[idx + 1].value.in_handle; //narrow high and low as much as possible for (int i = 0; i < iterations; i++) { real_t middle = (low + high) / 2; Vector2 interp = start.bezier_interpolate(start_out, end_in, end, middle); if (interp.x < t) { low = middle; } else { high = middle; } } //interpolate the result: Vector2 low_pos = start.bezier_interpolate(start_out, end_in, end, low); Vector2 high_pos = start.bezier_interpolate(start_out, end_in, end, high); real_t c = (t - low_pos.x) / (high_pos.x - low_pos.x); return low_pos.lerp(high_pos, c).y; } int Animation::audio_track_insert_key(int p_track, double p_time, const Ref &p_stream, real_t p_start_offset, real_t p_end_offset) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_AUDIO, -1); AudioTrack *at = static_cast(t); TKey k; k.time = p_time; k.value.stream = p_stream; k.value.start_offset = p_start_offset; if (k.value.start_offset < 0) { k.value.start_offset = 0; } k.value.end_offset = p_end_offset; if (k.value.end_offset < 0) { k.value.end_offset = 0; } int key = _insert(p_time, at->values, k); emit_changed(); return key; } void Animation::audio_track_set_key_stream(int p_track, int p_key, const Ref &p_stream) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_AUDIO); AudioTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key, at->values.size()); at->values.write[p_key].value.stream = p_stream; emit_changed(); } void Animation::audio_track_set_key_start_offset(int p_track, int p_key, real_t p_offset) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_AUDIO); AudioTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key, at->values.size()); if (p_offset < 0) { p_offset = 0; } at->values.write[p_key].value.start_offset = p_offset; emit_changed(); } void Animation::audio_track_set_key_end_offset(int p_track, int p_key, real_t p_offset) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_AUDIO); AudioTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key, at->values.size()); if (p_offset < 0) { p_offset = 0; } at->values.write[p_key].value.end_offset = p_offset; emit_changed(); } Ref Animation::audio_track_get_key_stream(int p_track, int p_key) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), Ref()); const Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_AUDIO, Ref()); const AudioTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key, at->values.size(), Ref()); return at->values[p_key].value.stream; } real_t Animation::audio_track_get_key_start_offset(int p_track, int p_key) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), 0); const Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_AUDIO, 0); const AudioTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key, at->values.size(), 0); return at->values[p_key].value.start_offset; } real_t Animation::audio_track_get_key_end_offset(int p_track, int p_key) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), 0); const Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_AUDIO, 0); const AudioTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key, at->values.size(), 0); return at->values[p_key].value.end_offset; } void Animation::audio_track_set_use_blend(int p_track, bool p_enable) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_AUDIO); AudioTrack *at = static_cast(t); at->use_blend = p_enable; emit_changed(); } bool Animation::audio_track_is_use_blend(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), false); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_AUDIO, false); AudioTrack *at = static_cast(t); return at->use_blend; } // int Animation::animation_track_insert_key(int p_track, double p_time, const StringName &p_animation) { ERR_FAIL_INDEX_V(p_track, tracks.size(), -1); Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_ANIMATION, -1); AnimationTrack *at = static_cast(t); TKey k; k.time = p_time; k.value = p_animation; int key = _insert(p_time, at->values, k); emit_changed(); return key; } void Animation::animation_track_set_key_animation(int p_track, int p_key, const StringName &p_animation) { ERR_FAIL_INDEX(p_track, tracks.size()); Track *t = tracks[p_track]; ERR_FAIL_COND(t->type != TYPE_ANIMATION); AnimationTrack *at = static_cast(t); ERR_FAIL_INDEX(p_key, at->values.size()); at->values.write[p_key].value = p_animation; emit_changed(); } StringName Animation::animation_track_get_key_animation(int p_track, int p_key) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), StringName()); const Track *t = tracks[p_track]; ERR_FAIL_COND_V(t->type != TYPE_ANIMATION, StringName()); const AnimationTrack *at = static_cast(t); ERR_FAIL_INDEX_V(p_key, at->values.size(), StringName()); return at->values[p_key].value; } void Animation::set_length(real_t p_length) { if (p_length < ANIM_MIN_LENGTH) { p_length = ANIM_MIN_LENGTH; } length = p_length; emit_changed(); } real_t Animation::get_length() const { return length; } void Animation::set_loop_mode(Animation::LoopMode p_loop_mode) { loop_mode = p_loop_mode; emit_changed(); } Animation::LoopMode Animation::get_loop_mode() const { return loop_mode; } void Animation::track_set_imported(int p_track, bool p_imported) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->imported = p_imported; } bool Animation::track_is_imported(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), false); return tracks[p_track]->imported; } void Animation::track_set_enabled(int p_track, bool p_enabled) { ERR_FAIL_INDEX(p_track, tracks.size()); tracks[p_track]->enabled = p_enabled; emit_changed(); } bool Animation::track_is_enabled(int p_track) const { ERR_FAIL_INDEX_V(p_track, tracks.size(), false); return tracks[p_track]->enabled; } void Animation::track_move_up(int p_track) { if (p_track >= 0 && p_track < (tracks.size() - 1)) { SWAP(tracks.write[p_track], tracks.write[p_track + 1]); } emit_changed(); } void Animation::track_move_down(int p_track) { if (p_track > 0 && p_track < tracks.size()) { SWAP(tracks.write[p_track], tracks.write[p_track - 1]); } emit_changed(); } void Animation::track_move_to(int p_track, int p_to_index) { ERR_FAIL_INDEX(p_track, tracks.size()); ERR_FAIL_INDEX(p_to_index, tracks.size() + 1); if (p_track == p_to_index || p_track == p_to_index - 1) { return; } Track *track = tracks.get(p_track); tracks.remove_at(p_track); // Take into account that the position of the tracks that come after the one removed will change. tracks.insert(p_to_index > p_track ? p_to_index - 1 : p_to_index, track); emit_changed(); } void Animation::track_swap(int p_track, int p_with_track) { ERR_FAIL_INDEX(p_track, tracks.size()); ERR_FAIL_INDEX(p_with_track, tracks.size()); if (p_track == p_with_track) { return; } SWAP(tracks.write[p_track], tracks.write[p_with_track]); emit_changed(); } void Animation::set_step(real_t p_step) { step = p_step; emit_changed(); } real_t Animation::get_step() const { return step; } void Animation::copy_track(int p_track, Ref p_to_animation) { ERR_FAIL_COND(p_to_animation.is_null()); ERR_FAIL_INDEX(p_track, get_track_count()); int dst_track = p_to_animation->get_track_count(); p_to_animation->add_track(track_get_type(p_track)); p_to_animation->track_set_path(dst_track, track_get_path(p_track)); p_to_animation->track_set_imported(dst_track, track_is_imported(p_track)); p_to_animation->track_set_enabled(dst_track, track_is_enabled(p_track)); p_to_animation->track_set_interpolation_type(dst_track, track_get_interpolation_type(p_track)); p_to_animation->track_set_interpolation_loop_wrap(dst_track, track_get_interpolation_loop_wrap(p_track)); if (track_get_type(p_track) == TYPE_VALUE) { p_to_animation->value_track_set_update_mode(dst_track, value_track_get_update_mode(p_track)); } for (int i = 0; i < track_get_key_count(p_track); i++) { p_to_animation->track_insert_key(dst_track, track_get_key_time(p_track, i), track_get_key_value(p_track, i), track_get_key_transition(p_track, i)); } } void Animation::_bind_methods() { ClassDB::bind_method(D_METHOD("add_track", "type", "at_position"), &Animation::add_track, DEFVAL(-1)); ClassDB::bind_method(D_METHOD("remove_track", "track_idx"), &Animation::remove_track); ClassDB::bind_method(D_METHOD("get_track_count"), &Animation::get_track_count); ClassDB::bind_method(D_METHOD("track_get_type", "track_idx"), &Animation::track_get_type); ClassDB::bind_method(D_METHOD("track_get_path", "track_idx"), &Animation::track_get_path); ClassDB::bind_method(D_METHOD("track_set_path", "track_idx", "path"), &Animation::track_set_path); ClassDB::bind_method(D_METHOD("find_track", "path", "type"), &Animation::find_track); ClassDB::bind_method(D_METHOD("track_move_up", "track_idx"), &Animation::track_move_up); ClassDB::bind_method(D_METHOD("track_move_down", "track_idx"), &Animation::track_move_down); ClassDB::bind_method(D_METHOD("track_move_to", "track_idx", "to_idx"), &Animation::track_move_to); ClassDB::bind_method(D_METHOD("track_swap", "track_idx", "with_idx"), &Animation::track_swap); ClassDB::bind_method(D_METHOD("track_set_imported", "track_idx", "imported"), &Animation::track_set_imported); ClassDB::bind_method(D_METHOD("track_is_imported", "track_idx"), &Animation::track_is_imported); ClassDB::bind_method(D_METHOD("track_set_enabled", "track_idx", "enabled"), &Animation::track_set_enabled); ClassDB::bind_method(D_METHOD("track_is_enabled", "track_idx"), &Animation::track_is_enabled); ClassDB::bind_method(D_METHOD("position_track_insert_key", "track_idx", "time", "position"), &Animation::position_track_insert_key); ClassDB::bind_method(D_METHOD("rotation_track_insert_key", "track_idx", "time", "rotation"), &Animation::rotation_track_insert_key); ClassDB::bind_method(D_METHOD("scale_track_insert_key", "track_idx", "time", "scale"), &Animation::scale_track_insert_key); ClassDB::bind_method(D_METHOD("blend_shape_track_insert_key", "track_idx", "time", "amount"), &Animation::blend_shape_track_insert_key); ClassDB::bind_method(D_METHOD("position_track_interpolate", "track_idx", "time_sec"), &Animation::position_track_interpolate); ClassDB::bind_method(D_METHOD("rotation_track_interpolate", "track_idx", "time_sec"), &Animation::rotation_track_interpolate); ClassDB::bind_method(D_METHOD("scale_track_interpolate", "track_idx", "time_sec"), &Animation::scale_track_interpolate); ClassDB::bind_method(D_METHOD("blend_shape_track_interpolate", "track_idx", "time_sec"), &Animation::blend_shape_track_interpolate); ClassDB::bind_method(D_METHOD("track_insert_key", "track_idx", "time", "key", "transition"), &Animation::track_insert_key, DEFVAL(1)); ClassDB::bind_method(D_METHOD("track_remove_key", "track_idx", "key_idx"), &Animation::track_remove_key); ClassDB::bind_method(D_METHOD("track_remove_key_at_time", "track_idx", "time"), &Animation::track_remove_key_at_time); ClassDB::bind_method(D_METHOD("track_set_key_value", "track_idx", "key", "value"), &Animation::track_set_key_value); ClassDB::bind_method(D_METHOD("track_set_key_transition", "track_idx", "key_idx", "transition"), &Animation::track_set_key_transition); ClassDB::bind_method(D_METHOD("track_set_key_time", "track_idx", "key_idx", "time"), &Animation::track_set_key_time); ClassDB::bind_method(D_METHOD("track_get_key_transition", "track_idx", "key_idx"), &Animation::track