/**************************************************************************/ /* primitive_meshes.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "primitive_meshes.h" #include "core/config/project_settings.h" #include "scene/resources/theme.h" #include "scene/theme/theme_db.h" #include "servers/rendering_server.h" #include "thirdparty/misc/polypartition.h" #define PADDING_REF_SIZE 1024.0 /** PrimitiveMesh */ void PrimitiveMesh::_update() const { Array arr; if (GDVIRTUAL_CALL(_create_mesh_array, arr)) { ERR_FAIL_COND_MSG(arr.size() != RS::ARRAY_MAX, "_create_mesh_array must return an array of Mesh.ARRAY_MAX elements."); } else { arr.resize(RS::ARRAY_MAX); _create_mesh_array(arr); } Vector points = arr[RS::ARRAY_VERTEX]; ERR_FAIL_COND_MSG(points.is_empty(), "_create_mesh_array must return at least a vertex array."); aabb = AABB(); int pc = points.size(); ERR_FAIL_COND(pc == 0); { const Vector3 *r = points.ptr(); for (int i = 0; i < pc; i++) { if (i == 0) { aabb.position = r[i]; } else { aabb.expand_to(r[i]); } } } Vector indices = arr[RS::ARRAY_INDEX]; if (flip_faces) { Vector normals = arr[RS::ARRAY_NORMAL]; if (normals.size() && indices.size()) { { int nc = normals.size(); Vector3 *w = normals.ptrw(); for (int i = 0; i < nc; i++) { w[i] = -w[i]; } } { int ic = indices.size(); int *w = indices.ptrw(); for (int i = 0; i < ic; i += 3) { SWAP(w[i + 0], w[i + 1]); } } arr[RS::ARRAY_NORMAL] = normals; arr[RS::ARRAY_INDEX] = indices; } } if (add_uv2) { // _create_mesh_array should populate our UV2, this is a fallback in case it doesn't. // As we don't know anything about the geometry we only pad the right and bottom edge // of our texture. Vector uv = arr[RS::ARRAY_TEX_UV]; Vector uv2 = arr[RS::ARRAY_TEX_UV2]; if (uv.size() > 0 && uv2.size() == 0) { Vector2 uv2_scale = get_uv2_scale(); uv2.resize(uv.size()); Vector2 *uv2w = uv2.ptrw(); for (int i = 0; i < uv.size(); i++) { uv2w[i] = uv[i] * uv2_scale; } } arr[RS::ARRAY_TEX_UV2] = uv2; } array_len = pc; index_array_len = indices.size(); // in with the new RenderingServer::get_singleton()->mesh_clear(mesh); RenderingServer::get_singleton()->mesh_add_surface_from_arrays(mesh, (RenderingServer::PrimitiveType)primitive_type, arr); RenderingServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid()); pending_request = false; clear_cache(); const_cast(this)->emit_changed(); } void PrimitiveMesh::request_update() { if (pending_request) { return; } _update(); } int PrimitiveMesh::get_surface_count() const { if (pending_request) { _update(); } return 1; } int PrimitiveMesh::surface_get_array_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, -1); if (pending_request) { _update(); } return array_len; } int PrimitiveMesh::surface_get_array_index_len(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, -1); if (pending_request) { _update(); } return index_array_len; } Array PrimitiveMesh::surface_get_arrays(int p_surface) const { ERR_FAIL_INDEX_V(p_surface, 1, Array()); if (pending_request) { _update(); } return RenderingServer::get_singleton()->mesh_surface_get_arrays(mesh, 0); } Dictionary PrimitiveMesh::surface_get_lods(int p_surface) const { return Dictionary(); //not really supported } TypedArray PrimitiveMesh::surface_get_blend_shape_arrays(int p_surface) const { return TypedArray(); //not really supported } BitField PrimitiveMesh::surface_get_format(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, 0); uint64_t mesh_format = RS::ARRAY_FORMAT_VERTEX | RS::ARRAY_FORMAT_NORMAL | RS::ARRAY_FORMAT_TANGENT | RS::ARRAY_FORMAT_TEX_UV | RS::ARRAY_FORMAT_INDEX; if (add_uv2) { mesh_format |= RS::ARRAY_FORMAT_TEX_UV2; } return mesh_format; } Mesh::PrimitiveType PrimitiveMesh::surface_get_primitive_type(int p_idx) const { return primitive_type; } void PrimitiveMesh::surface_set_material(int p_idx, const Ref &p_material) { ERR_FAIL_INDEX(p_idx, 1); set_material(p_material); } Ref PrimitiveMesh::surface_get_material(int p_idx) const { ERR_FAIL_INDEX_V(p_idx, 1, nullptr); return material; } int PrimitiveMesh::get_blend_shape_count() const { return 0; } StringName PrimitiveMesh::get_blend_shape_name(int p_index) const { return StringName(); } void PrimitiveMesh::set_blend_shape_name(int p_index, const StringName &p_name) { } AABB PrimitiveMesh::get_aabb() const { if (pending_request) { _update(); } return aabb; } RID PrimitiveMesh::get_rid() const { if (pending_request) { _update(); } return mesh; } void PrimitiveMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_material", "material"), &PrimitiveMesh::set_material); ClassDB::bind_method(D_METHOD("get_material"), &PrimitiveMesh::get_material); ClassDB::bind_method(D_METHOD("get_mesh_arrays"), &PrimitiveMesh::get_mesh_arrays); ClassDB::bind_method(D_METHOD("set_custom_aabb", "aabb"), &PrimitiveMesh::set_custom_aabb); ClassDB::bind_method(D_METHOD("get_custom_aabb"), &PrimitiveMesh::get_custom_aabb); ClassDB::bind_method(D_METHOD("set_flip_faces", "flip_faces"), &PrimitiveMesh::set_flip_faces); ClassDB::bind_method(D_METHOD("get_flip_faces"), &PrimitiveMesh::get_flip_faces); ClassDB::bind_method(D_METHOD("set_add_uv2", "add_uv2"), &PrimitiveMesh::set_add_uv2); ClassDB::bind_method(D_METHOD("get_add_uv2"), &PrimitiveMesh::get_add_uv2); ClassDB::bind_method(D_METHOD("set_uv2_padding", "uv2_padding"), &PrimitiveMesh::set_uv2_padding); ClassDB::bind_method(D_METHOD("get_uv2_padding"), &PrimitiveMesh::get_uv2_padding); ClassDB::bind_method(D_METHOD("request_update"), &PrimitiveMesh::request_update); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "material", PROPERTY_HINT_RESOURCE_TYPE, "BaseMaterial3D,ShaderMaterial"), "set_material", "get_material"); ADD_PROPERTY(PropertyInfo(Variant::AABB, "custom_aabb", PROPERTY_HINT_NONE, "suffix:m"), "set_custom_aabb", "get_custom_aabb"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "flip_faces"), "set_flip_faces", "get_flip_faces"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "add_uv2"), "set_add_uv2", "get_add_uv2"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "uv2_padding", PROPERTY_HINT_RANGE, "0,10,0.01,or_greater"), "set_uv2_padding", "get_uv2_padding"); GDVIRTUAL_BIND(_create_mesh_array); } void PrimitiveMesh::set_material(const Ref &p_material) { material = p_material; if (!pending_request) { // just apply it, else it'll happen when _update is called. RenderingServer::get_singleton()->mesh_surface_set_material(mesh, 0, material.is_null() ? RID() : material->get_rid()); notify_property_list_changed(); emit_changed(); } } Ref PrimitiveMesh::get_material() const { return material; } Array PrimitiveMesh::get_mesh_arrays() const { return surface_get_arrays(0); } void PrimitiveMesh::set_custom_aabb(const AABB &p_custom) { custom_aabb = p_custom; RS::get_singleton()->mesh_set_custom_aabb(mesh, custom_aabb); emit_changed(); } AABB PrimitiveMesh::get_custom_aabb() const { return custom_aabb; } void PrimitiveMesh::set_flip_faces(bool p_enable) { flip_faces = p_enable; request_update(); } bool PrimitiveMesh::get_flip_faces() const { return flip_faces; } void PrimitiveMesh::set_add_uv2(bool p_enable) { add_uv2 = p_enable; _update_lightmap_size(); request_update(); } void PrimitiveMesh::set_uv2_padding(float p_padding) { uv2_padding = p_padding; _update_lightmap_size(); request_update(); } Vector2 PrimitiveMesh::get_uv2_scale(Vector2 p_margin_scale) const { Vector2 uv2_scale; Vector2 lightmap_size = get_lightmap_size_hint(); // Calculate it as a margin, if no lightmap size hint is given we assume "PADDING_REF_SIZE" as our texture size. uv2_scale.x = p_margin_scale.x * uv2_padding / (lightmap_size.x == 0.0 ? PADDING_REF_SIZE : lightmap_size.x); uv2_scale.y = p_margin_scale.y * uv2_padding / (lightmap_size.y == 0.0 ? PADDING_REF_SIZE : lightmap_size.y); // Inverse it to turn our margin into a scale uv2_scale = Vector2(1.0, 1.0) - uv2_scale; return uv2_scale; } float PrimitiveMesh::get_lightmap_texel_size() const { float texel_size = GLOBAL_GET("rendering/lightmapping/primitive_meshes/texel_size"); if (texel_size <= 0.0) { texel_size = 0.2; } return texel_size; } PrimitiveMesh::PrimitiveMesh() { mesh = RenderingServer::get_singleton()->mesh_create(); } PrimitiveMesh::~PrimitiveMesh() { ERR_FAIL_NULL(RenderingServer::get_singleton()); RenderingServer::get_singleton()->free(mesh); } /** CapsuleMesh */ void CapsuleMesh::_update_lightmap_size() { if (get_add_uv2()) { // size must have changed, update lightmap size hint Size2i _lightmap_size_hint; float texel_size = get_lightmap_texel_size(); float padding = get_uv2_padding(); float radial_length = radius * Math_PI * 0.5; // circumference of 90 degree bend float vertical_length = radial_length * 2 + (height - 2.0 * radius); // total vertical length _lightmap_size_hint.x = MAX(1.0, 4.0 * radial_length / texel_size) + padding; _lightmap_size_hint.y = MAX(1.0, vertical_length / texel_size) + padding; set_lightmap_size_hint(_lightmap_size_hint); } } void CapsuleMesh::_create_mesh_array(Array &p_arr) const { bool _add_uv2 = get_add_uv2(); float texel_size = get_lightmap_texel_size(); float _uv2_padding = get_uv2_padding() * texel_size; create_mesh_array(p_arr, radius, height, radial_segments, rings, _add_uv2, _uv2_padding); } void CapsuleMesh::create_mesh_array(Array &p_arr, const float radius, const float height, const int radial_segments, const int rings, bool p_add_uv2, const float p_uv2_padding) { int i, j, prevrow, thisrow, point; float x, y, z, u, v, w; float onethird = 1.0 / 3.0; float twothirds = 2.0 / 3.0; // Only used if we calculate UV2 float radial_width = 2.0 * radius * Math_PI; float radial_h = radial_width / (radial_width + p_uv2_padding); float radial_length = radius * Math_PI * 0.5; // circumference of 90 degree bend float vertical_length = radial_length * 2 + (height - 2.0 * radius) + p_uv2_padding; // total vertical length float radial_v = radial_length / vertical_length; // v size of top and bottom section float height_v = (height - 2.0 * radius) / vertical_length; // v size of height section // note, this has been aligned with our collision shape but I've left the descriptions as top/middle/bottom Vector points; Vector normals; Vector tangents; Vector uvs; Vector uv2s; Vector indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); /* top hemisphere */ thisrow = 0; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); w = sin(0.5 * Math_PI * v); y = radius * cos(0.5 * Math_PI * v); for (i = 0; i <= radial_segments; i++) { u = i; u /= radial_segments; x = -sin(u * Math_TAU); z = cos(u * Math_TAU); Vector3 p = Vector3(x * radius * w, y, -z * radius * w); points.push_back(p + Vector3(0.0, 0.5 * height - radius, 0.0)); normals.push_back(p.normalized()); ADD_TANGENT(-z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, v * onethird)); if (p_add_uv2) { uv2s.push_back(Vector2(u * radial_h, v * radial_v)); } point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } } prevrow = thisrow; thisrow = point; } /* cylinder */ thisrow = point; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); y = (height - 2.0 * radius) * v; y = (0.5 * height - radius) - y; for (i = 0; i <= radial_segments; i++) { u = i; u /= radial_segments; x = -sin(u * Math_TAU); z = cos(u * Math_TAU); Vector3 p = Vector3(x * radius, y, -z * radius); points.push_back(p); normals.push_back(Vector3(x, 0.0, -z)); ADD_TANGENT(-z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, onethird + (v * onethird))); if (p_add_uv2) { uv2s.push_back(Vector2(u * radial_h, radial_v + (v * height_v))); } point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } } prevrow = thisrow; thisrow = point; } /* bottom hemisphere */ thisrow = point; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); v += 1.0; w = sin(0.5 * Math_PI * v); y = radius * cos(0.5 * Math_PI * v); for (i = 0; i <= radial_segments; i++) { u = i; u /= radial_segments; x = -sin(u * Math_TAU); z = cos(u * Math_TAU); Vector3 p = Vector3(x * radius * w, y, -z * radius * w); points.push_back(p + Vector3(0.0, -0.5 * height + radius, 0.0)); normals.push_back(p.normalized()); ADD_TANGENT(-z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, twothirds + ((v - 1.0) * onethird))); if (p_add_uv2) { uv2s.push_back(Vector2(u * radial_h, radial_v + height_v + ((v - 1.0) * radial_v))); } point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } } prevrow = thisrow; thisrow = point; } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; if (p_add_uv2) { p_arr[RS::ARRAY_TEX_UV2] = uv2s; } p_arr[RS::ARRAY_INDEX] = indices; } void CapsuleMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &CapsuleMesh::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &CapsuleMesh::get_radius); ClassDB::bind_method(D_METHOD("set_height", "height"), &CapsuleMesh::set_height); ClassDB::bind_method(D_METHOD("get_height"), &CapsuleMesh::get_height); ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CapsuleMesh::set_radial_segments); ClassDB::bind_method(D_METHOD("get_radial_segments"), &CapsuleMesh::get_radial_segments); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CapsuleMesh::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &CapsuleMesh::get_rings); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_height", "get_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_rings", "get_rings"); ADD_LINKED_PROPERTY("radius", "height"); ADD_LINKED_PROPERTY("height", "radius"); } void CapsuleMesh::set_radius(const float p_radius) { radius = p_radius; if (radius > height * 0.5) { height = radius * 2.0; } _update_lightmap_size(); request_update(); } float CapsuleMesh::get_radius() const { return radius; } void CapsuleMesh::set_height(const float p_height) { height = p_height; if (radius > height * 0.5) { radius = height * 0.5; } _update_lightmap_size(); request_update(); } float CapsuleMesh::get_height() const { return height; } void CapsuleMesh::set_radial_segments(const int p_segments) { radial_segments = p_segments > 4 ? p_segments : 4; request_update(); } int CapsuleMesh::get_radial_segments() const { return radial_segments; } void CapsuleMesh::set_rings(const int p_rings) { ERR_FAIL_COND(p_rings < 0); rings = p_rings; request_update(); } int CapsuleMesh::get_rings() const { return rings; } CapsuleMesh::CapsuleMesh() {} /** BoxMesh */ void BoxMesh::_update_lightmap_size() { if (get_add_uv2()) { // size must have changed, update lightmap size hint Size2i _lightmap_size_hint; float texel_size = get_lightmap_texel_size(); float padding = get_uv2_padding(); float width = (size.x + size.z) / texel_size; float length = (size.y + size.y + MAX(size.x, size.z)) / texel_size; _lightmap_size_hint.x = MAX(1.0, width) + 2.0 * padding; _lightmap_size_hint.y = MAX(1.0, length) + 3.0 * padding; set_lightmap_size_hint(_lightmap_size_hint); } } void BoxMesh::_create_mesh_array(Array &p_arr) const { // Note about padding, with our box each face of the box faces a different direction so we want a seam // around every face. We thus add our padding to the right and bottom of each face. // With 3 faces along the width and 2 along the height of the texture we need to adjust our scale // accordingly. bool _add_uv2 = get_add_uv2(); float texel_size = get_lightmap_texel_size(); float _uv2_padding = get_uv2_padding() * texel_size; BoxMesh::create_mesh_array(p_arr, size, subdivide_w, subdivide_h, subdivide_d, _add_uv2, _uv2_padding); } void BoxMesh::create_mesh_array(Array &p_arr, Vector3 size, int subdivide_w, int subdivide_h, int subdivide_d, bool p_add_uv2, const float p_uv2_padding) { int i, j, prevrow, thisrow, point; float x, y, z; float onethird = 1.0 / 3.0; float twothirds = 2.0 / 3.0; // Only used if we calculate UV2 // TODO this could be improved by changing the order depending on which side is the longest (basically the below works best if size.y is the longest) float total_h = (size.x + size.z + (2.0 * p_uv2_padding)); float padding_h = p_uv2_padding / total_h; float width_h = size.x / total_h; float depth_h = size.z / total_h; float total_v = (size.y + size.y + MAX(size.x, size.z) + (3.0 * p_uv2_padding)); float padding_v = p_uv2_padding / total_v; float width_v = size.x / total_v; float height_v = size.y / total_v; float depth_v = size.z / total_v; Vector3 start_pos = size * -0.5; // set our bounding box Vector points; Vector normals; Vector tangents; Vector uvs; Vector uv2s; Vector indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); // front + back y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= subdivide_h + 1; j++) { float v = j; float v2 = v / (subdivide_w + 1.0); v /= (2.0 * (subdivide_h + 1.0)); x = start_pos.x; for (i = 0; i <= subdivide_w + 1; i++) { float u = i; float u2 = u / (subdivide_w + 1.0); u /= (3.0 * (subdivide_w + 1.0)); // front points.push_back(Vector3(x, -y, -start_pos.z)); // double negative on the Z! normals.push_back(Vector3(0.0, 0.0, 1.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(u, v)); if (p_add_uv2) { uv2s.push_back(Vector2(u2 * width_h, v2 * height_v)); } point++; // back points.push_back(Vector3(-x, -y, start_pos.z)); normals.push_back(Vector3(0.0, 0.0, -1.0)); ADD_TANGENT(-1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + u, v)); if (p_add_uv2) { uv2s.push_back(Vector2(u2 * width_h, height_v + padding_v + (v2 * height_v))); } point++; if (i > 0 && j > 0) { int i2 = i * 2; // front indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); // back indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); } x += size.x / (subdivide_w + 1.0); } y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; } // left + right y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_h + 1); j++) { float v = j; float v2 = v / (subdivide_h + 1.0); v /= (2.0 * (subdivide_h + 1.0)); z = start_pos.z; for (i = 0; i <= (subdivide_d + 1); i++) { float u = i; float u2 = u / (subdivide_d + 1.0); u /= (3.0 * (subdivide_d + 1.0)); // right points.push_back(Vector3(-start_pos.x, -y, -z)); normals.push_back(Vector3(1.0, 0.0, 0.0)); ADD_TANGENT(0.0, 0.0, -1.0, 1.0); uvs.push_back(Vector2(onethird + u, v)); if (p_add_uv2) { uv2s.push_back(Vector2(width_h + padding_h + (u2 * depth_h), v2 * height_v)); } point++; // left points.push_back(Vector3(start_pos.x, -y, z)); normals.push_back(Vector3(-1.0, 0.0, 0.0)); ADD_TANGENT(0.0, 0.0, 1.0, 1.0); uvs.push_back(Vector2(u, 0.5 + v)); if (p_add_uv2) { uv2s.push_back(Vector2(width_h + padding_h + (u2 * depth_h), height_v + padding_v + (v2 * height_v))); } point++; if (i > 0 && j > 0) { int i2 = i * 2; // right indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); // left indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); } z += size.z / (subdivide_d + 1.0); } y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; } // top + bottom z = start_pos.z; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_d + 1); j++) { float v = j; float v2 = v / (subdivide_d + 1.0); v /= (2.0 * (subdivide_d + 1.0)); x = start_pos.x; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float u2 = u / (subdivide_w + 1.0); u /= (3.0 * (subdivide_w + 1.0)); // top points.push_back(Vector3(-x, -start_pos.y, -z)); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(-1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(onethird + u, 0.5 + v)); if (p_add_uv2) { uv2s.push_back(Vector2(u2 * width_h, ((height_v + padding_v) * 2.0) + (v2 * depth_v))); } point++; // bottom points.push_back(Vector3(x, start_pos.y, -z)); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + u, 0.5 + v)); if (p_add_uv2) { uv2s.push_back(Vector2(width_h + padding_h + (u2 * depth_h), ((height_v + padding_v) * 2.0) + (v2 * width_v))); } point++; if (i > 0 && j > 0) { int i2 = i * 2; // top indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); // bottom indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); } x += size.x / (subdivide_w + 1.0); } z += size.z / (subdivide_d + 1.0); prevrow = thisrow; thisrow = point; } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; if (p_add_uv2) { p_arr[RS::ARRAY_TEX_UV2] = uv2s; } p_arr[RS::ARRAY_INDEX] = indices; } void BoxMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_size", "size"), &BoxMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &BoxMesh::get_size); ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &BoxMesh::set_subdivide_width); ClassDB::bind_method(D_METHOD("get_subdivide_width"), &BoxMesh::get_subdivide_width); ClassDB::bind_method(D_METHOD("set_subdivide_height", "divisions"), &BoxMesh::set_subdivide_height); ClassDB::bind_method(D_METHOD("get_subdivide_height"), &BoxMesh::get_subdivide_height); ClassDB::bind_method(D_METHOD("set_subdivide_depth", "divisions"), &BoxMesh::set_subdivide_depth); ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &BoxMesh::get_subdivide_depth); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "size", PROPERTY_HINT_NONE, "suffix:m"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_height", "get_subdivide_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth"); } void BoxMesh::set_size(const Vector3 &p_size) { size = p_size; _update_lightmap_size(); request_update(); } Vector3 BoxMesh::get_size() const { return size; } void BoxMesh::set_subdivide_width(const int p_divisions) { subdivide_w = p_divisions > 0 ? p_divisions : 0; request_update(); } int BoxMesh::get_subdivide_width() const { return subdivide_w; } void BoxMesh::set_subdivide_height(const int p_divisions) { subdivide_h = p_divisions > 0 ? p_divisions : 0; request_update(); } int BoxMesh::get_subdivide_height() const { return subdivide_h; } void BoxMesh::set_subdivide_depth(const int p_divisions) { subdivide_d = p_divisions > 0 ? p_divisions : 0; request_update(); } int BoxMesh::get_subdivide_depth() const { return subdivide_d; } BoxMesh::BoxMesh() {} /** CylinderMesh */ void CylinderMesh::_update_lightmap_size() { if (get_add_uv2()) { // size must have changed, update lightmap size hint Size2i _lightmap_size_hint; float texel_size = get_lightmap_texel_size(); float padding = get_uv2_padding(); float top_circumference = top_radius * Math_PI * 2.0; float bottom_circumference = bottom_radius * Math_PI * 2.0; float _width = MAX(top_circumference, bottom_circumference) / texel_size + padding; _width = MAX(_width, (((top_radius + bottom_radius) / texel_size) + padding) * 2.0); // this is extremely unlikely to be larger, will only happen if padding is larger then our diameter. _lightmap_size_hint.x = MAX(1.0, _width); float _height = ((height + (MAX(top_radius, bottom_radius) * 2.0)) / texel_size) + (2.0 * padding); _lightmap_size_hint.y = MAX(1.0, _height); set_lightmap_size_hint(_lightmap_size_hint); } } void CylinderMesh::_create_mesh_array(Array &p_arr) const { bool _add_uv2 = get_add_uv2(); float texel_size = get_lightmap_texel_size(); float _uv2_padding = get_uv2_padding() * texel_size; create_mesh_array(p_arr, top_radius, bottom_radius, height, radial_segments, rings, cap_top, cap_bottom, _add_uv2, _uv2_padding); } void CylinderMesh::create_mesh_array(Array &p_arr, float top_radius, float bottom_radius, float height, int radial_segments, int rings, bool cap_top, bool cap_bottom, bool p_add_uv2, const float p_uv2_padding) { int i, j, prevrow, thisrow, point; float x, y, z, u, v, radius, radius_h; // Only used if we calculate UV2 float top_circumference = top_radius * Math_PI * 2.0; float bottom_circumference = bottom_radius * Math_PI * 2.0; float vertical_length = height + MAX(2.0 * top_radius, 2.0 * bottom_radius) + (2.0 * p_uv2_padding); float height_v = height / vertical_length; float padding_v = p_uv2_padding / vertical_length; float horizonal_length = MAX(MAX(2.0 * (top_radius + bottom_radius + p_uv2_padding), top_circumference + p_uv2_padding), bottom_circumference + p_uv2_padding); float center_h = 0.5 * (horizonal_length - p_uv2_padding) / horizonal_length; float top_h = top_circumference / horizonal_length; float bottom_h = bottom_circumference / horizonal_length; float padding_h = p_uv2_padding / horizonal_length; Vector points; Vector normals; Vector tangents; Vector uvs; Vector uv2s; Vector indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); thisrow = 0; prevrow = 0; const real_t side_normal_y = (bottom_radius - top_radius) / height; for (j = 0; j <= (rings + 1); j++) { v = j; v /= (rings + 1); radius = top_radius + ((bottom_radius - top_radius) * v); radius_h = top_h + ((bottom_h - top_h) * v); y = height * v; y = (height * 0.5) - y; for (i = 0; i <= radial_segments; i++) { u = i; u /= radial_segments; x = sin(u * Math_TAU); z = cos(u * Math_TAU); Vector3 p = Vector3(x * radius, y, z * radius); points.push_back(p); normals.push_back(Vector3(x, side_normal_y, z).normalized()); ADD_TANGENT(z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, v * 0.5)); if (p_add_uv2) { uv2s.push_back(Vector2(center_h + (u - 0.5) * radius_h, v * height_v)); } point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } } prevrow = thisrow; thisrow = point; } // Adjust for bottom section, only used if we calculate UV2s. top_h = top_radius / horizonal_length; float top_v = top_radius / vertical_length; bottom_h = bottom_radius / horizonal_length; float bottom_v = bottom_radius / vertical_length; // Add top. if (cap_top && top_radius > 0.0) { y = height * 0.5; thisrow = point; points.push_back(Vector3(0.0, y, 0.0)); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(0.25, 0.75)); if (p_add_uv2) { uv2s.push_back(Vector2(top_h, height_v + padding_v + MAX(top_v, bottom_v))); } point++; for (i = 0; i <= radial_segments; i++) { float r = i; r /= radial_segments; x = sin(r * Math_TAU); z = cos(r * Math_TAU); u = ((x + 1.0) * 0.25); v = 0.5 + ((z + 1.0) * 0.25); Vector3 p = Vector3(x * top_radius, y, z * top_radius); points.push_back(p); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(u, v)); if (p_add_uv2) { uv2s.push_back(Vector2(top_h + (x * top_h), height_v + padding_v + MAX(top_v, bottom_v) + (z * top_v))); } point++; if (i > 0) { indices.push_back(thisrow); indices.push_back(point - 1); indices.push_back(point - 2); } } } // Add bottom. if (cap_bottom && bottom_radius > 0.0) { y = height * -0.5; thisrow = point; points.push_back(Vector3(0.0, y, 0.0)); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(0.75, 0.75)); if (p_add_uv2) { uv2s.push_back(Vector2(top_h + top_h + padding_h + bottom_h, height_v + padding_v + MAX(top_v, bottom_v))); } point++; for (i = 0; i <= radial_segments; i++) { float r = i; r /= radial_segments; x = sin(r * Math_TAU); z = cos(r * Math_TAU); u = 0.5 + ((x + 1.0) * 0.25); v = 1.0 - ((z + 1.0) * 0.25); Vector3 p = Vector3(x * bottom_radius, y, z * bottom_radius); points.push_back(p); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(u, v)); if (p_add_uv2) { uv2s.push_back(Vector2(top_h + top_h + padding_h + bottom_h + (x * bottom_h), height_v + padding_v + MAX(top_v, bottom_v) - (z * bottom_v))); } point++; if (i > 0) { indices.push_back(thisrow); indices.push_back(point - 2); indices.push_back(point - 1); } } } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; if (p_add_uv2) { p_arr[RS::ARRAY_TEX_UV2] = uv2s; } p_arr[RS::ARRAY_INDEX] = indices; } void CylinderMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_top_radius", "radius"), &CylinderMesh::set_top_radius); ClassDB::bind_method(D_METHOD("get_top_radius"), &CylinderMesh::get_top_radius); ClassDB::bind_method(D_METHOD("set_bottom_radius", "radius"), &CylinderMesh::set_bottom_radius); ClassDB::bind_method(D_METHOD("get_bottom_radius"), &CylinderMesh::get_bottom_radius); ClassDB::bind_method(D_METHOD("set_height", "height"), &CylinderMesh::set_height); ClassDB::bind_method(D_METHOD("get_height"), &CylinderMesh::get_height); ClassDB::bind_method(D_METHOD("set_radial_segments", "segments"), &CylinderMesh::set_radial_segments); ClassDB::bind_method(D_METHOD("get_radial_segments"), &CylinderMesh::get_radial_segments); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &CylinderMesh::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &CylinderMesh::get_rings); ClassDB::bind_method(D_METHOD("set_cap_top", "cap_top"), &CylinderMesh::set_cap_top); ClassDB::bind_method(D_METHOD("is_cap_top"), &CylinderMesh::is_cap_top); ClassDB::bind_method(D_METHOD("set_cap_bottom", "cap_bottom"), &CylinderMesh::set_cap_bottom); ClassDB::bind_method(D_METHOD("is_cap_bottom"), &CylinderMesh::is_cap_bottom); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "top_radius", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater,suffix:m"), "set_top_radius", "get_top_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bottom_radius", PROPERTY_HINT_RANGE, "0,100,0.001,or_greater,suffix:m"), "set_bottom_radius", "get_bottom_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100,0.001,or_greater,suffix:m"), "set_height", "get_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_rings", "get_rings"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_top"), "set_cap_top", "is_cap_top"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_bottom"), "set_cap_bottom", "is_cap_bottom"); } void CylinderMesh::set_top_radius(const float p_radius) { top_radius = p_radius; _update_lightmap_size(); request_update(); } float CylinderMesh::get_top_radius() const { return top_radius; } void CylinderMesh::set_bottom_radius(const float p_radius) { bottom_radius = p_radius; _update_lightmap_size(); request_update(); } float CylinderMesh::get_bottom_radius() const { return bottom_radius; } void CylinderMesh::set_height(const float p_height) { height = p_height; _update_lightmap_size(); request_update(); } float CylinderMesh::get_height() const { return height; } void CylinderMesh::set_radial_segments(const int p_segments) { radial_segments = p_segments > 4 ? p_segments : 4; request_update(); } int CylinderMesh::get_radial_segments() const { return radial_segments; } void CylinderMesh::set_rings(const int p_rings) { ERR_FAIL_COND(p_rings < 0); rings = p_rings; request_update(); } int CylinderMesh::get_rings() const { return rings; } void CylinderMesh::set_cap_top(bool p_cap_top) { cap_top = p_cap_top; request_update(); } bool CylinderMesh::is_cap_top() const { return cap_top; } void CylinderMesh::set_cap_bottom(bool p_cap_bottom) { cap_bottom = p_cap_bottom; request_update(); } bool CylinderMesh::is_cap_bottom() const { return cap_bottom; } CylinderMesh::CylinderMesh() {} /** PlaneMesh */ void PlaneMesh::_update_lightmap_size() { if (get_add_uv2()) { // size must have changed, update lightmap size hint Size2i _lightmap_size_hint; float texel_size = get_lightmap_texel_size(); float padding = get_uv2_padding(); _lightmap_size_hint.x = MAX(1.0, (size.x / texel_size) + padding); _lightmap_size_hint.y = MAX(1.0, (size.y / texel_size) + padding); set_lightmap_size_hint(_lightmap_size_hint); } } void PlaneMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, z; // Plane mesh can use default UV2 calculation as implemented in Primitive Mesh Size2 start_pos = size * -0.5; Vector3 normal = Vector3(0.0, 1.0, 0.0); if (orientation == FACE_X) { normal = Vector3(1.0, 0.0, 0.0); } else if (orientation == FACE_Z) { normal = Vector3(0.0, 0.0, 1.0); } Vector points; Vector normals; Vector tangents; Vector uvs; Vector indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); /* top + bottom */ z = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_d + 1); j++) { x = start_pos.x; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float v = j; u /= (subdivide_w + 1.0); v /= (subdivide_d + 1.0); if (orientation == FACE_X) { points.push_back(Vector3(0.0, z, x) + center_offset); } else if (orientation == FACE_Y) { points.push_back(Vector3(-x, 0.0, -z) + center_offset); } else if (orientation == FACE_Z) { points.push_back(Vector3(-x, z, 0.0) + center_offset); } normals.push_back(normal); if (orientation == FACE_X) { ADD_TANGENT(0.0, 0.0, -1.0, 1.0); } else { ADD_TANGENT(1.0, 0.0, 0.0, 1.0); } uvs.push_back(Vector2(1.0 - u, 1.0 - v)); /* 1.0 - uv to match orientation with Quad */ point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } x += size.x / (subdivide_w + 1.0); } z += size.y / (subdivide_d + 1.0); prevrow = thisrow; thisrow = point; } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void PlaneMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_size", "size"), &PlaneMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &PlaneMesh::get_size); ClassDB::bind_method(D_METHOD("set_subdivide_width", "subdivide"), &PlaneMesh::set_subdivide_width); ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PlaneMesh::get_subdivide_width); ClassDB::bind_method(D_METHOD("set_subdivide_depth", "subdivide"), &PlaneMesh::set_subdivide_depth); ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PlaneMesh::get_subdivide_depth); ClassDB::bind_method(D_METHOD("set_center_offset", "offset"), &PlaneMesh::set_center_offset); ClassDB::bind_method(D_METHOD("get_center_offset"), &PlaneMesh::get_center_offset); ClassDB::bind_method(D_METHOD("set_orientation", "orientation"), &PlaneMesh::set_orientation); ClassDB::bind_method(D_METHOD("get_orientation"), &PlaneMesh::get_orientation); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "size", PROPERTY_HINT_NONE, "suffix:m"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "center_offset", PROPERTY_HINT_NONE, "suffix:m"), "set_center_offset", "get_center_offset"); ADD_PROPERTY(PropertyInfo(Variant::INT, "orientation", PROPERTY_HINT_ENUM, "Face X,Face Y,Face Z"), "set_orientation", "get_orientation"); BIND_ENUM_CONSTANT(FACE_X) BIND_ENUM_CONSTANT(FACE_Y) BIND_ENUM_CONSTANT(FACE_Z) } void PlaneMesh::set_size(const Size2 &p_size) { size = p_size; _update_lightmap_size(); request_update(); } Size2 PlaneMesh::get_size() const { return size; } void PlaneMesh::set_subdivide_width(const int p_divisions) { subdivide_w = p_divisions > 0 ? p_divisions : 0; request_update(); } int PlaneMesh::get_subdivide_width() const { return subdivide_w; } void PlaneMesh::set_subdivide_depth(const int p_divisions) { subdivide_d = p_divisions > 0 ? p_divisions : 0; request_update(); } int PlaneMesh::get_subdivide_depth() const { return subdivide_d; } void PlaneMesh::set_center_offset(const Vector3 p_offset) { center_offset = p_offset; request_update(); } Vector3 PlaneMesh::get_center_offset() const { return center_offset; } void PlaneMesh::set_orientation(const Orientation p_orientation) { orientation = p_orientation; request_update(); } PlaneMesh::Orientation PlaneMesh::get_orientation() const { return orientation; } PlaneMesh::PlaneMesh() {} /** PrismMesh */ void PrismMesh::_update_lightmap_size() { if (get_add_uv2()) { // size must have changed, update lightmap size hint Size2i _lightmap_size_hint; float texel_size = get_lightmap_texel_size(); float padding = get_uv2_padding(); // left_to_right does not effect the surface area of the prism so we ignore that. // TODO we could combine the two triangles and save some space but we need to re-align the uv1 and adjust the tangent. float width = (size.x + size.z) / texel_size; float length = (size.y + size.y + size.z) / texel_size; _lightmap_size_hint.x = MAX(1.0, width) + 2.0 * padding; _lightmap_size_hint.y = MAX(1.0, length) + 3.0 * padding; set_lightmap_size_hint(_lightmap_size_hint); } } void PrismMesh::_create_mesh_array(Array &p_arr) const { int i, j, prevrow, thisrow, point; float x, y, z; float onethird = 1.0 / 3.0; float twothirds = 2.0 / 3.0; // Only used if we calculate UV2 bool _add_uv2 = get_add_uv2(); float texel_size = get_lightmap_texel_size(); float _uv2_padding = get_uv2_padding() * texel_size; float horizontal_total = size.x + size.z + 2.0 * _uv2_padding; float width_h = size.x / horizontal_total; float depth_h = size.z / horizontal_total; float padding_h = _uv2_padding / horizontal_total; float vertical_total = (size.y + size.y + size.z) + (3.0 * _uv2_padding); float height_v = size.y / vertical_total; float depth_v = size.z / vertical_total; float padding_v = _uv2_padding / vertical_total; // and start building Vector3 start_pos = size * -0.5; // set our bounding box Vector points; Vector normals; Vector tangents; Vector uvs; Vector uv2s; Vector indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); /* front + back */ y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_h + 1); j++) { float scale = j / (subdivide_h + 1.0); float scaled_size_x = size.x * scale; float start_x = start_pos.x + (1.0 - scale) * size.x * left_to_right; float offset_front = (1.0 - scale) * onethird * left_to_right; float offset_back = (1.0 - scale) * onethird * (1.0 - left_to_right); float v = j; float v2 = scale; v /= 2.0 * (subdivide_h + 1.0); x = 0.0; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float u2 = i / (subdivide_w + 1.0); u /= (3.0 * (subdivide_w + 1.0)); u *= scale; /* front */ points.push_back(Vector3(start_x + x, -y, -start_pos.z)); // double negative on the Z! normals.push_back(Vector3(0.0, 0.0, 1.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(offset_front + u, v)); if (_add_uv2) { uv2s.push_back(Vector2(u2 * scale * width_h, v2 * height_v)); } point++; /* back */ points.push_back(Vector3(start_x + scaled_size_x - x, -y, start_pos.z)); normals.push_back(Vector3(0.0, 0.0, -1.0)); ADD_TANGENT(-1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + offset_back + u, v)); if (_add_uv2) { uv2s.push_back(Vector2(u2 * scale * width_h, height_v + padding_v + v2 * height_v)); } point++; if (i > 0 && j == 1) { int i2 = i * 2; /* front */ indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); /* back */ indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); } else if (i > 0 && j > 0) { int i2 = i * 2; /* front */ indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); /* back */ indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); } x += scale * size.x / (subdivide_w + 1.0); } y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; } /* left + right */ Vector3 normal_left, normal_right; normal_left = Vector3(-size.y, size.x * left_to_right, 0.0); normal_right = Vector3(size.y, size.x * (1.0 - left_to_right), 0.0); normal_left.normalize(); normal_right.normalize(); y = start_pos.y; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_h + 1); j++) { float left, right; float scale = j / (subdivide_h + 1.0); left = start_pos.x + (size.x * (1.0 - scale) * left_to_right); right = left + (size.x * scale); float v = j; float v2 = scale; v /= 2.0 * (subdivide_h + 1.0); z = start_pos.z; for (i = 0; i <= (subdivide_d + 1); i++) { float u = i; float u2 = u / (subdivide_d + 1.0); u /= (3.0 * (subdivide_d + 1.0)); /* right */ points.push_back(Vector3(right, -y, -z)); normals.push_back(normal_right); ADD_TANGENT(0.0, 0.0, -1.0, 1.0); uvs.push_back(Vector2(onethird + u, v)); if (_add_uv2) { uv2s.push_back(Vector2(width_h + padding_h + u2 * depth_h, v2 * height_v)); } point++; /* left */ points.push_back(Vector3(left, -y, z)); normals.push_back(normal_left); ADD_TANGENT(0.0, 0.0, 1.0, 1.0); uvs.push_back(Vector2(u, 0.5 + v)); if (_add_uv2) { uv2s.push_back(Vector2(width_h + padding_h + u2 * depth_h, height_v + padding_v + v2 * height_v)); } point++; if (i > 0 && j > 0) { int i2 = i * 2; /* right */ indices.push_back(prevrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2 - 2); indices.push_back(prevrow + i2); indices.push_back(thisrow + i2); indices.push_back(thisrow + i2 - 2); /* left */ indices.push_back(prevrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 - 1); indices.push_back(prevrow + i2 + 1); indices.push_back(thisrow + i2 + 1); indices.push_back(thisrow + i2 - 1); } z += size.z / (subdivide_d + 1.0); } y += size.y / (subdivide_h + 1.0); prevrow = thisrow; thisrow = point; } /* bottom */ z = start_pos.z; thisrow = point; prevrow = 0; for (j = 0; j <= (subdivide_d + 1); j++) { float v = j; float v2 = v / (subdivide_d + 1.0); v /= (2.0 * (subdivide_d + 1.0)); x = start_pos.x; for (i = 0; i <= (subdivide_w + 1); i++) { float u = i; float u2 = u / (subdivide_w + 1.0); u /= (3.0 * (subdivide_w + 1.0)); /* bottom */ points.push_back(Vector3(x, start_pos.y, -z)); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0); uvs.push_back(Vector2(twothirds + u, 0.5 + v)); if (_add_uv2) { uv2s.push_back(Vector2(u2 * width_h, 2.0 * (height_v + padding_v) + v2 * depth_v)); } point++; if (i > 0 && j > 0) { /* bottom */ indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } x += size.x / (subdivide_w + 1.0); } z += size.z / (subdivide_d + 1.0); prevrow = thisrow; thisrow = point; } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; if (_add_uv2) { p_arr[RS::ARRAY_TEX_UV2] = uv2s; } p_arr[RS::ARRAY_INDEX] = indices; } void PrismMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_left_to_right", "left_to_right"), &PrismMesh::set_left_to_right); ClassDB::bind_method(D_METHOD("get_left_to_right"), &PrismMesh::get_left_to_right); ClassDB::bind_method(D_METHOD("set_size", "size"), &PrismMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &PrismMesh::get_size); ClassDB::bind_method(D_METHOD("set_subdivide_width", "segments"), &PrismMesh::set_subdivide_width); ClassDB::bind_method(D_METHOD("get_subdivide_width"), &PrismMesh::get_subdivide_width); ClassDB::bind_method(D_METHOD("set_subdivide_height", "segments"), &PrismMesh::set_subdivide_height); ClassDB::bind_method(D_METHOD("get_subdivide_height"), &PrismMesh::get_subdivide_height); ClassDB::bind_method(D_METHOD("set_subdivide_depth", "segments"), &PrismMesh::set_subdivide_depth); ClassDB::bind_method(D_METHOD("get_subdivide_depth"), &PrismMesh::get_subdivide_depth); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "left_to_right", PROPERTY_HINT_RANGE, "-2.0,2.0,0.1"), "set_left_to_right", "get_left_to_right"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR3, "size", PROPERTY_HINT_NONE, "suffix:m"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_width", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_width", "get_subdivide_width"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_height", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_height", "get_subdivide_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "subdivide_depth", PROPERTY_HINT_RANGE, "0,100,1,or_greater"), "set_subdivide_depth", "get_subdivide_depth"); } void PrismMesh::set_left_to_right(const float p_left_to_right) { left_to_right = p_left_to_right; request_update(); } float PrismMesh::get_left_to_right() const { return left_to_right; } void PrismMesh::set_size(const Vector3 &p_size) { size = p_size; _update_lightmap_size(); request_update(); } Vector3 PrismMesh::get_size() const { return size; } void PrismMesh::set_subdivide_width(const int p_divisions) { subdivide_w = p_divisions > 0 ? p_divisions : 0; request_update(); } int PrismMesh::get_subdivide_width() const { return subdivide_w; } void PrismMesh::set_subdivide_height(const int p_divisions) { subdivide_h = p_divisions > 0 ? p_divisions : 0; request_update(); } int PrismMesh::get_subdivide_height() const { return subdivide_h; } void PrismMesh::set_subdivide_depth(const int p_divisions) { subdivide_d = p_divisions > 0 ? p_divisions : 0; request_update(); } int PrismMesh::get_subdivide_depth() const { return subdivide_d; } PrismMesh::PrismMesh() {} /** SphereMesh */ void SphereMesh::_update_lightmap_size() { if (get_add_uv2()) { // size must have changed, update lightmap size hint Size2i _lightmap_size_hint; float texel_size = get_lightmap_texel_size(); float padding = get_uv2_padding(); float _width = radius * Math_TAU; _lightmap_size_hint.x = MAX(1.0, (_width / texel_size) + padding); float _height = (is_hemisphere ? 1.0 : 0.5) * height * Math_PI; // note, with hemisphere height is our radius, while with a full sphere it is the diameter.. _lightmap_size_hint.y = MAX(1.0, (_height / texel_size) + padding); set_lightmap_size_hint(_lightmap_size_hint); } } void SphereMesh::_create_mesh_array(Array &p_arr) const { bool _add_uv2 = get_add_uv2(); float texel_size = get_lightmap_texel_size(); float _uv2_padding = get_uv2_padding() * texel_size; create_mesh_array(p_arr, radius, height, radial_segments, rings, is_hemisphere, _add_uv2, _uv2_padding); } void SphereMesh::create_mesh_array(Array &p_arr, float radius, float height, int radial_segments, int rings, bool is_hemisphere, bool p_add_uv2, const float p_uv2_padding) { int i, j, prevrow, thisrow, point; float x, y, z; float scale = height * (is_hemisphere ? 1.0 : 0.5); // Only used if we calculate UV2 float circumference = radius * Math_TAU; float horizontal_length = circumference + p_uv2_padding; float center_h = 0.5 * circumference / horizontal_length; float height_v = scale * Math_PI / ((scale * Math_PI) + p_uv2_padding); // set our bounding box Vector points; Vector normals; Vector tangents; Vector uvs; Vector uv2s; Vector indices; point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); thisrow = 0; prevrow = 0; for (j = 0; j <= (rings + 1); j++) { float v = j; float w; v /= (rings + 1); w = sin(Math_PI * v); y = scale * cos(Math_PI * v); for (i = 0; i <= radial_segments; i++) { float u = i; u /= radial_segments; x = sin(u * Math_TAU); z = cos(u * Math_TAU); if (is_hemisphere && y < 0.0) { points.push_back(Vector3(x * radius * w, 0.0, z * radius * w)); normals.push_back(Vector3(0.0, -1.0, 0.0)); } else { Vector3 p = Vector3(x * radius * w, y, z * radius * w); points.push_back(p); Vector3 normal = Vector3(x * w * scale, radius * (y / scale), z * w * scale); normals.push_back(normal.normalized()); } ADD_TANGENT(z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, v)); if (p_add_uv2) { float w_h = w * 2.0 * center_h; uv2s.push_back(Vector2(center_h + ((u - 0.5) * w_h), v * height_v)); } point++; if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } } prevrow = thisrow; thisrow = point; } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; if (p_add_uv2) { p_arr[RS::ARRAY_TEX_UV2] = uv2s; } p_arr[RS::ARRAY_INDEX] = indices; } void SphereMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &SphereMesh::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &SphereMesh::get_radius); ClassDB::bind_method(D_METHOD("set_height", "height"), &SphereMesh::set_height); ClassDB::bind_method(D_METHOD("get_height"), &SphereMesh::get_height); ClassDB::bind_method(D_METHOD("set_radial_segments", "radial_segments"), &SphereMesh::set_radial_segments); ClassDB::bind_method(D_METHOD("get_radial_segments"), &SphereMesh::get_radial_segments); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &SphereMesh::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &SphereMesh::get_rings); ClassDB::bind_method(D_METHOD("set_is_hemisphere", "is_hemisphere"), &SphereMesh::set_is_hemisphere); ClassDB::bind_method(D_METHOD("get_is_hemisphere"), &SphereMesh::get_is_hemisphere); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "height", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_height", "get_height"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_segments", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_radial_segments", "get_radial_segments"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "1,100,1,or_greater"), "set_rings", "get_rings"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "is_hemisphere"), "set_is_hemisphere", "get_is_hemisphere"); } void SphereMesh::set_radius(const float p_radius) { radius = p_radius; _update_lightmap_size(); request_update(); } float SphereMesh::get_radius() const { return radius; } void SphereMesh::set_height(const float p_height) { height = p_height; _update_lightmap_size(); request_update(); } float SphereMesh::get_height() const { return height; } void SphereMesh::set_radial_segments(const int p_radial_segments) { radial_segments = p_radial_segments > 4 ? p_radial_segments : 4; request_update(); } int SphereMesh::get_radial_segments() const { return radial_segments; } void SphereMesh::set_rings(const int p_rings) { ERR_FAIL_COND(p_rings < 1); rings = p_rings; request_update(); } int SphereMesh::get_rings() const { return rings; } void SphereMesh::set_is_hemisphere(const bool p_is_hemisphere) { is_hemisphere = p_is_hemisphere; _update_lightmap_size(); request_update(); } bool SphereMesh::get_is_hemisphere() const { return is_hemisphere; } SphereMesh::SphereMesh() {} /** TorusMesh */ void TorusMesh::_update_lightmap_size() { if (get_add_uv2()) { // size must have changed, update lightmap size hint Size2i _lightmap_size_hint; float texel_size = get_lightmap_texel_size(); float padding = get_uv2_padding(); float min_radius = inner_radius; float max_radius = outer_radius; if (min_radius > max_radius) { SWAP(min_radius, max_radius); } float radius = (max_radius - min_radius) * 0.5; float _width = max_radius * Math_TAU; _lightmap_size_hint.x = MAX(1.0, (_width / texel_size) + padding); float _height = radius * Math_TAU; _lightmap_size_hint.y = MAX(1.0, (_height / texel_size) + padding); set_lightmap_size_hint(_lightmap_size_hint); } } void TorusMesh::_create_mesh_array(Array &p_arr) const { // set our bounding box Vector points; Vector normals; Vector tangents; Vector uvs; Vector uv2s; Vector indices; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); ERR_FAIL_COND_MSG(inner_radius == outer_radius, "Inner radius and outer radius cannot be the same."); float min_radius = inner_radius; float