_get_key_transition); ClassDB::bind_method(D_METHOD("track_get_key_count", "track_idx"), &Animation::track_get_key_count); ClassDB::bind_method(D_METHOD("track_get_key_value", "track_idx", "key_idx"), &Animation::track_get_key_value); ClassDB::bind_method(D_METHOD("track_get_key_time", "track_idx", "key_idx"), &Animation::track_get_key_time); ClassDB::bind_method(D_METHOD("track_find_key", "track_idx", "time", "find_mode"), &Animation::track_find_key, DEFVAL(FIND_MODE_NEAREST)); ClassDB::bind_method(D_METHOD("track_set_interpolation_type", "track_idx", "interpolation"), &Animation::track_set_interpolation_type); ClassDB::bind_method(D_METHOD("track_get_interpolation_type", "track_idx"), &Animation::track_get_interpolation_type); ClassDB::bind_method(D_METHOD("track_set_interpolation_loop_wrap", "track_idx", "interpolation"), &Animation::track_set_interpolation_loop_wrap); ClassDB::bind_method(D_METHOD("track_get_interpolation_loop_wrap", "track_idx"), &Animation::track_get_interpolation_loop_wrap); ClassDB::bind_method(D_METHOD("track_is_compressed", "track_idx"), &Animation::track_is_compressed); ClassDB::bind_method(D_METHOD("value_track_set_update_mode", "track_idx", "mode"), &Animation::value_track_set_update_mode); ClassDB::bind_method(D_METHOD("value_track_get_update_mode", "track_idx"), &Animation::value_track_get_update_mode); ClassDB::bind_method(D_METHOD("value_track_interpolate", "track_idx", "time_sec"), &Animation::value_track_interpolate); ClassDB::bind_method(D_METHOD("method_track_get_name", "track_idx", "key_idx"), &Animation::method_track_get_name); ClassDB::bind_method(D_METHOD("method_track_get_params", "track_idx", "key_idx"), &Animation::method_track_get_params); ClassDB::bind_method(D_METHOD("bezier_track_insert_key", "track_idx", "time", "value", "in_handle", "out_handle"), &Animation::bezier_track_insert_key, DEFVAL(Vector2()), DEFVAL(Vector2())); ClassDB::bind_method(D_METHOD("bezier_track_set_key_value", "track_idx", "key_idx", "value"), &Animation::bezier_track_set_key_value); ClassDB::bind_method(D_METHOD("bezier_track_set_key_in_handle", "track_idx", "key_idx", "in_handle", "balanced_value_time_ratio"), &Animation::bezier_track_set_key_in_handle, DEFVAL(1.0)); ClassDB::bind_method(D_METHOD("bezier_track_set_key_out_handle", "track_idx", "key_idx", "out_handle", "balanced_value_time_ratio"), &Animation::bezier_track_set_key_out_handle, DEFVAL(1.0)); ClassDB::bind_method(D_METHOD("bezier_track_get_key_value", "track_idx", "key_idx"), &Animation::bezier_track_get_key_value); ClassDB::bind_method(D_METHOD("bezier_track_get_key_in_handle", "track_idx", "key_idx"), &Animation::bezier_track_get_key_in_handle); ClassDB::bind_method(D_METHOD("bezier_track_get_key_out_handle", "track_idx", "key_idx"), &Animation::bezier_track_get_key_out_handle); ClassDB::bind_method(D_METHOD("bezier_track_interpolate", "track_idx", "time"), &Animation::bezier_track_interpolate); ClassDB::bind_method(D_METHOD("audio_track_insert_key", "track_idx", "time", "stream", "start_offset", "end_offset"), &Animation::audio_track_insert_key, DEFVAL(0), DEFVAL(0)); ClassDB::bind_method(D_METHOD("audio_track_set_key_stream", "track_idx", "key_idx", "stream"), &Animation::audio_track_set_key_stream); ClassDB::bind_method(D_METHOD("audio_track_set_key_start_offset", "track_idx", "key_idx", "offset"), &Animation::audio_track_set_key_start_offset); ClassDB::bind_method(D_METHOD("audio_track_set_key_end_offset", "track_idx", "key_idx", "offset"), &Animation::audio_track_set_key_end_offset); ClassDB::bind_method(D_METHOD("audio_track_get_key_stream", "track_idx", "key_idx"), &Animation::audio_track_get_key_stream); ClassDB::bind_method(D_METHOD("audio_track_get_key_start_offset", "track_idx", "key_idx"), &Animation::audio_track_get_key_start_offset); ClassDB::bind_method(D_METHOD("audio_track_get_key_end_offset", "track_idx", "key_idx"), &Animation::audio_track_get_key_end_offset); ClassDB::bind_method(D_METHOD("audio_track_set_use_blend", "track_idx", "enable"), &Animation::audio_track_set_use_blend); ClassDB::bind_method(D_METHOD("audio_track_is_use_blend", "track_idx"), &Animation::audio_track_is_use_blend); ClassDB::bind_method(D_METHOD("animation_track_insert_key", "track_idx", "time", "animation"), &Animation::animation_track_insert_key); ClassDB::bind_method(D_METHOD("animation_track_set_key_animation", "track_idx", "key_idx", "animation"), &Animation::animation_track_set_key_animation); ClassDB::bind_method(D_METHOD("animation_track_get_key_animation", "track_idx", "key_idx"), &Animation::animation_track_get_key_animation); ClassDB::bind_method(D_METHOD("set_length", "time_sec"), &Animation::set_length); ClassDB::bind_method(D_METHOD("get_length"), &Animation::get_length); ClassDB::bind_method(D_METHOD("set_loop_mode", "loop_mode"), &Animation::set_loop_mode); ClassDB::bind_method(D_METHOD("get_loop_mode"), &Animation::get_loop_mode); ClassDB::bind_method(D_METHOD("set_step", "size_sec"), &Animation::set_step); ClassDB::bind_method(D_METHOD("get_step"), &Animation::get_step); ClassDB::bind_method(D_METHOD("clear"), &Animation::clear); ClassDB::bind_method(D_METHOD("copy_track", "track_idx", "to_animation"), &Animation::copy_track); ClassDB::bind_method(D_METHOD("compress", "page_size", "fps", "split_tolerance"), &Animation::compress, DEFVAL(8192), DEFVAL(120), DEFVAL(4.0)); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "length", PROPERTY_HINT_RANGE, "0.001,99999,0.001,suffix:s"), "set_length", "get_length"); ADD_PROPERTY(PropertyInfo(Variant::INT, "loop_mode", PROPERTY_HINT_ENUM, "None,Linear,Ping-Pong"), "set_loop_mode", "get_loop_mode"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "step", PROPERTY_HINT_RANGE, "0,4096,0.001,suffix:s"), "set_step", "get_step"); BIND_ENUM_CONSTANT(TYPE_VALUE); BIND_ENUM_CONSTANT(TYPE_POSITION_3D); BIND_ENUM_CONSTANT(TYPE_ROTATION_3D); BIND_ENUM_CONSTANT(TYPE_SCALE_3D); BIND_ENUM_CONSTANT(TYPE_BLEND_SHAPE); BIND_ENUM_CONSTANT(TYPE_METHOD); BIND_ENUM_CONSTANT(TYPE_BEZIER); BIND_ENUM_CONSTANT(TYPE_AUDIO); BIND_ENUM_CONSTANT(TYPE_ANIMATION); BIND_ENUM_CONSTANT(INTERPOLATION_NEAREST); BIND_ENUM_CONSTANT(INTERPOLATION_LINEAR); BIND_ENUM_CONSTANT(INTERPOLATION_CUBIC); BIND_ENUM_CONSTANT(INTERPOLATION_LINEAR_ANGLE); BIND_ENUM_CONSTANT(INTERPOLATION_CUBIC_ANGLE); BIND_ENUM_CONSTANT(UPDATE_CONTINUOUS); BIND_ENUM_CONSTANT(UPDATE_DISCRETE); BIND_ENUM_CONSTANT(UPDATE_CAPTURE); BIND_ENUM_CONSTANT(LOOP_NONE); BIND_ENUM_CONSTANT(LOOP_LINEAR); BIND_ENUM_CONSTANT(LOOP_PINGPONG); BIND_ENUM_CONSTANT(LOOPED_FLAG_NONE); BIND_ENUM_CONSTANT(LOOPED_FLAG_END); BIND_ENUM_CONSTANT(LOOPED_FLAG_START); BIND_ENUM_CONSTANT(FIND_MODE_NEAREST); BIND_ENUM_CONSTANT(FIND_MODE_APPROX); BIND_ENUM_CONSTANT(FIND_MODE_EXACT); } void Animation::clear() { for (int i = 0; i < tracks.size(); i++) { memdelete(tracks[i]); } tracks.clear(); loop_mode = LOOP_NONE; length = 1; compression.enabled = false; compression.bounds.clear(); compression.pages.clear(); compression.fps = 120; emit_changed(); } bool Animation::_float_track_optimize_key(const TKey t0, const TKey t1, const TKey t2, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) { // Remove overlapping keys. if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { return true; } if (abs(t0.value - t1.value) < p_allowed_precision_error && abs(t1.value - t2.value) < p_allowed_precision_error) { return true; } // Calc velocities. double v0 = (t1.value - t0.value) / (t1.time - t0.time); double v1 = (t2.value - t1.value) / (t2.time - t1.time); // Avoid zero div but check equality. if (abs(v0 - v1) < p_allowed_precision_error) { return true; } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { return false; } if (!signbit(v0 * v1)) { v0 = abs(v0); v1 = abs(v1); double ratio = v0 < v1 ? v0 / v1 : v1 / v0; if (ratio >= 1.0 - p_allowed_velocity_err) { return true; } } return false; } bool Animation::_vector2_track_optimize_key(const TKey t0, const TKey t1, const TKey t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { // Remove overlapping keys. if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { return true; } if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) { return true; } // Calc velocities. Vector2 vc0 = (t1.value - t0.value) / (t1.time - t0.time); Vector2 vc1 = (t2.value - t1.value) / (t2.time - t1.time); double v0 = vc0.length(); double v1 = vc1.length(); // Avoid zero div but check equality. if (abs(v0 - v1) < p_allowed_precision_error) { return true; } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { return false; } // Check axis. if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) { v0 = abs(v0); v1 = abs(v1); double ratio = v0 < v1 ? v0 / v1 : v1 / v0; if (ratio >= 1.0 - p_allowed_velocity_err) { return true; } } return false; } bool Animation::_vector3_track_optimize_key(const TKey t0, const TKey t1, const TKey t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { // Remove overlapping keys. if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { return true; } if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) { return true; } // Calc velocities. Vector3 vc0 = (t1.value - t0.value) / (t1.time - t0.time); Vector3 vc1 = (t2.value - t1.value) / (t2.time - t1.time); double v0 = vc0.length(); double v1 = vc1.length(); // Avoid zero div but check equality. if (abs(v0 - v1) < p_allowed_precision_error) { return true; } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { return false; } // Check axis. if (vc0.normalized().dot(vc1.normalized()) >= 1.0 - p_allowed_angular_error * 2.0) { v0 = abs(v0); v1 = abs(v1); double ratio = v0 < v1 ? v0 / v1 : v1 / v0; if (ratio >= 1.0 - p_allowed_velocity_err) { return true; } } return false; } bool Animation::_quaternion_track_optimize_key(const TKey t0, const TKey t1, const TKey t2, real_t p_allowed_velocity_err, real_t p_allowed_angular_error, real_t p_allowed_precision_error) { // Remove overlapping keys. if (Math::is_equal_approx(t0.time, t1.time) || Math::is_equal_approx(t1.time, t2.time)) { return true; } if ((t0.value - t1.value).length() < p_allowed_precision_error && (t1.value - t2.value).length() < p_allowed_precision_error) { return true; } // Check axis. Quaternion q0 = t0.value * t1.value * t0.value.inverse(); Quaternion q1 = t1.value * t2.value * t1.value.inverse(); if (q0.get_axis().dot(q1.get_axis()) >= 1.0 - p_allowed_angular_error * 2.0) { double a0 = Math::acos(t0.value.dot(t1.value)); double a1 = Math::acos(t1.value.dot(t2.value)); if (a0 + a1 >= Math_PI) { return false; // Rotation is more than 180 deg, keep key. } // Calc velocities. double v0 = a0 / (t1.time - t0.time); double v1 = a1 / (t2.time - t1.time); // Avoid zero div but check equality. if (abs(v0 - v1) < p_allowed_precision_error) { return true; } else if (abs(v0) < p_allowed_precision_error || abs(v1) < p_allowed_precision_error) { return false; } double ratio = v0 < v1 ? v0 / v1 : v1 / v0; if (ratio >= 1.0 - p_allowed_velocity_err) { return true; } } return false; } void Animation::_position_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_POSITION_3D); PositionTrack *tt = static_cast(tracks[p_idx]); int i = 0; while (i < tt->positions.size() - 2) { TKey t0 = tt->positions[i]; TKey t1 = tt->positions[i + 1]; TKey t2 = tt->positions[i + 2]; bool erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); if (erase) { tt->positions.remove_at(i + 1); } else { i++; } } if (tt->positions.size() == 2) { if ((tt->positions[0].value - tt->positions[1].value).length() < p_allowed_precision_error) { tt->positions.remove_at(1); } } } void Animation::_rotation_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_ROTATION_3D); RotationTrack *rt = static_cast(tracks[p_idx]); int i = 0; while (i < rt->rotations.size() - 2) { TKey t0 = rt->rotations[i]; TKey t1 = rt->rotations[i + 1]; TKey t2 = rt->rotations[i + 2]; bool erase = _quaternion_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); if (erase) { rt->rotations.remove_at(i + 1); } else { i++; } } if (rt->rotations.size() == 2) { if ((rt->rotations[0].value - rt->rotations[1].value).length() < p_allowed_precision_error) { rt->rotations.remove_at(1); } } } void Animation::_scale_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_SCALE_3D); ScaleTrack *st = static_cast(tracks[p_idx]); int i = 0; while (i < st->scales.size() - 2) { TKey t0 = st->scales[i]; TKey t1 = st->scales[i + 1]; TKey t2 = st->scales[i + 2]; bool erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); if (erase) { st->scales.remove_at(i + 1); } else { i++; } } if (st->scales.size() == 2) { if ((st->scales[0].value - st->scales[1].value).length() < p_allowed_precision_error) { st->scales.remove_at(1); } } } void Animation::_blend_shape_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_BLEND_SHAPE); BlendShapeTrack *bst = static_cast(tracks[p_idx]); int i = 0; while (i < bst->blend_shapes.size() - 2) { TKey t0 = bst->blend_shapes[i]; TKey t1 = bst->blend_shapes[i + 1]; TKey t2 = bst->blend_shapes[i + 2]; bool erase = _float_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_precision_error); if (erase) { bst->blend_shapes.remove_at(i + 1); } else { i++; } } if (bst->blend_shapes.size() == 2) { if (abs(bst->blend_shapes[0].value - bst->blend_shapes[1].value) < p_allowed_precision_error) { bst->blend_shapes.remove_at(1); } } } void Animation::_value_track_optimize(int p_idx, real_t p_allowed_velocity_err, real_t p_allowed_angular_err, real_t p_allowed_precision_error) { ERR_FAIL_INDEX(p_idx, tracks.size()); ERR_FAIL_COND(tracks[p_idx]->type != TYPE_VALUE); ValueTrack *vt = static_cast(tracks[p_idx]); if (vt->values.size() == 0) { return; } Variant::Type type = vt->values[0].value.get_type(); // Special case for angle interpolation. bool is_using_angle = vt->interpolation == Animation::INTERPOLATION_LINEAR_ANGLE || vt->interpolation == Animation::INTERPOLATION_CUBIC_ANGLE; int i = 0; while (i < vt->values.size() - 2) { bool erase = false; switch (type) { case Variant::FLOAT: { TKey t0; TKey t1; TKey t2; t0.time = vt->values[i].time; t1.time = vt->values[i + 1].time; t2.time = vt->values[i + 2].time; t0.value = vt->values[i].value; t1.value = vt->values[i + 1].value; t2.value = vt->values[i + 2].value; if (is_using_angle) { float diff1 = fmod(t1.value - t0.value, Math_TAU); t1.value = t0.value + fmod(2.0 * diff1, Math_TAU) - diff1; float diff2 = fmod(t2.value - t1.value, Math_TAU); t2.value = t1.value + fmod(2.0 * diff2, Math_TAU) - diff2; if (abs(abs(diff1) + abs(diff2)) >= Math_PI) { break; // Rotation is more than 180 deg, keep key. } } erase = _float_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_precision_error); } break; case Variant::VECTOR2: { TKey t0; TKey t1; TKey t2; t0.time = vt->values[i].time; t1.time = vt->values[i + 1].time; t2.time = vt->values[i + 2].time; t0.value = vt->values[i].value; t1.value = vt->values[i + 1].value; t2.value = vt->values[i + 2].value; erase = _vector2_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); } break; case Variant::VECTOR3: { TKey t0; TKey t1; TKey t2; t0.time = vt->values[i].time; t1.time = vt->values[i + 1].time; t2.time = vt->values[i + 2].time; t0.value = vt->values[i].value; t1.value = vt->values[i + 1].value; t2.value = vt->values[i + 2].value; erase = _vector3_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); } break; case Variant::QUATERNION: { TKey t0; TKey t1; TKey t2; t0.time = vt->values[i].time; t1.time = vt->values[i + 1].time; t2.time = vt->values[i + 2].time; t0.value = vt->values[i].value; t1.value = vt->values[i + 1].value; t2.value = vt->values[i + 2].value; erase = _quaternion_track_optimize_key(t0, t1, t2, p_allowed_velocity_err, p_allowed_angular_err, p_allowed_precision_error); } break; default: { } break; } if (erase) { vt->values.remove_at(i + 1); } else { i++; } } if (vt->values.size() == 2) { bool single_key = false; switch (type) { case Variant::FLOAT: { float val_0 = vt->values[0].value; float val_1 = vt->values[1].value; if (is_using_angle) { float diff1 = fmod(val_1 - val_0, Math_TAU); val_1 = val_0 + fmod(2.0 * diff1, Math_TAU) - diff1; } single_key = abs(val_0 - val_1) < p_allowed_precision_error; } break; case Variant::VECTOR2: { Vector2 val_0 = vt->values[0].value; Vector2 val_1 = vt->values[1].value; single_key = (val_0 - val_1).length() < p_allowed_precision_error; } break; case Variant::VECTOR3: { Vector3 val_0 = vt->values[0].value; Vector3 val_1 = vt->values[1].value; single_key = (val_0 - val_1).length() < p_allowed_precision_error; } break; case Variant::QUATERNION: { Quaternion val_0 = vt->values[0].value; Quaternion val_1 = vt->values[1].value; single_key = (val_0 - val_1).length() < p_allowed_precision_error; } break; default: { } break; } if (single_key) { vt->values.remove_at(1); } } } void Animation::optimize(real_t p_allowed_velocity_err, real_t p_allowed_angular_err, int p_precision) { real_t precision = Math::pow(0.1, p_precision); for (int i = 0; i < tracks.size(); i++) { if (track_is_compressed(i)) { continue; //not possible to optimize compressed track } if (tracks[i]->type == TYPE_POSITION_3D) { _position_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision); } else if (tracks[i]->type == TYPE_ROTATION_3D) { _rotation_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision); } else if (tracks[i]->type == TYPE_SCALE_3D) { _scale_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision); } else if (tracks[i]->type == TYPE_BLEND_SHAPE) { _blend_shape_track_optimize(i, p_allowed_velocity_err, precision); } else if (tracks[i]->type == TYPE_VALUE) { _value_track_optimize(i, p_allowed_velocity_err, p_allowed_angular_err, precision); } } } #define print_animc(m_str) //#define print_animc(m_str) print_line(m_str); struct AnimationCompressionDataState { enum { MIN_OPTIMIZE_PACKETS = 5, MAX_PACKETS = 16 }; uint32_t components = 3; LocalVector data; // Committed packets. struct PacketData { int32_t data[3] = { 0, 0, 0 }; uint32_t frame = 0; }; float split_tolerance = 1.5; LocalVector temp_packets; //used for rollback if the new frame does not fit int32_t validated_packet_count = -1; static int32_t _compute_delta16_signed(int32_t p_from, int32_t p_to) { int32_t delta = p_to - p_from; if (delta > 32767) { return delta - 65536; // use wrap around } else if (delta < -32768) { return 65536 + delta; // use wrap around } return delta; } static uint32_t _compute_shift_bits_signed(int32_t p_delta) { if (p_delta == 0) { return 0; } else if (p_delta < 0) { p_delta = ABS(p_delta) - 1; if (p_delta == 0) { return 1; } } return nearest_shift(p_delta); } void _compute_max_shifts(uint32_t p_from, uint32_t p_to, uint32_t *max_shifts, uint32_t &max_frame_delta_shift) const { for (uint32_t j = 0; j < components; j++) { max_shifts[j] = 0; } max_frame_delta_shift = 0; for (uint32_t i = p_from + 1; i <= p_to; i++) { int32_t frame_delta = temp_packets[i].frame - temp_packets[i - 1].frame; max_frame_delta_shift = MAX(max_frame_delta_shift, nearest_shift(frame_delta)); for (uint32_t j = 0; j < components; j++) { int32_t diff = _compute_delta16_signed(temp_packets[i - 1].data[j], temp_packets[i].data[j]); uint32_t shift = _compute_shift_bits_signed(diff); max_shifts[j] = MAX(shift, max_shifts[j]); } } } bool insert_key(uint32_t p_frame, const Vector3i &p_key) { if (temp_packets.size() == MAX_PACKETS) { commit_temp_packets(); } PacketData packet; packet.frame = p_frame; for (int i = 0; i < 3; i++) { ERR_FAIL_COND_V(p_key[i] > 65535, false); // Safety checks. packet.data[i] = p_key[i]; } temp_packets.push_back(packet); if (temp_packets.size() >= MIN_OPTIMIZE_PACKETS) { uint32_t max_shifts[3] = { 0, 0, 0 }; // Base sizes, 16 bit uint32_t max_frame_delta_shift = 0; // Compute the average shift before the packet was added _compute_max_shifts(0, temp_packets.size() - 2, max_shifts, max_frame_delta_shift); float prev_packet_size_avg = 0; prev_packet_size_avg = float(1 << max_frame_delta_shift); for (uint32_t i = 0; i < components; i++) { prev_packet_size_avg += float(1 << max_shifts[i]); } prev_packet_size_avg /= float(1 + components); _compute_max_shifts(temp_packets.size() - 2, temp_packets.size() - 1, max_shifts, max_frame_delta_shift); float new_packet_size_avg = 0; new_packet_size_avg = float(1 << max_frame_delta_shift); for (uint32_t i = 0; i < components; i++) { new_packet_size_avg += float(1 << max_shifts[i]); } new_packet_size_avg /= float(1 + components); print_animc("packet count: " + rtos(temp_packets.size() - 1) + " size avg " + rtos(prev_packet_size_avg) + " new avg " + rtos(new_packet_size_avg)); float ratio = (prev_packet_size_avg < new_packet_size_avg) ? (new_packet_size_avg / prev_packet_size_avg) : (prev_packet_size_avg / new_packet_size_avg); if (ratio > split_tolerance) { print_animc("split!"); temp_packets.resize(temp_packets.size() - 1); commit_temp_packets(); temp_packets.push_back(packet); } } return temp_packets.size() == 1; // First key } uint32_t get_temp_packet_size() const { if (temp_packets.size() == 0) { return 0; } else if (temp_packets.size() == 1) { return components == 1 ? 4 : 8; // 1 component packet is 16 bits and 16 bits unused. 