max_radius = outer_radius; if (min_radius > max_radius) { SWAP(min_radius, max_radius); } float radius = (max_radius - min_radius) * 0.5; // Only used if we calculate UV2 bool _add_uv2 = get_add_uv2(); float texel_size = get_lightmap_texel_size(); float _uv2_padding = get_uv2_padding() * texel_size; float horizontal_total = max_radius * Math_TAU + _uv2_padding; float max_h = max_radius * Math_TAU / horizontal_total; float delta_h = (max_radius - min_radius) * Math_TAU / horizontal_total; float height_v = radius * Math_TAU / (radius * Math_TAU + _uv2_padding); for (int i = 0; i <= rings; i++) { int prevrow = (i - 1) * (ring_segments + 1); int thisrow = i * (ring_segments + 1); float inci = float(i) / rings; float angi = inci * Math_TAU; Vector2 normali = Vector2(-Math::sin(angi), -Math::cos(angi)); for (int j = 0; j <= ring_segments; j++) { float incj = float(j) / ring_segments; float angj = incj * Math_TAU; Vector2 normalj = Vector2(-Math::cos(angj), Math::sin(angj)); Vector2 normalk = normalj * radius + Vector2(min_radius + radius, 0); float offset_h = 0.5 * (1.0 - normalj.x) * delta_h; float adj_h = max_h - offset_h; offset_h *= 0.5; points.push_back(Vector3(normali.x * normalk.x, normalk.y, normali.y * normalk.x)); normals.push_back(Vector3(normali.x * normalj.x, normalj.y, normali.y * normalj.x)); ADD_TANGENT(-Math::cos(angi), 0.0, Math::sin(angi), 1.0); uvs.push_back(Vector2(inci, incj)); if (_add_uv2) { uv2s.push_back(Vector2(offset_h + inci * adj_h, incj * height_v)); } if (i > 0 && j > 0) { indices.push_back(thisrow + j - 1); indices.push_back(prevrow + j); indices.push_back(prevrow + j - 1); indices.push_back(thisrow + j - 1); indices.push_back(thisrow + j); indices.push_back(prevrow + j); } } } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; if (_add_uv2) { p_arr[RS::ARRAY_TEX_UV2] = uv2s; } p_arr[RS::ARRAY_INDEX] = indices; } void TorusMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_inner_radius", "radius"), &TorusMesh::set_inner_radius); ClassDB::bind_method(D_METHOD("get_inner_radius"), &TorusMesh::get_inner_radius); ClassDB::bind_method(D_METHOD("set_outer_radius", "radius"), &TorusMesh::set_outer_radius); ClassDB::bind_method(D_METHOD("get_outer_radius"), &TorusMesh::get_outer_radius); ClassDB::bind_method(D_METHOD("set_rings", "rings"), &TorusMesh::set_rings); ClassDB::bind_method(D_METHOD("get_rings"), &TorusMesh::get_rings); ClassDB::bind_method(D_METHOD("set_ring_segments", "rings"), &TorusMesh::set_ring_segments); ClassDB::bind_method(D_METHOD("get_ring_segments"), &TorusMesh::get_ring_segments); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "inner_radius", PROPERTY_HINT_RANGE, "0.001,1000.0,0.001,or_greater,exp"), "set_inner_radius", "get_inner_radius"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "outer_radius", PROPERTY_HINT_RANGE, "0.001,1000.0,0.001,or_greater,exp"), "set_outer_radius", "get_outer_radius"); ADD_PROPERTY(PropertyInfo(Variant::INT, "rings", PROPERTY_HINT_RANGE, "3,128,1,or_greater"), "set_rings", "get_rings"); ADD_PROPERTY(PropertyInfo(Variant::INT, "ring_segments", PROPERTY_HINT_RANGE, "3,64,1,or_greater"), "set_ring_segments", "get_ring_segments"); } void TorusMesh::set_inner_radius(const float p_inner_radius) { inner_radius = p_inner_radius; request_update(); } float TorusMesh::get_inner_radius() const { return inner_radius; } void TorusMesh::set_outer_radius(const float p_outer_radius) { outer_radius = p_outer_radius; request_update(); } float TorusMesh::get_outer_radius() const { return outer_radius; } void TorusMesh::set_rings(const int p_rings) { ERR_FAIL_COND(p_rings < 3); rings = p_rings; request_update(); } int TorusMesh::get_rings() const { return rings; } void TorusMesh::set_ring_segments(const int p_ring_segments) { ERR_FAIL_COND(p_ring_segments < 3); ring_segments = p_ring_segments; request_update(); } int TorusMesh::get_ring_segments() const { return ring_segments; } TorusMesh::TorusMesh() {} /** PointMesh */ void PointMesh::_create_mesh_array(Array &p_arr) const { Vector faces; faces.resize(1); faces.set(0, Vector3(0.0, 0.0, 0.0)); p_arr[RS::ARRAY_VERTEX] = faces; } PointMesh::PointMesh() { primitive_type = PRIMITIVE_POINTS; } // TUBE TRAIL void TubeTrailMesh::set_radius(const float p_radius) { radius = p_radius; request_update(); } float TubeTrailMesh::get_radius() const { return radius; } void TubeTrailMesh::set_radial_steps(const int p_radial_steps) { ERR_FAIL_COND(p_radial_steps < 3 || p_radial_steps > 128); radial_steps = p_radial_steps; request_update(); } int TubeTrailMesh::get_radial_steps() const { return radial_steps; } void TubeTrailMesh::set_sections(const int p_sections) { ERR_FAIL_COND(p_sections < 2 || p_sections > 128); sections = p_sections; request_update(); } int TubeTrailMesh::get_sections() const { return sections; } void TubeTrailMesh::set_section_length(float p_section_length) { section_length = p_section_length; request_update(); } float TubeTrailMesh::get_section_length() const { return section_length; } void TubeTrailMesh::set_section_rings(const int p_section_rings) { ERR_FAIL_COND(p_section_rings < 1 || p_section_rings > 1024); section_rings = p_section_rings; request_update(); } int TubeTrailMesh::get_section_rings() const { return section_rings; } void TubeTrailMesh::set_cap_top(bool p_cap_top) { cap_top = p_cap_top; request_update(); } bool TubeTrailMesh::is_cap_top() const { return cap_top; } void TubeTrailMesh::set_cap_bottom(bool p_cap_bottom) { cap_bottom = p_cap_bottom; request_update(); } bool TubeTrailMesh::is_cap_bottom() const { return cap_bottom; } void TubeTrailMesh::set_curve(const Ref &p_curve) { if (curve == p_curve) { return; } if (curve.is_valid()) { curve->disconnect_changed(callable_mp(this, &TubeTrailMesh::_curve_changed)); } curve = p_curve; if (curve.is_valid()) { curve->connect_changed(callable_mp(this, &TubeTrailMesh::_curve_changed)); } request_update(); } Ref TubeTrailMesh::get_curve() const { return curve; } void TubeTrailMesh::_curve_changed() { request_update(); } int TubeTrailMesh::get_builtin_bind_pose_count() const { return sections + 1; } Transform3D TubeTrailMesh::get_builtin_bind_pose(int p_index) const { float depth = section_length * sections; Transform3D xform; xform.origin.y = depth / 2.0 - section_length * float(p_index); xform.origin.y = -xform.origin.y; //bind is an inverse transform, so negate y return xform; } void TubeTrailMesh::_create_mesh_array(Array &p_arr) const { // Seeing use case for TubeTrailMesh, no need to do anything more then default UV2 calculation PackedVector3Array points; PackedVector3Array normals; PackedFloat32Array tangents; PackedVector2Array uvs; PackedInt32Array bone_indices; PackedFloat32Array bone_weights; PackedInt32Array indices; int point = 0; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); int thisrow = 0; int prevrow = 0; int total_rings = section_rings * sections; float depth = section_length * sections; for (int j = 0; j <= total_rings; j++) { float v = j; v /= total_rings; float y = depth * v; y = (depth * 0.5) - y; int bone = j / section_rings; float blend = 1.0 - float(j % section_rings) / float(section_rings); for (int i = 0; i <= radial_steps; i++) { float u = i; u /= radial_steps; float r = radius; if (curve.is_valid() && curve->get_point_count() > 0) { r *= curve->sample_baked(v); } float x = sin(u * Math_TAU); float z = cos(u * Math_TAU); Vector3 p = Vector3(x * r, y, z * r); points.push_back(p); normals.push_back(Vector3(x, 0, z)); ADD_TANGENT(z, 0.0, -x, 1.0) uvs.push_back(Vector2(u, v * 0.5)); point++; { bone_indices.push_back(bone); bone_indices.push_back(MIN(sections, bone + 1)); bone_indices.push_back(0); bone_indices.push_back(0); bone_weights.push_back(blend); bone_weights.push_back(1.0 - blend); bone_weights.push_back(0); bone_weights.push_back(0); } if (i > 0 && j > 0) { indices.push_back(prevrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i - 1); indices.push_back(prevrow + i); indices.push_back(thisrow + i); indices.push_back(thisrow + i - 1); } } prevrow = thisrow; thisrow = point; } if (cap_top) { // add top float scale_pos = 1.0; if (curve.is_valid() && curve->get_point_count() > 0) { scale_pos = curve->sample_baked(0); } if (scale_pos > CMP_EPSILON) { float y = depth * 0.5; thisrow = point; points.push_back(Vector3(0.0, y, 0)); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(0.25, 0.75)); point++; bone_indices.push_back(0); bone_indices.push_back(0); bone_indices.push_back(0); bone_indices.push_back(0); bone_weights.push_back(1.0); bone_weights.push_back(0); bone_weights.push_back(0); bone_weights.push_back(0); float rm = radius * scale_pos; for (int i = 0; i <= radial_steps; i++) { float r = i; r /= radial_steps; float x = sin(r * Math_TAU); float z = cos(r * Math_TAU); float u = ((x + 1.0) * 0.25); float v = 0.5 + ((z + 1.0) * 0.25); Vector3 p = Vector3(x * rm, y, z * rm); points.push_back(p); normals.push_back(Vector3(0.0, 1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(u, v)); point++; bone_indices.push_back(0); bone_indices.push_back(0); bone_indices.push_back(0); bone_indices.push_back(0); bone_weights.push_back(1.0); bone_weights.push_back(0); bone_weights.push_back(0); bone_weights.push_back(0); if (i > 0) { indices.push_back(thisrow); indices.push_back(point - 1); indices.push_back(point - 2); } } } } if (cap_bottom) { float scale_neg = 1.0; if (curve.is_valid() && curve->get_point_count() > 0) { scale_neg = curve->sample_baked(1.0); } if (scale_neg > CMP_EPSILON) { // add bottom float y = depth * -0.5; thisrow = point; points.push_back(Vector3(0.0, y, 0.0)); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(0.75, 0.75)); point++; bone_indices.push_back(sections); bone_indices.push_back(0); bone_indices.push_back(0); bone_indices.push_back(0); bone_weights.push_back(1.0); bone_weights.push_back(0); bone_weights.push_back(0); bone_weights.push_back(0); float rm = radius * scale_neg; for (int i = 0; i <= radial_steps; i++) { float r = i; r /= radial_steps; float x = sin(r * Math_TAU); float z = cos(r * Math_TAU); float u = 0.5 + ((x + 1.0) * 0.25); float v = 1.0 - ((z + 1.0) * 0.25); Vector3 p = Vector3(x * rm, y, z * rm); points.push_back(p); normals.push_back(Vector3(0.0, -1.0, 0.0)); ADD_TANGENT(1.0, 0.0, 0.0, 1.0) uvs.push_back(Vector2(u, v)); point++; bone_indices.push_back(sections); bone_indices.push_back(0); bone_indices.push_back(0); bone_indices.push_back(0); bone_weights.push_back(1.0); bone_weights.push_back(0); bone_weights.push_back(0); bone_weights.push_back(0); if (i > 0) { indices.push_back(thisrow); indices.push_back(point - 2); indices.push_back(point - 1); } } } } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_BONES] = bone_indices; p_arr[RS::ARRAY_WEIGHTS] = bone_weights; p_arr[RS::ARRAY_INDEX] = indices; } void TubeTrailMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_radius", "radius"), &TubeTrailMesh::set_radius); ClassDB::bind_method(D_METHOD("get_radius"), &TubeTrailMesh::get_radius); ClassDB::bind_method(D_METHOD("set_radial_steps", "radial_steps"), &TubeTrailMesh::set_radial_steps); ClassDB::bind_method(D_METHOD("get_radial_steps"), &TubeTrailMesh::get_radial_steps); ClassDB::bind_method(D_METHOD("set_sections", "sections"), &TubeTrailMesh::set_sections); ClassDB::bind_method(D_METHOD("get_sections"), &TubeTrailMesh::get_sections); ClassDB::bind_method(D_METHOD("set_section_length", "section_length"), &TubeTrailMesh::set_section_length); ClassDB::bind_method(D_METHOD("get_section_length"), &TubeTrailMesh::get_section_length); ClassDB::bind_method(D_METHOD("set_section_rings", "section_rings"), &TubeTrailMesh::set_section_rings); ClassDB::bind_method(D_METHOD("get_section_rings"), &TubeTrailMesh::get_section_rings); ClassDB::bind_method(D_METHOD("set_cap_top", "cap_top"), &TubeTrailMesh::set_cap_top); ClassDB::bind_method(D_METHOD("is_cap_top"), &TubeTrailMesh::is_cap_top); ClassDB::bind_method(D_METHOD("set_cap_bottom", "cap_bottom"), &TubeTrailMesh::set_cap_bottom); ClassDB::bind_method(D_METHOD("is_cap_bottom"), &TubeTrailMesh::is_cap_bottom); ClassDB::bind_method(D_METHOD("set_curve", "curve"), &TubeTrailMesh::set_curve); ClassDB::bind_method(D_METHOD("get_curve"), &TubeTrailMesh::get_curve); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "radius", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_radius", "get_radius"); ADD_PROPERTY(PropertyInfo(Variant::INT, "radial_steps", PROPERTY_HINT_RANGE, "3,128,1"), "set_radial_steps", "get_radial_steps"); ADD_PROPERTY(PropertyInfo(Variant::INT, "sections", PROPERTY_HINT_RANGE, "2,128,1"), "set_sections", "get_sections"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "section_length", PROPERTY_HINT_RANGE, "0.001,1024.0,0.001,or_greater,suffix:m"), "set_section_length", "get_section_length"); ADD_PROPERTY(PropertyInfo(Variant::INT, "section_rings", PROPERTY_HINT_RANGE, "1,128,1"), "set_section_rings", "get_section_rings"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_top"), "set_cap_top", "is_cap_top"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "cap_bottom"), "set_cap_bottom", "is_cap_bottom"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_curve", "get_curve"); } TubeTrailMesh::TubeTrailMesh() { } // RIBBON TRAIL void RibbonTrailMesh::set_shape(Shape p_shape) { shape = p_shape; request_update(); } RibbonTrailMesh::Shape RibbonTrailMesh::get_shape() const { return shape; } void RibbonTrailMesh::set_size(const float p_size) { size = p_size; request_update(); } float RibbonTrailMesh::get_size() const { return size; } void RibbonTrailMesh::set_sections(const int p_sections) { ERR_FAIL_COND(p_sections < 2 || p_sections > 128); sections = p_sections; request_update(); } int RibbonTrailMesh::get_sections() const { return sections; } void RibbonTrailMesh::set_section_length(float p_section_length) { section_length = p_section_length; request_update(); } float RibbonTrailMesh::get_section_length() const { return section_length; } void RibbonTrailMesh::set_section_segments(const int p_section_segments) { ERR_FAIL_COND(p_section_segments < 1 || p_section_segments > 1024); section_segments = p_section_segments; request_update(); } int RibbonTrailMesh::get_section_segments() const { return section_segments; } void RibbonTrailMesh::set_curve(const Ref &p_curve) { if (curve == p_curve) { return; } if (curve.is_valid()) { curve->disconnect_changed(callable_mp(this, &RibbonTrailMesh::_curve_changed)); } curve = p_curve; if (curve.is_valid()) { curve->connect_changed(callable_mp(this, &RibbonTrailMesh::_curve_changed)); } request_update(); } Ref RibbonTrailMesh::get_curve() const { return curve; } void RibbonTrailMesh::_curve_changed() { request_update(); } int RibbonTrailMesh::get_builtin_bind_pose_count() const { return sections + 1; } Transform3D RibbonTrailMesh::get_builtin_bind_pose(int p_index) const { float depth = section_length * sections; Transform3D xform; xform.origin.y = depth / 2.0 - section_length * float(p_index); xform.origin.y = -xform.origin.y; //bind is an inverse transform, so negate y return xform; } void RibbonTrailMesh::_create_mesh_array(Array &p_arr) const { // Seeing use case of ribbon trail mesh, no need to implement special UV2 calculation PackedVector3Array points; PackedVector3Array normals; PackedFloat32Array tangents; PackedVector2Array uvs; PackedInt32Array bone_indices; PackedFloat32Array bone_weights; PackedInt32Array indices; #define ADD_TANGENT(m_x, m_y, m_z, m_d) \ tangents.push_back(m_x); \ tangents.push_back(m_y); \ tangents.push_back(m_z); \ tangents.push_back(m_d); int total_segments = section_segments * sections; float depth = section_length * sections; for (int j = 0; j <= total_segments; j++) { float v = j; v /= total_segments; float y = depth * v; y = (depth * 0.5) - y; int bone = j / section_segments; float blend = 1.0 - float(j % section_segments) / float(section_segments); float s = size; if (curve.is_valid() && curve->get_point_count() > 0) { s *= curve->sample_baked(v); } points.push_back(Vector3(-s * 0.5, y, 0)); points.push_back(Vector3(+s * 0.5, y, 0)); if (shape == SHAPE_CROSS) { points.push_back(Vector3(0, y, -s * 0.5)); points.push_back(Vector3(0, y, +s * 0.5)); } normals.push_back(Vector3(0, 0, 1)); normals.push_back(Vector3(0, 0, 1)); if (shape == SHAPE_CROSS) { normals.push_back(Vector3(1, 0, 0)); normals.push_back(Vector3(1, 0, 0)); } uvs.push_back(Vector2(0, v)); uvs.push_back(Vector2(1, v)); if (shape == SHAPE_CROSS) { uvs.push_back(Vector2(0, v)); uvs.push_back(Vector2(1, v)); } ADD_TANGENT(0.0, 1.0, 0.0, 1.0) ADD_TANGENT(0.0, 1.0, 0.0, 1.0) if (shape == SHAPE_CROSS) { ADD_TANGENT(0.0, 1.0, 0.0, 1.0) ADD_TANGENT(0.0, 1.0, 0.0, 1.0) } for (int i = 0; i < (shape == SHAPE_CROSS ? 4 : 2); i++) { bone_indices.push_back(bone); bone_indices.push_back(MIN(sections, bone + 1)); bone_indices.push_back(0); bone_indices.push_back(0); bone_weights.push_back(blend); bone_weights.push_back(1.0 - blend); bone_weights.push_back(0); bone_weights.push_back(0); } if (j > 0) { if (shape == SHAPE_CROSS) { int base = j * 4 - 4; indices.push_back(base + 0); indices.push_back(base + 1); indices.push_back(base + 4); indices.push_back(base + 1); indices.push_back(base + 5); indices.push_back(base + 4); indices.push_back(base + 2); indices.push_back(base + 3); indices.push_back(base + 6); indices.push_back(base + 3); indices.push_back(base + 7); indices.push_back(base + 6); } else { int base = j * 2 - 2; indices.push_back(base + 0); indices.push_back(base + 1); indices.push_back(base + 2); indices.push_back(base + 1); indices.push_back(base + 3); indices.push_back(base + 2); } } } p_arr[RS::ARRAY_VERTEX] = points; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_BONES] = bone_indices; p_arr[RS::ARRAY_WEIGHTS] = bone_weights; p_arr[RS::ARRAY_INDEX] = indices; } void RibbonTrailMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_size", "size"), &RibbonTrailMesh::set_size); ClassDB::bind_method(D_METHOD("get_size"), &RibbonTrailMesh::get_size); ClassDB::bind_method(D_METHOD("set_sections", "sections"), &RibbonTrailMesh::set_sections); ClassDB::bind_method(D_METHOD("get_sections"), &RibbonTrailMesh::get_sections); ClassDB::bind_method(D_METHOD("set_section_length", "section_length"), &RibbonTrailMesh::set_section_length); ClassDB::bind_method(D_METHOD("get_section_length"), &RibbonTrailMesh::get_section_length); ClassDB::bind_method(D_METHOD("set_section_segments", "section_segments"), &RibbonTrailMesh::set_section_segments); ClassDB::bind_method(D_METHOD("get_section_segments"), &RibbonTrailMesh::get_section_segments); ClassDB::bind_method(D_METHOD("set_curve", "curve"), &RibbonTrailMesh::set_curve); ClassDB::bind_method(D_METHOD("get_curve"), &RibbonTrailMesh::get_curve); ClassDB::bind_method(D_METHOD("set_shape", "shape"), &RibbonTrailMesh::set_shape); ClassDB::bind_method(D_METHOD("get_shape"), &RibbonTrailMesh::get_shape); ADD_PROPERTY(PropertyInfo(Variant::INT, "shape", PROPERTY_HINT_ENUM, "Flat,Cross"), "set_shape", "get_shape"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "size", PROPERTY_HINT_RANGE, "0.001,100.0,0.001,or_greater,suffix:m"), "set_size", "get_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "sections", PROPERTY_HINT_RANGE, "2,128,1"), "set_sections", "get_sections"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "section_length", PROPERTY_HINT_RANGE, "0.001,1024.0,0.001,or_greater,suffix:m"), "set_section_length", "get_section_length"); ADD_PROPERTY(PropertyInfo(Variant::INT, "section_segments", PROPERTY_HINT_RANGE, "1,128,1"), "set_section_segments", "get_section_segments"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "curve", PROPERTY_HINT_RESOURCE_TYPE, "Curve"), "set_curve", "get_curve"); BIND_ENUM_CONSTANT(SHAPE_FLAT) BIND_ENUM_CONSTANT(SHAPE_CROSS) } RibbonTrailMesh::RibbonTrailMesh() { } /*************************************************************************/ /* TextMesh */ /*************************************************************************/ void TextMesh::_generate_glyph_mesh_data(const GlyphMeshKey &p_key, const Glyph &p_gl) const { if (cache.has(p_key)) { return; } GlyphMeshData &gl_data = cache[p_key]; Dictionary d = TS->font_get_glyph_contours(p_gl.font_rid, p_gl.font_size, p_gl.index); PackedVector3Array points = d["points"]; PackedInt32Array contours = d["contours"]; bool orientation = d["orientation"]; if (points.size() < 3 || contours.size() < 1) { return; // No full contours, only glyph control points (or nothing), ignore. } // Approximate Bezier curves as polygons. // See https://freetype.org/freetype2/docs/glyphs/glyphs-6.html, for more info. for (int i = 0; i < contours.size(); i++) { int32_t start = (i == 0) ? 0 : (contours[i - 1] + 1); int32_t end = contours[i]; Vector polygon; for (int32_t j = start; j <= end; j++) { if (points[j].z == TextServer::CONTOUR_CURVE_TAG_ON) { // Point on the curve. Vector2 p = Vector2(points[j].x, points[j].y) * pixel_size; polygon.push_back(ContourPoint(p, true)); } else if (points[j].z == TextServer::CONTOUR_CURVE_TAG_OFF_CONIC) { // Conic Bezier arc. int32_t next = (j == end) ? start : (j + 1); int32_t prev = (j == start) ? end : (j - 1); Vector2 p0; Vector2 p1 = Vector2(points[j].x, points[j].y); Vector2 p2; // For successive conic OFF points add a virtual ON point in the middle. if (points[prev].z == TextServer::CONTOUR_CURVE_TAG_OFF_CONIC) { p0 = (Vector2(points[prev].x, points[prev].y) + Vector2(points[j].x, points[j].y)) / 2.0; } else if (points[prev].z == TextServer::CONTOUR_CURVE_TAG_ON) { p0 = Vector2(points[prev].x, points[prev].y); } else { ERR_FAIL_MSG(vformat("Invalid conic arc point sequence at %d:%d", i, j)); } if (points[next].z == TextServer::CONTOUR_CURVE_TAG_OFF_CONIC) { p2 = (Vector2(points[j].x, points[j].y) + Vector2(points[next].x, points[next].y)) / 2.0; } else if (points[next].z == TextServer::CONTOUR_CURVE_TAG_ON) { p2 = Vector2(points[next].x, points[next].y); } else { ERR_FAIL_MSG(vformat("Invalid conic arc point sequence at %d:%d", i, j)); } real_t step = CLAMP(curve_step / (p0 - p2).length(), 0.01, 0.5); real_t t = step; while (t < 1.0) { real_t omt = (1.0 - t); real_t omt2 = omt * omt; real_t t2 = t * t; Vector2 point = p1 + omt2 * (p0 - p1) + t2 * (p2 - p1); Vector2 p = point * pixel_size; polygon.push_back(ContourPoint(p, false)); t += step; } } else if (points[j].z == TextServer::CONTOUR_CURVE_TAG_OFF_CUBIC) { // Cubic Bezier arc. int32_t cur = j; int32_t next1 = (j == end) ? start : (j + 1); int32_t next2 = (next1 == end) ? start : (next1 + 1); int32_t prev = (j == start) ? end : (j - 1); // There must be exactly two OFF points and two ON points for each cubic arc. if (points[prev].z != TextServer::CONTOUR_CURVE_TAG_ON) { cur = (cur == 0) ? end : cur - 1; next1 = (next1 == 0) ? end : next1 - 1; next2 = (next2 == 0) ? end : next2 - 1; prev = (prev == 0) ? end : prev - 1; } else { j++; } ERR_FAIL_COND_MSG(points[prev].z != TextServer::CONTOUR_CURVE_TAG_ON, vformat("Invalid cubic arc point sequence at %d:%d", i, prev)); ERR_FAIL_COND_MSG(points[cur].z != TextServer::CONTOUR_CURVE_TAG_OFF_CUBIC, vformat("Invalid cubic arc point sequence at %d:%d", i, cur)); ERR_FAIL_COND_MSG(points[next1].z != TextServer::CONTOUR_CURVE_TAG_OFF_CUBIC, vformat("Invalid cubic arc point sequence at %d:%d", i, next1)); ERR_FAIL_COND_MSG(points[next2].z != TextServer::CONTOUR_CURVE_TAG_ON, vformat("Invalid cubic arc point sequence at %d:%d", i, next2)); Vector2 p0 = Vector2(points[prev].x, points[prev].y); Vector2 p1 = Vector2(points[cur].x, points[cur].y); Vector2 p2 = Vector2(points[next1].x, points[next1].y); Vector2 p3 = Vector2(points[next2].x, points[next2].y); real_t step = CLAMP(curve_step / (p0 - p3).length(), 0.01, 0.5); real_t t = step; while (t < 1.0) { Vector2 point = p0.bezier_interpolate(p1, p2, p3, t); Vector2 p = point * pixel_size; polygon.push_back(ContourPoint(p, false)); t += step; } } else { ERR_FAIL_MSG(vformat("Unknown point tag at %d:%d", i, j)); } } if (polygon.size() < 3) { continue; // Skip glyph control points. } if (!orientation) { polygon.reverse(); } gl_data.contours.push_back(polygon); } // Calculate bounds. List in_poly; for (int i = 0; i < gl_data.contours.size(); i++) { TPPLPoly inp; inp.Init(gl_data.contours[i].size()); real_t length = 0.0; for (int j = 0; j < gl_data.contours[i].size(); j++) { int next = (j + 1 == gl_data.contours[i].size()) ? 