3 component packets is 48 bits and 16 bits unused } uint32_t max_shifts[3] = { 0, 0, 0 }; //base sizes, 16 bit uint32_t max_frame_delta_shift = 0; _compute_max_shifts(0, temp_packets.size() - 1, max_shifts, max_frame_delta_shift); uint32_t size_bits = 16; //base value (all 4 bits of shift sizes for x,y,z,time) size_bits += max_frame_delta_shift * (temp_packets.size() - 1); //times for (uint32_t j = 0; j < components; j++) { size_bits += 16; //base value uint32_t shift = max_shifts[j]; if (shift > 0) { shift += 1; //if not zero, add sign bit } size_bits += shift * (temp_packets.size() - 1); } if (size_bits % 8 != 0) { //wrap to 8 bits size_bits += 8 - (size_bits % 8); } uint32_t size_bytes = size_bits / 8; //wrap to words if (size_bytes % 4 != 0) { size_bytes += 4 - (size_bytes % 4); } return size_bytes; } static void _push_bits(LocalVector &data, uint32_t &r_buffer, uint32_t &r_bits_used, uint32_t p_value, uint32_t p_bits) { r_buffer |= p_value << r_bits_used; r_bits_used += p_bits; while (r_bits_used >= 8) { uint8_t byte = r_buffer & 0xFF; data.push_back(byte); r_buffer >>= 8; r_bits_used -= 8; } } void commit_temp_packets() { if (temp_packets.size() == 0) { return; // Nothing to do. } //#define DEBUG_PACKET_PUSH #ifdef DEBUG_PACKET_PUSH #ifndef _MSC_VER #warning Debugging packet push, disable this code in production to gain a bit more import performance. #endif uint32_t debug_packet_push = get_temp_packet_size(); uint32_t debug_data_size = data.size(); #endif // Store header uint8_t header[8]; uint32_t header_bytes = 0; for (uint32_t i = 0; i < components; i++) { encode_uint16(temp_packets[0].data[i], &header[header_bytes]); header_bytes += 2; } uint32_t max_shifts[3] = { 0, 0, 0 }; //base sizes, 16 bit uint32_t max_frame_delta_shift = 0; if (temp_packets.size() > 1) { _compute_max_shifts(0, temp_packets.size() - 1, max_shifts, max_frame_delta_shift); uint16_t shift_header = (max_frame_delta_shift - 1) << 12; for (uint32_t i = 0; i < components; i++) { shift_header |= max_shifts[i] << (4 * i); } encode_uint16(shift_header, &header[header_bytes]); header_bytes += 2; } while (header_bytes < 8 && header_bytes % 4 != 0) { // First cond needed to silence wrong GCC warning. header[header_bytes++] = 0; } for (uint32_t i = 0; i < header_bytes; i++) { data.push_back(header[i]); } if (temp_packets.size() == 1) { temp_packets.clear(); validated_packet_count = 0; return; //only header stored, nothing else to do } uint32_t bit_buffer = 0; uint32_t bits_used = 0; for (uint32_t i = 1; i < temp_packets.size(); i++) { uint32_t frame_delta = temp_packets[i].frame - temp_packets[i - 1].frame; _push_bits(data, bit_buffer, bits_used, frame_delta, max_frame_delta_shift); for (uint32_t j = 0; j < components; j++) { if (max_shifts[j] == 0) { continue; // Zero delta, do not store } int32_t delta = _compute_delta16_signed(temp_packets[i - 1].data[j], temp_packets[i].data[j]); ERR_FAIL_COND(delta < -32768 || delta > 32767); // Safety check. uint16_t deltau; if (delta < 0) { deltau = (ABS(delta) - 1) | (1 << max_shifts[j]); } else { deltau = delta; } _push_bits(data, bit_buffer, bits_used, deltau, max_shifts[j] + 1); // Include sign bit } } if (bits_used != 0) { ERR_FAIL_COND(bit_buffer > 0xFF); // Safety check. data.push_back(bit_buffer); } while (data.size() % 4 != 0) { data.push_back(0); //pad to align with 4 } temp_packets.clear(); validated_packet_count = 0; #ifdef DEBUG_PACKET_PUSH ERR_FAIL_COND((data.size() - debug_data_size) != debug_packet_push); #endif } }; struct AnimationCompressionTimeState { struct Packet { uint32_t frame; uint32_t offset; uint32_t count; }; LocalVector packets; //used for rollback int32_t key_index = 0; int32_t validated_packet_count = 0; int32_t validated_key_index = -1; bool needs_start_frame = false; }; Vector3i Animation::_compress_key(uint32_t p_track, const AABB &p_bounds, int32_t p_key, float p_time) { Vector3i values; TrackType tt = track_get_type(p_track); switch (tt) { case TYPE_POSITION_3D: { Vector3 pos; if (p_key >= 0) { position_track_get_key(p_track, p_key, &pos); } else { try_position_track_interpolate(p_track, p_time, &pos); } pos = (pos - p_bounds.position) / p_bounds.size; for (int j = 0; j < 3; j++) { values[j] = CLAMP(int32_t(pos[j] * 65535.0), 0, 65535); } } break; case TYPE_ROTATION_3D: { Quaternion rot; if (p_key >= 0) { rotation_track_get_key(p_track, p_key, &rot); } else { try_rotation_track_interpolate(p_track, p_time, &rot); } Vector3 axis = rot.get_axis(); float angle = rot.get_angle(); angle = Math::fposmod(double(angle), double(Math_PI * 2.0)); Vector2 oct = axis.octahedron_encode(); Vector3 rot_norm(oct.x, oct.y, angle / (Math_PI * 2.0)); // high resolution rotation in 0-1 angle. for (int j = 0; j < 3; j++) { values[j] = CLAMP(int32_t(rot_norm[j] * 65535.0), 0, 65535); } } break; case TYPE_SCALE_3D: { Vector3 scale; if (p_key >= 0) { scale_track_get_key(p_track, p_key, &scale); } else { try_scale_track_interpolate(p_track, p_time, &scale); } scale = (scale - p_bounds.position) / p_bounds.size; for (int j = 0; j < 3; j++) { values[j] = CLAMP(int32_t(scale[j] * 65535.0), 0, 65535); } } break; case TYPE_BLEND_SHAPE: { float blend; if (p_key >= 0) { blend_shape_track_get_key(p_track, p_key, &blend); } else { try_blend_shape_track_interpolate(p_track, p_time, &blend); } blend = (blend / float(Compression::BLEND_SHAPE_RANGE)) * 0.5 + 0.5; values[0] = CLAMP(int32_t(blend * 65535.0), 0, 65535); } break; default: { ERR_FAIL_V(Vector3i()); // Safety check. } break; } return values; } struct AnimationCompressionBufferBitsRead { uint32_t buffer = 0; uint32_t used = 0; const uint8_t *src_data = nullptr; _FORCE_INLINE_ uint32_t read(uint32_t p_bits) { uint32_t output = 0; uint32_t written = 0; while (p_bits > 0) { if (used == 0) { used = 8; buffer = *src_data; src_data++; } uint32_t to_write = MIN(used, p_bits); output |= (buffer & ((1 << to_write) - 1)) << written; buffer >>= to_write; used -= to_write; p_bits -= to_write; written += to_write; } return output; } }; void Animation::compress(uint32_t p_page_size, uint32_t p_fps, float p_split_tolerance) { ERR_FAIL_COND_MSG(compression.enabled, "This animation is already compressed"); p_split_tolerance = CLAMP(p_split_tolerance, 1.1, 8.0); compression.pages.clear(); uint32_t base_page_size = 0; // Before compressing pages, compute how large the "end page" datablock is. LocalVector tracks_to_compress; LocalVector track_bounds; const uint32_t time_packet_size = 4; const uint32_t track_header_size = 4 + 4 + 4; // pointer to time (4 bytes), amount of time keys (4 bytes) pointer to track data (4 bytes) for (int i = 0; i < get_track_count(); i++) { TrackType type = track_get_type(i); if (type != TYPE_POSITION_3D && type != TYPE_ROTATION_3D && type != TYPE_SCALE_3D && type != TYPE_BLEND_SHAPE) { continue; } if (track_get_key_count(i) == 0) { continue; //do not compress, no keys } base_page_size += track_header_size; //pointer to beginning of each track timeline and amount of time keys base_page_size += time_packet_size; //for end of track time marker base_page_size += (type == TYPE_BLEND_SHAPE) ? 4 : 8; // at least the end of track packet (at much 8 bytes). This could be less, but have to be pessimistic. tracks_to_compress.push_back(i); AABB bounds; if (type == TYPE_POSITION_3D) { AABB aabb; int kcount = track_get_key_count(i); for (int j = 0; j < kcount; j++) { Vector3 pos; position_track_get_key(i, j, &pos); if (j == 0) { aabb.position = pos; } else { aabb.expand_to(pos); } } for (int j = 0; j < 3; j++) { // Can't have zero. if (aabb.size[j] < CMP_EPSILON) { aabb.size[j] = CMP_EPSILON; } } bounds = aabb; } if (type == TYPE_SCALE_3D) { AABB aabb; int kcount = track_get_key_count(i); for (int j = 0; j < kcount; j++) { Vector3 scale; scale_track_get_key(i, j, &scale); if (j == 0) { aabb.position = scale; } else { aabb.expand_to(scale); } } for (int j = 0; j < 3; j++) { // Can't have zero. if (aabb.size[j] < CMP_EPSILON) { aabb.size[j] = CMP_EPSILON; } } bounds = aabb; } track_bounds.push_back(bounds); } if (tracks_to_compress.size() == 0) { return; //nothing to compress } print_animc("Anim Compression:"); print_animc("-----------------"); print_animc("Tracks to compress: " + itos(tracks_to_compress.size())); uint32_t current_frame = 0; uint32_t base_page_frame = 0; double frame_len = 1.0 / double(p_fps); const uint32_t max_frames_per_page = 65536; print_animc("Frame Len: " + rtos(frame_len)); LocalVector data_tracks; LocalVector time_tracks; data_tracks.resize(tracks_to_compress.size()); time_tracks.resize(tracks_to_compress.size()); uint32_t needed_min_page_size = base_page_size; for (uint32_t i = 0; i < data_tracks.size(); i++) { data_tracks[i].split_tolerance = p_split_tolerance; if (track_get_type(tracks_to_compress[i]) == TYPE_BLEND_SHAPE) { data_tracks[i].components = 1; } else { data_tracks[i].components = 3; } needed_min_page_size += data_tracks[i].data.size() + data_tracks[i].get_temp_packet_size(); } for (uint32_t i = 0; i < time_tracks.size(); i++) { needed_min_page_size += time_tracks[i].packets.size() * 4; // time packet is 32 bits } ERR_FAIL_COND_MSG(p_page_size < needed_min_page_size, "Cannot compress with the given page size"); while (true) { // Begin by finding the keyframe in all tracks with the time closest to the current time const uint32_t FRAME_MAX = 0xFFFFFFFF; const int32_t NO_TRACK_FOUND = -1; uint32_t best_frame = FRAME_MAX; uint32_t best_invalid_frame = FRAME_MAX; int32_t best_frame_track = NO_TRACK_FOUND; // Default is -1, which means all keyframes for this page are exhausted. bool start_frame = false; for (uint32_t i = 0; i < tracks_to_compress.size(); i++) { uint32_t uncomp_track = tracks_to_compress[i]; if (time_tracks[i].key_index == track_get_key_count(uncomp_track)) { if (time_tracks[i].needs_start_frame) { start_frame = true; best_frame = base_page_frame; best_frame_track = i; time_tracks[i].needs_start_frame = false; break; } else { continue; // This track is exhausted (all keys were added already), don't consider. } } uint32_t key_frame = double(track_get_key_time(uncomp_track, time_tracks[i].key_index)) / frame_len; if (time_tracks[i].needs_start_frame && key_frame > base_page_frame) { start_frame = true; best_frame = base_page_frame; best_frame_track = i; time_tracks[i].needs_start_frame = false; break; } ERR_FAIL_COND(key_frame < base_page_frame); // Safety check, should never happen. if (key_frame - base_page_frame >= max_frames_per_page) { // Invalid because beyond the max frames allowed per page best_invalid_frame = MIN(best_invalid_frame, key_frame); } else if (key_frame < best_frame) { best_frame = key_frame; best_frame_track = i; } } print_animc("*KEY*: Current Frame: " + itos(current_frame) + " Best Frame: " + rtos(best_frame) + " Best Track: " + itos(best_frame_track) + " Start: " + String(start_frame ? "true" : "false")); if (!start_frame && best_frame > current_frame) { // Any case where the current frame advanced, either because nothing was found or because something was found greater than the current one. print_animc("\tAdvance Condition."); bool rollback = false; // The frame has advanced, time to validate the previous frame uint32_t current_page_size = base_page_size; for (const AnimationCompressionDataState &state : data_tracks) { uint32_t track_size = state.data.size(); // track size track_size += state.get_temp_packet_size(); // Add the temporary data if (track_size > Compression::MAX_DATA_TRACK_SIZE) { rollback = true; //track to large, time track can't point to keys any longer, because key offset is 12 bits break; } current_page_size += track_size; } for (const AnimationCompressionTimeState &state : time_tracks) { current_page_size += state.packets.size() * 4; // time packet is 32 bits } if (!rollback && current_page_size > p_page_size) { rollback = true; } print_animc("\tCurrent Page Size: " + itos(current_page_size) + "/" + itos(p_page_size) + " Rollback? " + String(rollback ? "YES!" : "no")); if (rollback) { // Not valid any longer, so rollback and commit page for (AnimationCompressionDataState &state : data_tracks) { state.temp_packets.resize(state.validated_packet_count); } for (AnimationCompressionTimeState &state : time_tracks) { state.key_index = state.validated_key_index; //rollback key state.packets.resize(state.validated_packet_count); } } else { // All valid, so save rollback information for (AnimationCompressionDataState &state : data_tracks) { state.validated_packet_count = state.temp_packets.size(); } for (AnimationCompressionTimeState &state : time_tracks) { state.validated_key_index = state.key_index; state.validated_packet_count = state.packets.size(); } // Accept this frame as the frame being processed (as long as it exists) if (best_frame != FRAME_MAX) { current_frame = best_frame; print_animc("\tValidated, New Current Frame: " + itos(current_frame)); } } if (rollback || best_frame == FRAME_MAX) { // Commit the page if had to rollback or if no track was found print_animc("\tCommiting page..."); // The end frame for the page depends entirely on whether its valid or // no more keys were found. // If not valid, then the end frame is the current frame (as this means the current frame is being rolled back // If valid, then the end frame is the next invalid one (in case more frames exist), or the current frame in case no more frames exist. uint32_t page_end_frame = (rollback || best_frame == FRAME_MAX) ? current_frame : best_invalid_frame; print_animc("\tEnd Frame: " + itos(page_end_frame) + ", " + rtos(page_end_frame * frame_len) + "s"); // Add finalizer frames and commit pending tracks uint32_t finalizer_local_frame = page_end_frame - base_page_frame; uint32_t total_page_size = 0; for (uint32_t i = 0; i < data_tracks.size(); i++) { if (data_tracks[i].temp_packets.size() == 0 || (data_tracks[i].temp_packets[data_tracks[i].temp_packets.size() - 1].frame) < finalizer_local_frame) { // Add finalizer frame if it makes sense Vector3i values = _compress_key(tracks_to_compress[i], track_bounds[i], -1, page_end_frame * frame_len); bool first_key = data_tracks[i].insert_key(finalizer_local_frame, values); if (first_key) { AnimationCompressionTimeState::Packet p; p.count = 1; p.frame = finalizer_local_frame; p.offset = data_tracks[i].data.size(); time_tracks[i].packets.push_back(p); } else { ERR_FAIL_COND(time_tracks[i].packets.size() == 0); time_tracks[i].packets[time_tracks[i].packets.size() - 1].count++; } } data_tracks[i].commit_temp_packets(); total_page_size += data_tracks[i].data.size(); total_page_size += time_tracks[i].packets.size() * 4; total_page_size += track_header_size; print_animc("\tTrack " + itos(i) + " time packets: " + itos(time_tracks[i].packets.size()) + " Packet data: " + itos(data_tracks[i].data.size())); } print_animc("\tTotal page Size: " + itos(total_page_size) + "/" + itos(p_page_size)); // Create Page Vector page_data; page_data.resize(total_page_size); { uint8_t *page_ptr = page_data.ptrw(); uint32_t base_offset = data_tracks.size() * track_header_size; for (uint32_t i = 0; i < data_tracks.size(); i++) { encode_uint32(base_offset, page_ptr + (track_header_size * i + 0)); uint16_t *key_time_ptr = (uint16_t *)(page_ptr + base_offset); for (uint32_t j = 0; j < time_tracks[i].packets.size(); j++) { key_time_ptr[j * 2 + 0] = uint16_t(time_tracks[i].packets[j].frame); uint16_t ptr = time_tracks[i].packets[j].offset / 4; ptr |= (time_tracks[i].packets[j].count - 1) << 12; key_time_ptr[j * 2 + 1] = ptr; base_offset += 4; } encode_uint32(time_tracks[i].packets.size(), page_ptr + (track_header_size * i + 4)); encode_uint32(base_offset, page_ptr + (track_header_size * i + 8)); memcpy(page_ptr + base_offset, data_tracks[i].data.ptr(), data_tracks[i].data.size()); base_offset += data_tracks[i].data.size(); //reset track data_tracks[i].data.clear(); data_tracks[i].temp_packets.clear(); data_tracks[i].validated_packet_count = -1; time_tracks[i].needs_start_frame = true; //Not required the first time, but from now on it is. time_tracks[i].packets.clear(); time_tracks[i].validated_key_index = -1; time_tracks[i].validated_packet_count = 0; } } Compression::Page page; page.data = page_data; page.time_offset = base_page_frame * frame_len; compression.pages.push_back(page); if (!rollback && best_invalid_frame == FRAME_MAX) { break; // No more pages to add. } current_frame = page_end_frame; base_page_frame = page_end_frame; continue; // Start over } } // A key was found for the current frame and all is ok uint32_t comp_track = best_frame_track; Vector3i values; if (start_frame) { // Interpolate values = _compress_key(tracks_to_compress[comp_track], track_bounds[comp_track], -1, base_page_frame * frame_len); } else { uint32_t key = time_tracks[comp_track].key_index; values = _compress_key(tracks_to_compress[comp_track], track_bounds[comp_track], key); time_tracks[comp_track].key_index++; //goto next key (but could be rolled back if beyond page size). } bool first_key = data_tracks[comp_track].insert_key(best_frame - base_page_frame, values); if (first_key) { AnimationCompressionTimeState::Packet p; p.count = 1; p.frame = best_frame - base_page_frame; p.offset = data_tracks[comp_track].data.size(); time_tracks[comp_track].packets.push_back(p); } else { ERR_CONTINUE(time_tracks[comp_track].packets.size() == 0); time_tracks[comp_track].packets[time_tracks[comp_track].packets.size() - 1].count++; } } compression.bounds = track_bounds; compression.fps = p_fps; compression.enabled = true; for (uint32_t i = 0; i < tracks_to_compress.size(); i++) { Track *t = tracks[tracks_to_compress[i]]; t->interpolation = INTERPOLATION_LINEAR; //only linear supported switch (t->type) { case TYPE_POSITION_3D: { PositionTrack *tt = static_cast(t); tt->positions.clear(); tt->compressed_track = i; } break; case TYPE_ROTATION_3D: { RotationTrack *rt = static_cast(t); rt->rotations.clear(); rt->compressed_track = i; } break; case TYPE_SCALE_3D: { ScaleTrack *st = static_cast(t); st->scales.clear(); st->compressed_track = i; print_line("Scale Bounds " + itos(i) + ": " + track_bounds[i]); } break; case TYPE_BLEND_SHAPE: { BlendShapeTrack *bst = static_cast(t); bst->blend_shapes.clear(); bst->compressed_track = i; } break; default: { } } } #if 1 uint32_t orig_size = 0; for (int i = 0; i < get_track_count(); i++) { switch (track_get_type(i)) { case TYPE_SCALE_3D: case TYPE_POSITION_3D: { orig_size += sizeof(TKey) * track_get_key_count(i); } break; case TYPE_ROTATION_3D: { orig_size += sizeof(TKey) * track_get_key_count(i); } break; case TYPE_BLEND_SHAPE: { orig_size += sizeof(TKey) * track_get_key_count(i); } break; default: { } } } uint32_t new_size = 0; for (const Compression::Page &page : compression.pages) { new_size += page.data.size(); } print_line("Original size: " + itos(orig_size) + " - Compressed size: " + itos(new_size) + " " + String::num(float(new_size) / float(orig_size) * 100, 2) + "% pages: " + itos(compression.pages.size())); #endif } bool Animation::_rotation_interpolate_compressed(uint32_t p_compressed_track, double p_time, Quaternion &r_ret) const { Vector3i current; Vector3i next; double time_current; double time_next; if (!_fetch_compressed<3>(p_compressed_track, p_time, current, time_current, next, time_next)) { return false; //some sort of problem } if (time_current >= p_time || time_current == time_next) { r_ret = _uncompress_quaternion(current); } else if (p_time >= time_next) { r_ret = _uncompress_quaternion(next); } else { double c = (p_time - time_current) / (time_next - time_current); Quaternion from = _uncompress_quaternion(current); Quaternion to = _uncompress_quaternion(next); r_ret = from.slerp(to, c); } return true; } bool Animation::_pos_scale_interpolate_compressed(uint32_t p_compressed_track, double p_time, Vector3 &r_ret) const { Vector3i current; Vector3i next; double time_current; double time_next; if (!_fetch_compressed<3>(p_compressed_track, p_time, current, time_current, next, time_next)) { return false; //some sort of problem } if (time_current >= p_time || time_current == time_next) { r_ret = _uncompress_pos_scale(p_compressed_track, current); } else if (p_time >= time_next) { r_ret = _uncompress_pos_scale(p_compressed_track, next); } else { double c = (p_time - time_current) / (time_next - time_current); Vector3 from = _uncompress_pos_scale(p_compressed_track, current); Vector3 to = _uncompress_pos_scale(p_compressed_track, next); r_ret = from.lerp(to, c); } return true; } bool Animation::_blend_shape_interpolate_compressed(uint32_t p_compressed_track, double p_time, float &r_ret) const { Vector3i current; Vector3i next; double time_current; double time_next; if (!_fetch_compressed<1>(p_compressed_track, p_time, current, time_current, next, time_next)) { return false; //some sort of problem } if (time_current >= p_time || time_current == time_next) { r_ret = _uncompress_blend_shape(current); } else if (p_time >= time_next) { r_ret = _uncompress_blend_shape(next); } else { float c = (p_time - time_current) / (time_next - time_current); float from = _uncompress_blend_shape(current); float to = _uncompress_blend_shape(next); r_ret = Math::lerp(from, to, c); } return true; } template bool Animation::_fetch_compressed(uint32_t p_compressed_track, double p_time, Vector3i &r_current_value, double &r_current_time, Vector3i &r_next_value, double &r_next_time, uint32_t *key_index) const { ERR_FAIL_COND_V(!compression.enabled, false); ERR_FAIL_UNSIGNED_INDEX_V(p_compressed_track, compression.bounds.size(), false); p_time = CLAMP(p_time, 0, length); if (key_index) { *key_index = 0; } double frame_to_sec = 1.0 / double(compression.fps); int32_t page_index = -1; for (uint32_t i = 0; i < compression.pages.size(); i++) { if (compression.pages[i].time_offset > p_time) { break; } page_index = i; } ERR_FAIL_COND_V(page_index == -1, false); //should not happen double page_base_time = compression.pages[page_index].time_offset; const uint8_t *page_data = compression.pages[page_index].data.ptr(); // Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported. const uint32_t *indices = (const uint32_t *)page_data; const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]]; uint32_t time_key_count = indices[p_compressed_track * 3 + 1]; int32_t packet_idx = 0; double packet_time = double(time_keys[0]) * frame_to_sec + page_base_time; uint32_t base_frame = time_keys[0]; for (uint32_t i = 1; i < time_key_count; i++) { uint32_t f = time_keys[i * 2 + 0]; double frame_time = double(f) * frame_to_sec + page_base_time; if (frame_time > p_time) { break; } if (key_index) { (*key_index) += (time_keys[(i - 1) * 2 + 1] >> 12) + 1; } packet_idx = i; packet_time = frame_time; base_frame = f; } const uint8_t *data_keys_base = (const uint8_t *)&page_data[indices[p_compressed_track * 3 + 2]]; uint16_t time_key_data = time_keys[packet_idx * 2 + 1]; uint32_t data_offset = (time_key_data & 0xFFF) * 4; // lower 12 bits uint32_t data_count = (time_key_data >> 12) + 1; const uint16_t *data_key = (const uint16_t *)(data_keys_base + data_offset); uint16_t decode[COMPONENTS]; uint16_t decode_next[COMPONENTS]; for (uint32_t i = 0; i < COMPONENTS; i++) { decode[i] = data_key[i]; decode_next[i] = data_key[i]; } double next_time = packet_time; if (p_time > packet_time) { // If its equal or less, then don't bother if (data_count > 1) { //decode forward uint32_t bit_width[COMPONENTS]; for (uint32_t i = 0; i < COMPONENTS; i++) { bit_width[i] = (data_key[COMPONENTS] >> (i * 4)) & 0xF; } uint32_t frame_bit_width = (data_key[COMPONENTS] >> 12) + 1; AnimationCompressionBufferBitsRead