0 : (j + 1); gl_data.min_p.x = MIN(gl_data.min_p.x, gl_data.contours[i][j].point.x); gl_data.min_p.y = MIN(gl_data.min_p.y, gl_data.contours[i][j].point.y); gl_data.max_p.x = MAX(gl_data.max_p.x, gl_data.contours[i][j].point.x); gl_data.max_p.y = MAX(gl_data.max_p.y, gl_data.contours[i][j].point.y); length += (gl_data.contours[i][next].point - gl_data.contours[i][j].point).length(); inp.GetPoint(j) = gl_data.contours[i][j].point; } TPPLOrientation poly_orient = inp.GetOrientation(); if (poly_orient == TPPL_ORIENTATION_CW) { inp.SetHole(true); } in_poly.push_back(inp); gl_data.contours_info.push_back(ContourInfo(length, poly_orient == TPPL_ORIENTATION_CCW)); } TPPLPartition tpart; //Decompose and triangulate. List out_poly; if (tpart.ConvexPartition_HM(&in_poly, &out_poly) == 0) { ERR_FAIL_MSG("Convex decomposing failed. Make sure the font doesn't contain self-intersecting lines, as these are not supported in TextMesh."); } List out_tris; for (List::Element *I = out_poly.front(); I; I = I->next()) { if (tpart.Triangulate_OPT(&(I->get()), &out_tris) == 0) { ERR_FAIL_MSG("Triangulation failed. Make sure the font doesn't contain self-intersecting lines, as these are not supported in TextMesh."); } } for (List::Element *I = out_tris.front(); I; I = I->next()) { TPPLPoly &tp = I->get(); ERR_FAIL_COND(tp.GetNumPoints() != 3); // Triangles only. for (int i = 0; i < 3; i++) { gl_data.triangles.push_back(Vector2(tp.GetPoint(i).x, tp.GetPoint(i).y)); } } } void TextMesh::_create_mesh_array(Array &p_arr) const { Ref font = _get_font_or_default(); ERR_FAIL_COND(font.is_null()); if (dirty_cache) { cache.clear(); dirty_cache = false; } // When a shaped text is invalidated by an external source, we want to reshape it. if (!TS->shaped_text_is_ready(text_rid)) { dirty_text = true; } for (const RID &line_rid : lines_rid) { if (!TS->shaped_text_is_ready(line_rid)) { dirty_lines = true; break; } } // Update text buffer. if (dirty_text) { TS->shaped_text_clear(text_rid); TS->shaped_text_set_direction(text_rid, text_direction); String txt = (uppercase) ? TS->string_to_upper(xl_text, language) : xl_text; TS->shaped_text_add_string(text_rid, txt, font->get_rids(), font_size, font->get_opentype_features(), language); TypedArray stt; if (st_parser == TextServer::STRUCTURED_TEXT_CUSTOM) { GDVIRTUAL_CALL(_structured_text_parser, st_args, txt, stt); } else { stt = TS->parse_structured_text(st_parser, st_args, txt); } TS->shaped_text_set_bidi_override(text_rid, stt); dirty_text = false; dirty_font = false; dirty_lines = true; } else if (dirty_font) { int spans = TS->shaped_get_span_count(text_rid); for (int i = 0; i < spans; i++) { TS->shaped_set_span_update_font(text_rid, i, font->get_rids(), font_size, font->get_opentype_features()); } dirty_font = false; dirty_lines = true; } if (dirty_lines) { for (int i = 0; i < lines_rid.size(); i++) { TS->free_rid(lines_rid[i]); } lines_rid.clear(); BitField autowrap_flags = TextServer::BREAK_MANDATORY; switch (autowrap_mode) { case TextServer::AUTOWRAP_WORD_SMART: autowrap_flags = TextServer::BREAK_WORD_BOUND | TextServer::BREAK_ADAPTIVE | TextServer::BREAK_MANDATORY; break; case TextServer::AUTOWRAP_WORD: autowrap_flags = TextServer::BREAK_WORD_BOUND | TextServer::BREAK_MANDATORY; break; case TextServer::AUTOWRAP_ARBITRARY: autowrap_flags = TextServer::BREAK_GRAPHEME_BOUND | TextServer::BREAK_MANDATORY; break; case TextServer::AUTOWRAP_OFF: break; } PackedInt32Array line_breaks = TS->shaped_text_get_line_breaks(text_rid, width, 0, autowrap_flags); float max_line_w = 0.0; for (int i = 0; i < line_breaks.size(); i = i + 2) { RID line = TS->shaped_text_substr(text_rid, line_breaks[i], line_breaks[i + 1] - line_breaks[i]); max_line_w = MAX(max_line_w, TS->shaped_text_get_width(line)); lines_rid.push_back(line); } if (horizontal_alignment == HORIZONTAL_ALIGNMENT_FILL) { int jst_to_line = lines_rid.size(); if (lines_rid.size() == 1 && jst_flags.has_flag(TextServer::JUSTIFICATION_DO_NOT_SKIP_SINGLE_LINE)) { jst_to_line = lines_rid.size(); } else { if (jst_flags.has_flag(TextServer::JUSTIFICATION_SKIP_LAST_LINE)) { jst_to_line = lines_rid.size() - 1; } if (jst_flags.has_flag(TextServer::JUSTIFICATION_SKIP_LAST_LINE_WITH_VISIBLE_CHARS)) { for (int i = lines_rid.size() - 1; i >= 0; i--) { if (TS->shaped_text_has_visible_chars(lines_rid[i])) { jst_to_line = i; break; } } } } for (int i = 0; i < jst_to_line; i++) { TS->shaped_text_fit_to_width(lines_rid[i], (width > 0) ? width : max_line_w, jst_flags); } } dirty_lines = false; } float total_h = 0.0; for (int i = 0; i < lines_rid.size(); i++) { total_h += (TS->shaped_text_get_size(lines_rid[i]).y + line_spacing) * pixel_size; } float vbegin = 0.0; switch (vertical_alignment) { case VERTICAL_ALIGNMENT_FILL: case VERTICAL_ALIGNMENT_TOP: { // Nothing. } break; case VERTICAL_ALIGNMENT_CENTER: { vbegin = (total_h - line_spacing * pixel_size) / 2.0; } break; case VERTICAL_ALIGNMENT_BOTTOM: { vbegin = (total_h - line_spacing * pixel_size); } break; } Vector vertices; Vector normals; Vector tangents; Vector uvs; Vector indices; Vector2 min_p = Vector2(INFINITY, INFINITY); Vector2 max_p = Vector2(-INFINITY, -INFINITY); int32_t p_size = 0; int32_t i_size = 0; Vector2 offset = Vector2(0, vbegin + lbl_offset.y * pixel_size); for (int i = 0; i < lines_rid.size(); i++) { const Glyph *glyphs = TS->shaped_text_get_glyphs(lines_rid[i]); int gl_size = TS->shaped_text_get_glyph_count(lines_rid[i]); float line_width = TS->shaped_text_get_width(lines_rid[i]) * pixel_size; switch (horizontal_alignment) { case HORIZONTAL_ALIGNMENT_LEFT: offset.x = 0.0; break; case HORIZONTAL_ALIGNMENT_FILL: case HORIZONTAL_ALIGNMENT_CENTER: { offset.x = -line_width / 2.0; } break; case HORIZONTAL_ALIGNMENT_RIGHT: { offset.x = -line_width; } break; } offset.x += lbl_offset.x * pixel_size; offset.y -= TS->shaped_text_get_ascent(lines_rid[i]) * pixel_size; bool has_depth = !Math::is_zero_approx(depth); for (int j = 0; j < gl_size; j++) { if (glyphs[j].index == 0) { offset.x += glyphs[j].advance * pixel_size * glyphs[j].repeat; continue; } if (glyphs[j].font_rid != RID()) { GlyphMeshKey key = GlyphMeshKey(glyphs[j].font_rid.get_id(), glyphs[j].index); _generate_glyph_mesh_data(key, glyphs[j]); GlyphMeshData &gl_data = cache[key]; const Vector2 gl_of = Vector2(glyphs[j].x_off, glyphs[j].y_off) * pixel_size; p_size += glyphs[j].repeat * gl_data.triangles.size() * ((has_depth) ? 2 : 1); i_size += glyphs[j].repeat * gl_data.triangles.size() * ((has_depth) ? 2 : 1); if (has_depth) { for (int k = 0; k < gl_data.contours.size(); k++) { p_size += glyphs[j].repeat * gl_data.contours[k].size() * 4; i_size += glyphs[j].repeat * gl_data.contours[k].size() * 6; } } for (int r = 0; r < glyphs[j].repeat; r++) { min_p.x = MIN(gl_data.min_p.x + offset.x + gl_of.x, min_p.x); min_p.y = MIN(gl_data.min_p.y - offset.y + gl_of.y, min_p.y); max_p.x = MAX(gl_data.max_p.x + offset.x + gl_of.x, max_p.x); max_p.y = MAX(gl_data.max_p.y - offset.y + gl_of.y, max_p.y); offset.x += glyphs[j].advance * pixel_size; } } else { p_size += glyphs[j].repeat * 4; i_size += glyphs[j].repeat * 6; offset.x += glyphs[j].advance * pixel_size * glyphs[j].repeat; } } offset.y -= (TS->shaped_text_get_descent(lines_rid[i]) + line_spacing) * pixel_size; } vertices.resize(p_size); normals.resize(p_size); uvs.resize(p_size); tangents.resize(p_size * 4); indices.resize(i_size); Vector3 *vertices_ptr = vertices.ptrw(); Vector3 *normals_ptr = normals.ptrw(); float *tangents_ptr = tangents.ptrw(); Vector2 *uvs_ptr = uvs.ptrw(); int32_t *indices_ptr = indices.ptrw(); // Generate mesh. int32_t p_idx = 0; int32_t i_idx = 0; offset = Vector2(0, vbegin + lbl_offset.y * pixel_size); for (int i = 0; i < lines_rid.size(); i++) { const Glyph *glyphs = TS->shaped_text_get_glyphs(lines_rid[i]); int gl_size = TS->shaped_text_get_glyph_count(lines_rid[i]); float line_width = TS->shaped_text_get_width(lines_rid[i]) * pixel_size; switch (horizontal_alignment) { case HORIZONTAL_ALIGNMENT_LEFT: offset.x = 0.0; break; case HORIZONTAL_ALIGNMENT_FILL: case HORIZONTAL_ALIGNMENT_CENTER: { offset.x = -line_width / 2.0; } break; case HORIZONTAL_ALIGNMENT_RIGHT: { offset.x = -line_width; } break; } offset.x += lbl_offset.x * pixel_size; offset.y -= TS->shaped_text_get_ascent(lines_rid[i]) * pixel_size; bool has_depth = !Math::is_zero_approx(depth); // Generate glyph data, precalculate size of the arrays and mesh bounds for UV. for (int j = 0; j < gl_size; j++) { if (glyphs[j].index == 0) { offset.x += glyphs[j].advance * pixel_size * glyphs[j].repeat; continue; } if (glyphs[j].font_rid != RID()) { GlyphMeshKey key = GlyphMeshKey(glyphs[j].font_rid.get_id(), glyphs[j].index); _generate_glyph_mesh_data(key, glyphs[j]); const GlyphMeshData &gl_data = cache[key]; int64_t ts = gl_data.triangles.size(); const Vector2 *ts_ptr = gl_data.triangles.ptr(); const Vector2 gl_of = Vector2(glyphs[j].x_off, glyphs[j].y_off) * pixel_size; for (int r = 0; r < glyphs[j].repeat; r++) { for (int k = 0; k < ts; k += 3) { // Add front face. for (int l = 0; l < 3; l++) { Vector3 point = Vector3(ts_ptr[k + l].x + offset.x + gl_of.x, -ts_ptr[k + l].y + offset.y - gl_of.y, depth / 2.0); vertices_ptr[p_idx] = point; normals_ptr[p_idx] = Vector3(0.0, 0.0, 1.0); if (has_depth) { uvs_ptr[p_idx] = Vector2(Math::remap(point.x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(point.y, -max_p.y, -min_p.y, real_t(0.4), real_t(0.0))); } else { uvs_ptr[p_idx] = Vector2(Math::remap(point.x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(point.y, -max_p.y, -min_p.y, real_t(1.0), real_t(0.0))); } tangents_ptr[p_idx * 4 + 0] = 1.0; tangents_ptr[p_idx * 4 + 1] = 0.0; tangents_ptr[p_idx * 4 + 2] = 0.0; tangents_ptr[p_idx * 4 + 3] = 1.0; indices_ptr[i_idx++] = p_idx; p_idx++; } if (has_depth) { // Add back face. for (int l = 2; l >= 0; l--) { Vector3 point = Vector3(ts_ptr[k + l].x + offset.x + gl_of.x, -ts_ptr[k + l].y + offset.y - gl_of.y, -depth / 2.0); vertices_ptr[p_idx] = point; normals_ptr[p_idx] = Vector3(0.0, 0.0, -1.0); uvs_ptr[p_idx] = Vector2(Math::remap(point.x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(point.y, -max_p.y, -min_p.y, real_t(0.8), real_t(0.4))); tangents_ptr[p_idx * 4 + 0] = -1.0; tangents_ptr[p_idx * 4 + 1] = 0.0; tangents_ptr[p_idx * 4 + 2] = 0.0; tangents_ptr[p_idx * 4 + 3] = 1.0; indices_ptr[i_idx++] = p_idx; p_idx++; } } } // Add sides. if (has_depth) { for (int k = 0; k < gl_data.contours.size(); k++) { int64_t ps = gl_data.contours[k].size(); const ContourPoint *ps_ptr = gl_data.contours[k].ptr(); const ContourInfo &ps_info = gl_data.contours_info[k]; real_t length = 0.0; for (int l = 0; l < ps; l++) { int prev = (l == 0) ? (ps - 1) : (l - 1); int next = (l + 1 == ps) ? 0 : (l + 1); Vector2 d1; Vector2 d2 = (ps_ptr[next].point - ps_ptr[l].point).normalized(); if (ps_ptr[l].sharp) { d1 = d2; } else { d1 = (ps_ptr[l].point - ps_ptr[prev].point).normalized(); } real_t seg_len = (ps_ptr[next].point - ps_ptr[l].point).length(); Vector3 quad_faces[4] = { Vector3(ps_ptr[l].point.x + offset.x + gl_of.x, -ps_ptr[l].point.y + offset.y - gl_of.y, -depth / 2.0), Vector3(ps_ptr[next].point.x + offset.x + gl_of.x, -ps_ptr[next].point.y + offset.y - gl_of.y, -depth / 2.0), Vector3(ps_ptr[l].point.x + offset.x + gl_of.x, -ps_ptr[l].point.y + offset.y - gl_of.y, depth / 2.0), Vector3(ps_ptr[next].point.x + offset.x + gl_of.x, -ps_ptr[next].point.y + offset.y - gl_of.y, depth / 2.0), }; for (int m = 0; m < 4; m++) { const Vector2 &d = ((m % 2) == 0) ? d1 : d2; real_t u_pos = ((m % 2) == 0) ? length : length + seg_len; vertices_ptr[p_idx + m] = quad_faces[m]; normals_ptr[p_idx + m] = Vector3(d.y, d.x, 0.0); if (m < 2) { uvs_ptr[p_idx + m] = Vector2(Math::remap(u_pos, 0, ps_info.length, real_t(0.0), real_t(1.0)), (ps_info.ccw) ? 0.8 : 0.9); } else { uvs_ptr[p_idx + m] = Vector2(Math::remap(u_pos, 0, ps_info.length, real_t(0.0), real_t(1.0)), (ps_info.ccw) ? 