buffer; buffer.src_data = (const uint8_t *)&data_key[COMPONENTS + 1]; for (uint32_t i = 1; i < data_count; i++) { uint32_t frame_delta = buffer.read(frame_bit_width); base_frame += frame_delta; for (uint32_t j = 0; j < COMPONENTS; j++) { if (bit_width[j] == 0) { continue; // do none } uint32_t valueu = buffer.read(bit_width[j] + 1); bool sign = valueu & (1 << bit_width[j]); int16_t value = valueu & ((1 << bit_width[j]) - 1); if (sign) { value = -value - 1; } decode_next[j] += value; } next_time = double(base_frame) * frame_to_sec + page_base_time; if (p_time < next_time) { break; } packet_time = next_time; for (uint32_t j = 0; j < COMPONENTS; j++) { decode[j] = decode_next[j]; } if (key_index) { (*key_index)++; } } } if (p_time > next_time) { // > instead of >= because if its equal, then it will be properly interpolated anyway // So, the last frame found still has a time that is less than the required frame, // will have to interpolate with the first frame of the next timekey. if ((uint32_t)packet_idx < time_key_count - 1) { // Safety check but should not matter much, otherwise current next packet is last packet. uint16_t time_key_data_next = time_keys[(packet_idx + 1) * 2 + 1]; uint32_t data_offset_next = (time_key_data_next & 0xFFF) * 4; // Lower 12 bits const uint16_t *data_key_next = (const uint16_t *)(data_keys_base + data_offset_next); base_frame = time_keys[(packet_idx + 1) * 2 + 0]; next_time = double(base_frame) * frame_to_sec + page_base_time; for (uint32_t i = 0; i < COMPONENTS; i++) { decode_next[i] = data_key_next[i]; } } } } r_current_time = packet_time; r_next_time = next_time; for (uint32_t i = 0; i < COMPONENTS; i++) { r_current_value[i] = decode[i]; r_next_value[i] = decode_next[i]; } return true; } template void Animation::_get_compressed_key_indices_in_range(uint32_t p_compressed_track, double p_time, double p_delta, List *r_indices) const { ERR_FAIL_COND(!compression.enabled); ERR_FAIL_UNSIGNED_INDEX(p_compressed_track, compression.bounds.size()); double frame_to_sec = 1.0 / double(compression.fps); uint32_t key_index = 0; for (uint32_t p = 0; p < compression.pages.size(); p++) { if (compression.pages[p].time_offset >= p_time + p_delta) { // Page beyond range return; } // Page within range uint32_t page_index = p; double page_base_time = compression.pages[page_index].time_offset; const uint8_t *page_data = compression.pages[page_index].data.ptr(); // Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported. const uint32_t *indices = (const uint32_t *)page_data; const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]]; uint32_t time_key_count = indices[p_compressed_track * 3 + 1]; for (uint32_t i = 0; i < time_key_count; i++) { uint32_t f = time_keys[i * 2 + 0]; double frame_time = f * frame_to_sec + page_base_time; if (frame_time >= p_time + p_delta) { return; } else if (frame_time >= p_time) { r_indices->push_back(key_index); } key_index++; const uint8_t *data_keys_base = (const uint8_t *)&page_data[indices[p_compressed_track * 3 + 2]]; uint16_t time_key_data = time_keys[i * 2 + 1]; uint32_t data_offset = (time_key_data & 0xFFF) * 4; // lower 12 bits uint32_t data_count = (time_key_data >> 12) + 1; const uint16_t *data_key = (const uint16_t *)(data_keys_base + data_offset); if (data_count > 1) { //decode forward uint32_t bit_width[COMPONENTS]; for (uint32_t j = 0; j < COMPONENTS; j++) { bit_width[j] = (data_key[COMPONENTS] >> (j * 4)) & 0xF; } uint32_t frame_bit_width = (data_key[COMPONENTS] >> 12) + 1; AnimationCompressionBufferBitsRead buffer; buffer.src_data = (const uint8_t *)&data_key[COMPONENTS + 1]; for (uint32_t j = 1; j < data_count; j++) { uint32_t frame_delta = buffer.read(frame_bit_width); f += frame_delta; frame_time = f * frame_to_sec + page_base_time; if (frame_time >= p_time + p_delta) { return; } else if (frame_time >= p_time) { r_indices->push_back(key_index); } for (uint32_t k = 0; k < COMPONENTS; k++) { if (bit_width[k] == 0) { continue; // do none } buffer.read(bit_width[k] + 1); // skip } key_index++; } } } } } int Animation::_get_compressed_key_count(uint32_t p_compressed_track) const { ERR_FAIL_COND_V(!compression.enabled, -1); ERR_FAIL_UNSIGNED_INDEX_V(p_compressed_track, compression.bounds.size(), -1); int key_count = 0; for (const Compression::Page &page : compression.pages) { const uint8_t *page_data = page.data.ptr(); // Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported. const uint32_t *indices = (const uint32_t *)page_data; const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]]; uint32_t time_key_count = indices[p_compressed_track * 3 + 1]; for (uint32_t j = 0; j < time_key_count; j++) { key_count += (time_keys[j * 2 + 1] >> 12) + 1; } } return key_count; } Quaternion Animation::_uncompress_quaternion(const Vector3i &p_value) const { Vector3 axis = Vector3::octahedron_decode(Vector2(float(p_value.x) / 65535.0, float(p_value.y) / 65535.0)); float angle = (float(p_value.z) / 65535.0) * 2.0 * Math_PI; return Quaternion(axis, angle); } Vector3 Animation::_uncompress_pos_scale(uint32_t p_compressed_track, const Vector3i &p_value) const { Vector3 pos_norm(float(p_value.x) / 65535.0, float(p_value.y) / 65535.0, float(p_value.z) / 65535.0); return compression.bounds[p_compressed_track].position + pos_norm * compression.bounds[p_compressed_track].size; } float Animation::_uncompress_blend_shape(const Vector3i &p_value) const { float bsn = float(p_value.x) / 65535.0; return (bsn * 2.0 - 1.0) * float(Compression::BLEND_SHAPE_RANGE); } template bool Animation::_fetch_compressed_by_index(uint32_t p_compressed_track, int p_index, Vector3i &r_value, double &r_time) const { ERR_FAIL_COND_V(!compression.enabled, false); ERR_FAIL_UNSIGNED_INDEX_V(p_compressed_track, compression.bounds.size(), false); for (const Compression::Page &page : compression.pages) { const uint8_t *page_data = page.data.ptr(); // Little endian assumed. No major big endian hardware exists any longer, but in case it does it will need to be supported. const uint32_t *indices = (const uint32_t *)page_data; const uint16_t *time_keys = (const uint16_t *)&page_data[indices[p_compressed_track * 3 + 0]]; uint32_t time_key_count = indices[p_compressed_track * 3 + 1]; const uint8_t *data_keys_base = (const uint8_t *)&page_data[indices[p_compressed_track * 3 + 2]]; for (uint32_t j = 0; j < time_key_count; j++) { uint32_t subkeys = (time_keys[j * 2 + 1] >> 12) + 1; if ((uint32_t)p_index < subkeys) { uint16_t data_offset = (time_keys[j * 2 + 1] & 0xFFF) * 4; const uint16_t *data_key = (const uint16_t *)(data_keys_base + data_offset); uint16_t frame = time_keys[j * 2 + 0]; uint16_t decode[COMPONENTS]; for (uint32_t k = 0; k < COMPONENTS; k++) { decode[k] = data_key[k]; } if (p_index > 0) { uint32_t bit_width[COMPONENTS]; for (uint32_t k = 0; k < COMPONENTS; k++) { bit_width[k] = (data_key[COMPONENTS] >> (k * 4)) & 0xF; } uint32_t frame_bit_width = (data_key[COMPONENTS] >> 12) + 1; AnimationCompressionBufferBitsRead buffer; buffer.src_data = (const uint8_t *)&data_key[COMPONENTS + 1]; for (int k = 0; k < p_index; k++) { uint32_t frame_delta = buffer.read(frame_bit_width); frame += frame_delta; for (uint32_t l = 0; l < COMPONENTS; l++) { if (bit_width[l] == 0) { continue; // do none } uint32_t valueu = buffer.read(bit_width[l] + 1); bool sign = valueu & (1 << bit_width[l]); int16_t value = valueu & ((1 << bit_width[l]) - 1); if (sign) { value = -value - 1; } decode[l] += value; } } } r_time = page.time_offset + double(frame) / double(compression.fps); for (uint32_t l = 0; l < COMPONENTS; l++) { r_value[l] = decode[l]; } return true; } else { p_index -= subkeys; } } } return false; } // Helper math functions for Variant. bool Animation::is_variant_interpolatable(const Variant p_value) { Variant::Type type = p_value.get_type(); return (type >= Variant::BOOL && type <= Variant::STRING_NAME) || type == Variant::ARRAY || type >= Variant::PACKED_INT32_ARRAY; // PackedByteArray is unsigned, so it would be better to ignore since blending uses float. } Variant Animation::cast_to_blendwise(const Variant p_value) { switch (p_value.get_type()) { case Variant::BOOL: case Variant::INT: { return p_value.operator double(); } break; case Variant::STRING: case Variant::STRING_NAME: { return string_to_array(p_value); } break; case Variant::RECT2I: { return p_value.operator Rect2(); } break; case Variant::VECTOR2I: { return p_value.operator Vector2(); } break; case Variant::VECTOR3I: { return p_value.operator Vector3(); } break; case Variant::VECTOR4I: { return p_value.operator Vector4(); } break; case Variant::PACKED_INT32_ARRAY: { return p_value.operator PackedFloat32Array(); } break; case Variant::PACKED_INT64_ARRAY: { return p_value.operator PackedFloat64Array(); } break; default: { } break; } return p_value; } Variant Animation::cast_from_blendwise(const Variant p_value, const Variant::Type p_type) { switch (p_type) { case Variant::BOOL: { return p_value.operator real_t() >= 0.5; } break; case Variant::INT: { return (int64_t)Math::round(p_value.operator double()); } break; case Variant::STRING: { return array_to_string(p_value); } break; case Variant::STRING_NAME: { return StringName(array_to_string(p_value)); } break; case Variant::RECT2I: { return Rect2i(p_value.operator Rect2().round()); } break; case Variant::VECTOR2I: { return Vector2i(p_value.operator Vector2().round()); } break; case Variant::VECTOR3I: { return Vector3i(p_value.operator Vector3().round()); } break; case Variant::VECTOR4I: { return Vector4i(p_value.operator Vector4().round()); } break; case Variant::PACKED_INT32_ARRAY: { PackedFloat32Array old_val = p_value.operator PackedFloat32Array(); PackedInt32Array new_val; new_val.resize(old_val.size()); int *new_val_w = new_val.ptrw(); for (int i = 0; i < old_val.size(); i++) { new_val_w[i] = (int32_t)Math::round(old_val[i]); } return new_val; } break; case Variant::PACKED_INT64_ARRAY: { PackedFloat64Array old_val = p_value.operator PackedFloat64Array(); PackedInt64Array new_val; for (int i = 0; i < old_val.size(); i++) { new_val.push_back((int64_t)Math::round(old_val[i])); } return new_val; } break; default: { } break; } return p_value; } Variant Animation::string_to_array(const Variant p_value) { if (!p_value.is_string()) { return p_value; }; const String &str = p_value.operator String(); PackedFloat32Array arr; for (int i = 0; i < str.length(); i++) { arr.push_back((float)str[i]); } return arr; } Variant Animation::array_to_string(const Variant p_value) { if (!p_value.is_array()) { return p_value; }; const PackedFloat32Array &arr = p_value.operator PackedFloat32Array(); String str; for (int i = 0; i < arr.size(); i++) { char32_t c = (char32_t)Math::round(arr[i]); if (c == 0 || (c & 0xfffff800) == 0xd800 || c > 0x10ffff) { c = ' '; } str += c; } return str; } Variant Animation::add_variant(const Variant &a, const Variant &b) { if (a.get_type() != b.get_type()) { if (a.is_num() && b.is_num()) { return add_variant(cast_to_blendwise(a), cast_to_blendwise(b)); } else if (!a.is_array()) { return a; } } switch (a.get_type()) { case Variant::NIL: { return Variant(); } break; case Variant::FLOAT: { return (a.operator double()) + (b.operator double()); } break; case Variant::RECT2: { const Rect2 ra = a.operator Rect2(); const Rect2 rb = b.operator Rect2(); return Rect2(ra.position + rb.position, ra.size + rb.size); } break; case Variant::PLANE: { const Plane pa = a.operator Plane(); const Plane pb = b.operator Plane(); return Plane(pa.normal + pb.normal, pa.d + pb.d); } break; case Variant::AABB: { const ::AABB aa = a.operator ::AABB(); const ::AABB ab = b.operator ::AABB(); return ::AABB(aa.position + ab.position, aa.size + ab.size); } break; case Variant::BASIS: { return (a.operator Basis()) * (b.operator Basis()); } break; case Variant::QUATERNION: { return (a.operator Quaternion()) * (b.operator Quaternion()); } break; case Variant::TRANSFORM2D: { return (a.operator Transform2D()) * (b.operator Transform2D()); } break; case Variant::TRANSFORM3D: { return (a.operator Transform3D()) * (b.operator Transform3D()); } break; case Variant::INT: case Variant::RECT2I: case Variant::VECTOR2I: case Variant::VECTOR3I: case Variant::VECTOR4I: case Variant::PACKED_INT32_ARRAY: case Variant::PACKED_INT64_ARRAY: { // Fallback the interpolatable value which needs casting. return cast_from_blendwise(add_variant(cast_to_blendwise(a), cast_to_blendwise(b)), a.get_type()); } break; case Variant::BOOL: case Variant::STRING: case Variant::STRING_NAME: { // Specialized for Tween. return b; } break; case Variant::PACKED_BYTE_ARRAY: { // Skip. } break; default: { if (a.is_array()) { const Array arr_a = a.operator Array(); const Array arr_b = b.operator Array(); int min_size = arr_a.size(); int max_size = arr_b.size(); bool is_a_larger = inform_variant_array(min_size, max_size); Array result; result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant()); result.resize(min_size); int i = 0; for (; i < min_size; i++) { result[i] = add_variant(arr_a[i], arr_b[i]); } if (min_size != max_size) { // Process with last element of the lesser array. // This is pretty funny and bizarre, but artists like to use it for polygon animation. Variant lesser_last; result.resize(max_size); if (is_a_larger) { if (i > 0) { lesser_last = arr_b[i - 1]; } else { Variant vz = arr_a[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = add_variant(arr_a[i], lesser_last); } } else { if (i > 0) { lesser_last = arr_a[i - 1]; } else { Variant vz = arr_b[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = add_variant(lesser_last, arr_b[i]); } } } return result; } } break; } return Variant::evaluate(Variant::OP_ADD, a, b); } Variant Animation::subtract_variant(const Variant &a, const Variant &b) { if (a.get_type() != b.get_type()) { if (a.is_num() && b.is_num()) { return subtract_variant(cast_to_blendwise(a), cast_to_blendwise(b)); } else if (!a.is_array()) { return a; } } switch (a.get_type()) { case Variant::NIL: { return Variant(); } break; case Variant::FLOAT: { return (a.operator double()) - (b.operator double()); } break; case Variant::RECT2: { const Rect2 ra = a.operator Rect2(); const Rect2 rb = b.operator Rect2(); return Rect2(ra.position - rb.position, ra.size - rb.size); } break; case Variant::PLANE: { const Plane pa = a.operator Plane(); const Plane pb = b.operator Plane(); return Plane(pa.normal - pb.normal, pa.d - pb.d); } break; case Variant::AABB: { const ::AABB aa = a.operator ::AABB(); const ::AABB ab = b.operator ::AABB(); return ::AABB(aa.position - ab.position, aa.size - ab.size); } break; case Variant::BASIS: { return (b.operator Basis()).inverse() * (a.operator Basis()); } break; case Variant::QUATERNION: { return (b.operator Quaternion()).inverse() * (a.operator Quaternion()); } break; case Variant::TRANSFORM2D: { return (b.operator Transform2D()).affine_inverse() * (a.operator Transform2D()); } break; case Variant::TRANSFORM3D: { return (b.operator Transform3D()).affine_inverse() * (a.operator Transform3D()); } break; case Variant::INT: case Variant::RECT2I: case Variant::VECTOR2I: case Variant::VECTOR3I: case Variant::VECTOR4I: case Variant::PACKED_INT32_ARRAY: case Variant::PACKED_INT64_ARRAY: { // Fallback the interpolatable value which needs casting. return cast_from_blendwise(subtract_variant(cast_to_blendwise(a), cast_to_blendwise(b)), a.get_type()); } break; case Variant::BOOL: case Variant::STRING: case Variant::STRING_NAME: { // Specialized for Tween. return a; } break; case Variant::PACKED_BYTE_ARRAY: { // Skip. } break; default: { if (a.is_array()) { const Array arr_a = a.operator Array(); const Array arr_b = b.operator Array(); int min_size = arr_a.size(); int max_size = arr_b.size(); bool is_a_larger = inform_variant_array(min_size, max_size); Array result; result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant()); result.resize(min_size); int i = 0; for (; i < min_size; i++) { result[i] = subtract_variant(arr_a[i], arr_b[i]); } if (min_size != max_size) { // Process with last element of the lesser array. // This is pretty funny and bizarre, but artists like to use it for polygon animation. Variant lesser_last; result.resize(max_size); if (is_a_larger) { if (i > 0) { lesser_last = arr_b[i - 1]; } else { Variant vz = arr_a[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = subtract_variant(arr_a[i], lesser_last); } } else { if (i > 0) { lesser_last = arr_a[i - 1]; } else { Variant vz = arr_b[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = subtract_variant(lesser_last, arr_b[i]); } } } return result; } } break; } return Variant::evaluate(Variant::OP_SUBTRACT, a, b); } Variant Animation::blend_variant(const Variant &a, const Variant &b, float c) { if (a.get_type() != b.get_type()) { if (a.is_num() && b.is_num()) { return blend_variant(cast_to_blendwise(a), cast_to_blendwise(b), c); } else if (!a.is_array()) { return a; } } switch (a.get_type()) { case Variant::NIL: { return Variant(); } break; case Variant::FLOAT: { return (a.operator double()) + (b.operator double()) * c; } break; case Variant::VECTOR2: { return (a.operator Vector2()) + (b.operator Vector2()) * c; } break; case Variant::RECT2: { const Rect2 ra = a.operator Rect2(); const Rect2 rb = b.operator Rect2(); return Rect2(ra.position + rb.position * c, ra.size + rb.size * c); } break; case Variant::VECTOR3: { return (a.operator Vector3()) + (b.operator Vector3()) * c; } break; case Variant::VECTOR4: { return (a.operator Vector4()) + (b.operator Vector4()) * c; } break; case Variant::PLANE: { const Plane pa = a.operator Plane(); const Plane pb = b.operator Plane(); return Plane(pa.normal + pb.normal * c, pa.d + pb.d * c); } break; case Variant::COLOR: { return (a.operator Color()) + (b.operator Color()) * c; } break; case Variant::AABB: { const ::AABB aa = a.operator ::AABB(); const ::AABB ab = b.operator ::AABB(); return ::AABB(aa.position + ab.position * c, aa.size + ab.size * c); } break; case Variant::BASIS: { return (a.operator Basis()) + (b.operator Basis()) * c; } break; case Variant::QUATERNION: { return (a.operator Quaternion()) * Quaternion().slerp((b.operator Quaternion()), c); } break; case Variant::TRANSFORM2D: { return (a.operator Transform2D()) * Transform2D().interpolate_with((b.operator Transform2D()), c); } break; case Variant::TRANSFORM3D: { return (a.operator Transform3D()) * Transform3D().interpolate_with((b.operator Transform3D()), c); } break; case Variant::BOOL: case Variant::INT: case Variant::RECT2I: case Variant::VECTOR2I: case Variant::VECTOR3I: case Variant::VECTOR4I: case Variant::PACKED_INT32_ARRAY: case Variant::PACKED_INT64_ARRAY: { // Fallback the interpolatable value which needs casting. return cast_from_blendwise(blend_variant(cast_to_blendwise(a), cast_to_blendwise(b), c), a.get_type()); } break; case Variant::STRING: case Variant::STRING_NAME: { Array arr_a = cast_to_blendwise(a); Array arr_b = cast_to_blendwise(b); int min_size = arr_a.size(); int max_size = arr_b.size(); bool is_a_larger = inform_variant_array(min_size, max_size); int mid_size = interpolate_variant(arr_a.size(), arr_b.size(), c); if (is_a_larger) { arr_a.resize(mid_size); } else { arr_b.resize(mid_size); } return cast_from_blendwise(blend_variant(arr_a, arr_b, c), a.get_type()); } break; case Variant::PACKED_BYTE_ARRAY: { // Skip. } break; default: { if (a.is_array()) { const Array arr_a = a.operator Array(); const Array arr_b = b.operator Array(); int min_size = arr_a.size(); int max_size = arr_b.size(); bool is_a_larger = inform_variant_array(min_size, max_size); Array result; result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant()); result.resize(min_size); int i = 0; for (; i < min_size; i++) { result[i] = blend_variant(arr_a[i], arr_b[i], c); } if (min_size != max_size) { // Process with last element of the lesser array. // This is pretty funny and bizarre, but artists like to use it for polygon animation. Variant lesser_last; if (is_a_larger && !Math::is_equal_approx(c, 1.0f)) { result.resize(max_size); if (i > 0) { lesser_last = arr_b[i - 1]; } else { Variant vz = arr_a[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = blend_variant(arr_a[i], lesser_last, c); } } else if (!is_a_larger && !Math::is_zero_approx(c)) { result.resize(max_size); if (i > 0) { lesser_last = arr_a[i - 1]; } else { Variant vz = arr_b[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = blend_variant(lesser_last, arr_b[i], c); } } } return result; } } break; } return c < 0.5 ? a : b; } Variant Animation::interpolate_variant(const Variant &a, const Variant &b, float c, bool p_snap_array_element) { if (a.get_type() != b.get_type()) { if (a.is_num() && b.is_num()) { return interpolate_variant(cast_to_blendwise(a), cast_to_blendwise(b), c); } else if (!a.is_array()) { return a; } } switch (a.get_type()) { case Variant::NIL: { return Variant(); } break; case Variant::FLOAT: { return Math::lerp(a.operator double(), b.operator double(), (double)c); } break; case Variant::VECTOR2: { return (a.operator Vector2()).lerp(b.operator Vector2(), c); } break; case Variant::RECT2: { const Rect2 ra = a.operator Rect2(); const Rect2 rb = b.operator Rect2(); return Rect2(ra.position.lerp(rb.position, c), ra.size.lerp(rb.size, c)); } break; case Variant::VECTOR3: { return (a.operator Vector3()).lerp(b.operator Vector3(), c); } break; case Variant::VECTOR4: { return (a.operator Vector4()).lerp(b.operator Vector4(), c); } break; case Variant::PLANE: { const Plane pa = a.operator Plane(); const Plane pb = b.operator Plane(); return Plane(pa.normal.lerp(pb.normal, c), Math::lerp((double)pa.d, (double)pb.d, (double)c)); } break; case Variant::COLOR: { return (a.operator Color()).lerp(b.operator Color(), c); } break; case Variant::AABB: { const ::AABB aa = a.operator ::AABB(); const ::AABB ab = b.operator ::AABB(); return ::AABB(aa.position.lerp(ab.position, c), aa.size.lerp(ab.size, c)); } break; case Variant::BASIS: { return (a.operator Basis()).lerp(b.operator Basis(), c); } break; case Variant::QUATERNION: { return (a.operator Quaternion()).slerp(b.operator Quaternion(), c); } break; case Variant::TRANSFORM2D: { return (a.operator Transform2D()).interpolate_with(b.operator Transform2D(), c); } break; case Variant::TRANSFORM3D: { return (a.operator Transform3D()).interpolate_with(b.operator Transform3D(), c); } break; case Variant::BOOL: case Variant::INT: case Variant::RECT2I: case Variant::VECTOR2I: case Variant::VECTOR3I: case Variant::VECTOR4I: case Variant::PACKED_INT32_ARRAY: case Variant::PACKED_INT64_ARRAY: { // Fallback the interpolatable value which needs casting. return cast_from_blendwise(interpolate_variant(cast_to_blendwise(a), cast_to_blendwise(b), c), a.get_type()); } break; case Variant::STRING: case Variant::STRING_NAME: { Array arr_a = cast_to_blendwise(a); Array arr_b = cast_to_blendwise(b); int min_size = arr_a.size(); int max_size = arr_b.size(); bool is_a_larger = inform_variant_array(min_size, max_size); int mid_size = interpolate_variant(arr_a.size(), arr_b.size(), c); if (is_a_larger) { arr_a.resize(mid_size); } else { arr_b.resize(mid_size); } return cast_from_blendwise(interpolate_variant(arr_a, arr_b, c, true), a.get_type()); } break; case Variant::PACKED_BYTE_ARRAY: { // Skip. } break; default: { if (a.is_array()) { const Array arr_a = a.operator Array(); const Array arr_b = b.operator Array(); int min_size = arr_a.size(); int max_size = arr_b.size(); bool is_a_larger = inform_variant_array(min_size, max_size); Array result; result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant()); result.resize(min_size); int i = 0; for (; i < min_size; i++) { result[i] = interpolate_variant(arr_a[i], arr_b[i], c); } if (min_size != max_size) { // Process with last element of the lesser array. // This is pretty funny and bizarre, but artists like to use it for polygon animation. Variant lesser_last; if (is_a_larger && !Math::is_equal_approx(c, 1.0f)) { result.resize(max_size); if (p_snap_array_element) { c = 0; } if (i > 0) { lesser_last = arr_b[i - 1]; } else { Variant vz = arr_a[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = interpolate_variant(arr_a[i], lesser_last, c); } } else if (!is_a_larger && !Math::is_zero_approx(c)) { result.resize(max_size); if (p_snap_array_element) { c = 1; } if (i > 0) { lesser_last = arr_a[i - 1]; } else { Variant vz = arr_b[i]; vz.zero(); lesser_last = vz; } for (; i < max_size; i++) { result[i] = interpolate_variant(lesser_last, arr_b[i], c); } } } return result; } } break; } return c < 0.5 ? a : b; } Variant Animation::cubic_interpolate_in_time_variant(const Variant &pre_a, const Variant &a, const Variant &b, const Variant &post_b, float c, real_t p_pre_a_t, real_t p_b_t, real_t p_post_b_t, bool p_snap_array_element) { if (pre_a.get_type() != a.get_type() || pre_a.get_type() != b.get_type() || pre_a.get_type() != post_b.get_type()) { if (pre_a.is_num() && a.is_num() && b.is_num() && post_b.is_num()) { return cubic_interpolate_in_time_variant(cast_to_blendwise(pre_a), cast_to_blendwise(a), cast_to_blendwise(b), cast_to_blendwise(post_b), c, p_pre_a_t, p_b_t, p_post_b_t, p_snap_array_element); } else if (!a.is_array()) { return a; } } switch (a.get_type()) { case Variant::NIL: { return Variant(); } break; case Variant::FLOAT: { return Math::cubic_interpolate_in_time(a.operator double(), b.operator double(), pre_a.operator double(), post_b.operator double(), (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t); } break; case Variant::VECTOR2: { return (a.operator Vector2()).cubic_interpolate_in_time(b.operator Vector2(), pre_a.operator Vector2(), post_b.operator Vector2(), c, p_b_t, p_pre_a_t, p_post_b_t); } break; case Variant::RECT2: { const Rect2 rpa = pre_a.operator Rect2(); const Rect2 ra = a.operator Rect2(); const Rect2 rb = b.operator Rect2(); const Rect2 rpb = post_b.operator Rect2(); return Rect2( ra.position.cubic_interpolate_in_time(rb.position, rpa.position, rpb.position, c, p_b_t, p_pre_a_t, p_post_b_t), ra.size.cubic_interpolate_in_time(rb.size, rpa.size, rpb.size, c, p_b_t, p_pre_a_t, p_post_b_t)); } break; case Variant::VECTOR3: { return (a.operator Vector3()).cubic_interpolate_in_time(b.operator Vector3(), pre_a.operator Vector3(), post_b.operator Vector3(), c, p_b_t, p_pre_a_t, p_post_b_t); } break; case Variant::VECTOR4: { return (a.operator Vector4()).cubic_interpolate_in_time(b.operator Vector4(), pre_a.operator Vector4(), post_b.operator Vector4(), c, p_b_t, p_pre_a_t, p_post_b_t); } break; case Variant::PLANE: { const Plane ppa = pre_a.operator Plane(); const Plane pa = a.operator Plane(); const Plane pb = b.operator Plane(); const Plane ppb = post_b.operator Plane(); return Plane( pa.normal.cubic_interpolate_in_time(pb.normal, ppa.normal, ppb.normal, c, p_b_t, p_pre_a_t, p_post_b_t), Math::cubic_interpolate_in_time((double)pa.d, (double)pb.d, (double)ppa.d, (double)ppb.d, (double)c, (double)p_b_t, (double)p_pre_a_t, (double)p_post_b_t)); } break; case Variant::COLOR: { const Color cpa = pre_a.operator Color(); const Color ca = a.operator Color(); const Color cb = b.operator Color(); const Color cpb = post_b.operator Color(); return Color( Math::cubic_interpolate_in_time((double)ca.r, (double)cb.r, (double)cpa.r, (double)cpb.r, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t), Math::cubic_interpolate_in_time((double)ca.g, (double)cb.g, (double)cpa.g, (double)cpb.g, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t), Math::cubic_interpolate_in_time((double)ca.b, (double)cb.b, (double)cpa.b, (double)cpb.b, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t), Math::cubic_interpolate_in_time((double)ca.a, (double)cb.a, (double)cpa.a, (double)cpb.a, (double)c, (double)p_pre_a_t, (double)p_b_t, (double)p_post_b_t)); } break; case Variant::AABB: { const ::AABB apa = pre_a.operator ::AABB(); const ::AABB aa = a.operator ::AABB(); const ::AABB ab = b.operator ::AABB(); const ::AABB apb = post_b.operator ::AABB(); return AABB( aa.position.cubic_interpolate_in_time(ab.position, apa.position, apb.position, c, p_b_t, p_pre_a_t, p_post_b_t), aa.size.cubic_interpolate_in_time(ab.size, apa.size, apb.size, c, p_b_t, p_pre_a_t, p_post_b_t)); } break; case Variant::BASIS: { const Basis bpa = pre_a.operator Basis(); const Basis ba = a.operator Basis(); const Basis bb = b.operator Basis(); const Basis bpb = post_b.operator Basis(); return Basis( ba.rows[0].cubic_interpolate_in_time(bb.rows[0], bpa.rows[0], bpb.rows[0], c, p_pre_a_t, p_b_t, p_post_b_t), ba.rows[1].cubic_interpolate_in_time(bb.rows[1], bpa.rows[1], bpb.rows[1], c, p_pre_a_t, p_b_t, p_post_b_t), ba.rows[2].cubic_interpolate_in_time(bb.rows[2], bpa.rows[2], bpb.rows[2], c, p_pre_a_t, p_b_t, p_post_b_t)); } break; case Variant::QUATERNION: { return (a.operator Quaternion()).spherical_cubic_interpolate_in_time(b.operator Quaternion(), pre_a.operator Quaternion(), post_b.operator Quaternion(), c, p_b_t, p_pre_a_t, p_post_b_t); } break; case Variant::TRANSFORM2D: { const Transform2D tpa = pre_a.operator Transform2D(); const Transform2D ta = a.operator Transform2D(); const Transform2D tb = b.operator Transform2D(); const Transform2D tpb = post_b.operator Transform2D(); // TODO: May cause unintended skew, we needs spherical_cubic_interpolate_in_time() for angle and Transform2D::cubic_interpolate_with(). return Transform2D( ta[0].cubic_interpolate_in_time(tb[0], tpa[0], tpb[0], c, p_pre_a_t, p_b_t, p_post_b_t), ta[1].cubic_interpolate_in_time(tb[1], tpa[1], tpb[1], c, p_pre_a_t, p_b_t, p_post_b_t), ta[2].cubic_interpolate_in_time(tb[2], tpa[2], tpb[2], c, p_pre_a_t, p_b_t, p_post_b_t)); } break; case Variant::TRANSFORM3D: { const Transform3D tpa = pre_a.operator Transform3D(); const Transform3D ta = a.operator Transform3D(); const Transform3D tb = b.operator Transform3D(); const Transform3D tpb = post_b.operator Transform3D(); // TODO: May cause unintended skew, we needs Transform3D::cubic_interpolate_with(). return Transform3D( ta.basis.rows[0].cubic_interpolate_in_time(tb.basis.rows[0], tpa.basis.rows[0], tpb.basis.rows[0], c, p_pre_a_t, p_b_t, p_post_b_t), ta.basis.rows[1].cubic_interpolate_in_time(tb.basis.rows[1], tpa.basis.rows[1], tpb.basis.rows[1], c, p_pre_a_t, p_b_t, p_post_b_t), ta.basis.rows[2].cubic_interpolate_in_time(tb.basis.rows[2], tpa.basis.rows[2], tpb.basis.rows[2], c, p_pre_a_t, p_b_t, p_post_b_t), ta.origin.cubic_interpolate_in_time(tb.origin, tpa.origin, tpb.origin, c, p_pre_a_t, p_b_t, p_post_b_t)); } break; case Variant::BOOL: case Variant::INT: case Variant::RECT2I: case Variant::VECTOR2I: case Variant::VECTOR3I: case Variant::VECTOR4I: case Variant::PACKED_INT32_ARRAY: case Variant::PACKED_INT64_ARRAY: { // Fallback the interpolatable value which needs casting. return cast_from_blendwise(cubic_interpolate_in_time_variant(cast_to_blendwise(pre_a), cast_to_blendwise(a), cast_to_blendwise(b), cast_to_blendwise(post_b), c, p_pre_a_t, p_b_t, p_post_b_t, p_snap_array_element), a.get_type()); } break; case Variant::STRING: case Variant::STRING_NAME: { // TODO: // String interpolation works on both the character array size and the character code, to apply cubic interpolation neatly, // we need to figure out how to interpolate well in cases where there are fewer than 4 keys. So, for now, fallback to linear interpolation. return interpolate_variant(a, b, c); } break; case Variant::PACKED_BYTE_ARRAY: { // Skip. } break; default: { if (a.is_array()) { const Array arr_pa = pre_a.operator Array(); const Array arr_a = a.operator Array(); const Array arr_b = b.operator Array(); const Array arr_pb = post_b.operator Array(); int min_size = arr_a.size(); int max_size = arr_b.size(); bool is_a_larger = inform_variant_array(min_size, max_size); Array result; result.set_typed(MAX(arr_a.get_typed_builtin(), arr_b.get_typed_builtin()), StringName(), Variant()); result.resize(min_size); if (min_size == 0 && max_size == 0) { return result; } Variant vz; if (is_a_larger) { vz = arr_a[0]; } else { vz = arr_b[0]; } vz.zero(); Variant pre_last = arr_pa.size() ? arr_pa[arr_pa.size() - 1] : vz; Variant post_last = arr_pb.size() ? arr_pb[arr_pb.size() - 1] : vz; int i = 0; for (; i < min_size; i++) { result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], arr_a[i], arr_b[i], i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t); } if (min_size != max_size) { // Process with last element of the lesser array. // This is pretty funny and bizarre, but artists like to use it for polygon animation. Variant lesser_last = vz; if (is_a_larger && !Math::is_equal_approx(c, 1.0f)) { result.resize(max_size); if (p_snap_array_element) { c = 0; } if (i > 0) { lesser_last = arr_b[i - 1]; } for (; i < max_size; i++) { result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], arr_a[i], lesser_last, i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t); } } else if (!is_a_larger && !Math::is_zero_approx(c)) { result.resize(max_size); if (p_snap_array_element) { c = 1; } if (i > 0) { lesser_last = arr_a[i - 1]; } for (; i < max_size; i++) { result[i] = cubic_interpolate_in_time_variant(i >= arr_pa.size() ? pre_last : arr_pa[i], lesser_last, arr_b[i], i >= arr_pb.size() ? post_last : arr_pb[i], c, p_pre_a_t, p_b_t, p_post_b_t); } } } return result; } } break; } return c < 0.5 ? a : b; } bool Animation::inform_variant_array(int &r_min, int &r_max) { if (r_min <= r_max) { return false; } SWAP(r_min, r_max); return true; } Animation::Animation() { } Animation::~Animation() { for (int i = 0; i < tracks.size(); i++) { memdelete(tracks[i]); } }