0.9 : 1.0); } tangents_ptr[(p_idx + m) * 4 + 0] = d.x; tangents_ptr[(p_idx + m) * 4 + 1] = -d.y; tangents_ptr[(p_idx + m) * 4 + 2] = 0.0; tangents_ptr[(p_idx + m) * 4 + 3] = 1.0; } indices_ptr[i_idx++] = p_idx; indices_ptr[i_idx++] = p_idx + 1; indices_ptr[i_idx++] = p_idx + 2; indices_ptr[i_idx++] = p_idx + 1; indices_ptr[i_idx++] = p_idx + 3; indices_ptr[i_idx++] = p_idx + 2; length += seg_len; p_idx += 4; } } } offset.x += glyphs[j].advance * pixel_size; } } else { // Add fallback quad for missing glyphs. for (int r = 0; r < glyphs[j].repeat; r++) { Size2 sz = TS->get_hex_code_box_size(glyphs[j].font_size, glyphs[j].index) * pixel_size; Vector3 quad_faces[4] = { Vector3(offset.x, offset.y, 0.0), Vector3(offset.x, sz.y + offset.y, 0.0), Vector3(sz.x + offset.x, sz.y + offset.y, 0.0), Vector3(sz.x + offset.x, offset.y, 0.0), }; for (int k = 0; k < 4; k++) { vertices_ptr[p_idx + k] = quad_faces[k]; normals_ptr[p_idx + k] = Vector3(0.0, 0.0, 1.0); if (has_depth) { uvs_ptr[p_idx + k] = Vector2(Math::remap(quad_faces[k].x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(quad_faces[k].y, -max_p.y, -min_p.y, real_t(0.4), real_t(0.0))); } else { uvs_ptr[p_idx + k] = Vector2(Math::remap(quad_faces[k].x, min_p.x, max_p.x, real_t(0.0), real_t(1.0)), Math::remap(quad_faces[k].y, -max_p.y, -min_p.y, real_t(1.0), real_t(0.0))); } tangents_ptr[(p_idx + k) * 4 + 0] = 1.0; tangents_ptr[(p_idx + k) * 4 + 1] = 0.0; tangents_ptr[(p_idx + k) * 4 + 2] = 0.0; tangents_ptr[(p_idx + k) * 4 + 3] = 1.0; } indices_ptr[i_idx++] = p_idx; indices_ptr[i_idx++] = p_idx + 1; indices_ptr[i_idx++] = p_idx + 2; indices_ptr[i_idx++] = p_idx + 0; indices_ptr[i_idx++] = p_idx + 2; indices_ptr[i_idx++] = p_idx + 3; p_idx += 4; offset.x += glyphs[j].advance * pixel_size; } } } offset.y -= (TS->shaped_text_get_descent(lines_rid[i]) + line_spacing) * pixel_size; } if (indices.is_empty()) { // If empty, add single triangle to suppress errors. vertices.push_back(Vector3()); normals.push_back(Vector3()); uvs.push_back(Vector2()); tangents.push_back(1.0); tangents.push_back(0.0); tangents.push_back(0.0); tangents.push_back(1.0); indices.push_back(0); indices.push_back(0); indices.push_back(0); } p_arr[RS::ARRAY_VERTEX] = vertices; p_arr[RS::ARRAY_NORMAL] = normals; p_arr[RS::ARRAY_TANGENT] = tangents; p_arr[RS::ARRAY_TEX_UV] = uvs; p_arr[RS::ARRAY_INDEX] = indices; } void TextMesh::_bind_methods() { ClassDB::bind_method(D_METHOD("set_horizontal_alignment", "alignment"), &TextMesh::set_horizontal_alignment); ClassDB::bind_method(D_METHOD("get_horizontal_alignment"), &TextMesh::get_horizontal_alignment); ClassDB::bind_method(D_METHOD("set_vertical_alignment", "alignment"), &TextMesh::set_vertical_alignment); ClassDB::bind_method(D_METHOD("get_vertical_alignment"), &TextMesh::get_vertical_alignment); ClassDB::bind_method(D_METHOD("set_text", "text"), &TextMesh::set_text); ClassDB::bind_method(D_METHOD("get_text"), &TextMesh::get_text); ClassDB::bind_method(D_METHOD("set_font", "font"), &TextMesh::set_font); ClassDB::bind_method(D_METHOD("get_font"), &TextMesh::get_font); ClassDB::bind_method(D_METHOD("set_font_size", "font_size"), &TextMesh::set_font_size); ClassDB::bind_method(D_METHOD("get_font_size"), &TextMesh::get_font_size); ClassDB::bind_method(D_METHOD("set_line_spacing", "line_spacing"), &TextMesh::set_line_spacing); ClassDB::bind_method(D_METHOD("get_line_spacing"), &TextMesh::get_line_spacing); ClassDB::bind_method(D_METHOD("set_autowrap_mode", "autowrap_mode"), &TextMesh::set_autowrap_mode); ClassDB::bind_method(D_METHOD("get_autowrap_mode"), &TextMesh::get_autowrap_mode); ClassDB::bind_method(D_METHOD("set_justification_flags", "justification_flags"), &TextMesh::set_justification_flags); ClassDB::bind_method(D_METHOD("get_justification_flags"), &TextMesh::get_justification_flags); ClassDB::bind_method(D_METHOD("set_depth", "depth"), &TextMesh::set_depth); ClassDB::bind_method(D_METHOD("get_depth"), &TextMesh::get_depth); ClassDB::bind_method(D_METHOD("set_width", "width"), &TextMesh::set_width); ClassDB::bind_method(D_METHOD("get_width"), &TextMesh::get_width); ClassDB::bind_method(D_METHOD("set_pixel_size", "pixel_size"), &TextMesh::set_pixel_size); ClassDB::bind_method(D_METHOD("get_pixel_size"), &TextMesh::get_pixel_size); ClassDB::bind_method(D_METHOD("set_offset", "offset"), &TextMesh::set_offset); ClassDB::bind_method(D_METHOD("get_offset"), &TextMesh::get_offset); ClassDB::bind_method(D_METHOD("set_curve_step", "curve_step"), &TextMesh::set_curve_step); ClassDB::bind_method(D_METHOD("get_curve_step"), &TextMesh::get_curve_step); ClassDB::bind_method(D_METHOD("set_text_direction", "direction"), &TextMesh::set_text_direction); ClassDB::bind_method(D_METHOD("get_text_direction"), &TextMesh::get_text_direction); ClassDB::bind_method(D_METHOD("set_language", "language"), &TextMesh::set_language); ClassDB::bind_method(D_METHOD("get_language"), &TextMesh::get_language); ClassDB::bind_method(D_METHOD("set_structured_text_bidi_override", "parser"), &TextMesh::set_structured_text_bidi_override); ClassDB::bind_method(D_METHOD("get_structured_text_bidi_override"), &TextMesh::get_structured_text_bidi_override); ClassDB::bind_method(D_METHOD("set_structured_text_bidi_override_options", "args"), &TextMesh::set_structured_text_bidi_override_options); ClassDB::bind_method(D_METHOD("get_structured_text_bidi_override_options"), &TextMesh::get_structured_text_bidi_override_options); ClassDB::bind_method(D_METHOD("set_uppercase", "enable"), &TextMesh::set_uppercase); ClassDB::bind_method(D_METHOD("is_uppercase"), &TextMesh::is_uppercase); ADD_GROUP("Text", ""); ADD_PROPERTY(PropertyInfo(Variant::STRING, "text", PROPERTY_HINT_MULTILINE_TEXT, ""), "set_text", "get_text"); ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "font", PROPERTY_HINT_RESOURCE_TYPE, "Font"), "set_font", "get_font"); ADD_PROPERTY(PropertyInfo(Variant::INT, "font_size", PROPERTY_HINT_RANGE, "1,256,1,or_greater,suffix:px"), "set_font_size", "get_font_size"); ADD_PROPERTY(PropertyInfo(Variant::INT, "horizontal_alignment", PROPERTY_HINT_ENUM, "Left,Center,Right,Fill"), "set_horizontal_alignment", "get_horizontal_alignment"); ADD_PROPERTY(PropertyInfo(Variant::INT, "vertical_alignment", PROPERTY_HINT_ENUM, "Top,Center,Bottom"), "set_vertical_alignment", "get_vertical_alignment"); ADD_PROPERTY(PropertyInfo(Variant::BOOL, "uppercase"), "set_uppercase", "is_uppercase"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "line_spacing", PROPERTY_HINT_NONE, "suffix:px"), "set_line_spacing", "get_line_spacing"); ADD_PROPERTY(PropertyInfo(Variant::INT, "autowrap_mode", PROPERTY_HINT_ENUM, "Off,Arbitrary,Word,Word (Smart)"), "set_autowrap_mode", "get_autowrap_mode"); ADD_PROPERTY(PropertyInfo(Variant::INT, "justification_flags", PROPERTY_HINT_FLAGS, "Kashida Justification:1,Word Justification:2,Justify Only After Last Tab:8,Skip Last Line:32,Skip Last Line With Visible Characters:64,Do Not Skip Single Line:128"), "set_justification_flags", "get_justification_flags"); ADD_GROUP("Mesh", ""); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "pixel_size", PROPERTY_HINT_RANGE, "0.0001,128,0.0001,suffix:m"), "set_pixel_size", "get_pixel_size"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "curve_step", PROPERTY_HINT_RANGE, "0.1,10,0.1,suffix:px"), "set_curve_step", "get_curve_step"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "depth", PROPERTY_HINT_RANGE, "0.0,100.0,0.001,or_greater,suffix:m"), "set_depth", "get_depth"); ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "width", PROPERTY_HINT_NONE, "suffix:px"), "set_width", "get_width"); ADD_PROPERTY(PropertyInfo(Variant::VECTOR2, "offset", PROPERTY_HINT_NONE, "suffix:px"), "set_offset", "get_offset"); ADD_GROUP("BiDi", ""); ADD_PROPERTY(PropertyInfo(Variant::INT, "text_direction", PROPERTY_HINT_ENUM, "Auto,Left-to-Right,Right-to-Left"), "set_text_direction", "get_text_direction"); ADD_PROPERTY(PropertyInfo(Variant::STRING, "language", PROPERTY_HINT_LOCALE_ID, ""), "set_language", "get_language"); ADD_PROPERTY(PropertyInfo(Variant::INT, "structured_text_bidi_override", PROPERTY_HINT_ENUM, "Default,URI,File,Email,List,None,Custom"), "set_structured_text_bidi_override", "get_structured_text_bidi_override"); ADD_PROPERTY(PropertyInfo(Variant::ARRAY, "structured_text_bidi_override_options"), "set_structured_text_bidi_override_options", "get_structured_text_bidi_override_options"); } void TextMesh::_notification(int p_what) { switch (p_what) { case MainLoop::NOTIFICATION_TRANSLATION_CHANGED: { String new_text = tr(text); if (new_text == xl_text) { return; // Nothing new. } xl_text = new_text; dirty_text = true; request_update(); } break; } } TextMesh::TextMesh() { primitive_type = PRIMITIVE_TRIANGLES; text_rid = TS->create_shaped_text(); } TextMesh::~TextMesh() { for (int i = 0; i < lines_rid.size(); i++) { TS->free_rid(lines_rid[i]); } lines_rid.clear(); TS->free_rid(text_rid); } void TextMesh::set_horizontal_alignment(HorizontalAlignment p_alignment) { ERR_FAIL_INDEX((int)p_alignment, 4); if (horizontal_alignment != p_alignment) { if (horizontal_alignment == HORIZONTAL_ALIGNMENT_FILL || p_alignment == HORIZONTAL_ALIGNMENT_FILL) { dirty_lines = true; } horizontal_alignment = p_alignment; request_update(); } } HorizontalAlignment TextMesh::get_horizontal_alignment() const { return horizontal_alignment; } void TextMesh::set_vertical_alignment(VerticalAlignment p_alignment) { ERR_FAIL_INDEX((int)p_alignment, 4); if (vertical_alignment != p_alignment) { vertical_alignment = p_alignment; request_update(); } } VerticalAlignment TextMesh::get_vertical_alignment() const { return vertical_alignment; } void TextMesh::set_text(const String &p_string) { if (text != p_string) { text = p_string; xl_text = tr(text); dirty_text = true; request_update(); } } String TextMesh::get_text() const { return text; } void TextMesh::_font_changed() { dirty_font = true; dirty_cache = true; callable_mp(static_cast(this), &PrimitiveMesh::request_update).call_deferred(); } void TextMesh::set_font(const Ref &p_font) { if (font_override != p_font) { const Callable font_changed = callable_mp(this, &TextMesh::_font_changed); if (font_override.is_valid()) { font_override->disconnect_changed(font_changed); } font_override = p_font; dirty_font = true; dirty_cache = true; if (font_override.is_valid()) { font_override->connect_changed(font_changed); } request_update(); } } Ref TextMesh::get_font() const { return font_override; } Ref TextMesh::_get_font_or_default() const { // Similar code taken from `FontVariation::_get_base_font_or_default`. if (font_override.is_valid()) { return font_override; } StringName theme_name = "font"; List theme_types; ThemeDB::get_singleton()->get_native_type_dependencies(get_class_name(), &theme_types); ThemeContext *global_context = ThemeDB::get_singleton()->get_default_theme_context(); List> themes = global_context->get_themes(); if (Engine::get_singleton()->is_editor_hint()) { themes.push_front(ThemeDB::get_singleton()->get_project_theme()); } for (const Ref &theme : themes) { if (theme.is_null()) { continue; } for (const StringName &E : theme_types) { if (theme->has_font(theme_name, E)) { return theme->get_font(theme_name, E); } } } return global_context->get_fallback_theme()->get_font(theme_name, StringName()); } void TextMesh::set_font_size(int p_size) { if (font_size != p_size) { font_size = CLAMP(p_size, 1, 127); dirty_font = true; dirty_cache = true; request_update(); } } int TextMesh::get_font_size() const { return font_size; } void TextMesh::set_line_spacing(float p_line_spacing) { if (line_spacing != p_line_spacing) { line_spacing = p_line_spacing; request_update(); } } float TextMesh::get_line_spacing() const { return line_spacing; } void TextMesh::set_autowrap_mode(TextServer::AutowrapMode p_mode) { if (autowrap_mode != p_mode) { autowrap_mode = p_mode; dirty_lines = true; request_update(); } } TextServer::AutowrapMode TextMesh::get_autowrap_mode() const { return autowrap_mode; } void TextMesh::set_justification_flags(BitField p_flags) { if (jst_flags != p_flags) { jst_flags = p_flags; dirty_lines = true; request_update(); } } BitField TextMesh::get_justification_flags() const { return jst_flags; } void TextMesh::set_depth(real_t p_depth) { if (depth != p_depth) { depth = MAX(p_depth, 0.0); request_update(); } } real_t TextMesh::get_depth() const { return depth; } void TextMesh::set_width(real_t p_width) { if (width != p_width) { width = p_width; dirty_lines = true; request_update(); } } real_t TextMesh::get_width() const { return width; } void TextMesh::set_pixel_size(real_t p_amount) { if (pixel_size != p_amount) { pixel_size = CLAMP(p_amount, 0.0001, 128.0); dirty_cache = true; request_update(); } } real_t TextMesh::get_pixel_size() const { return pixel_size; } void TextMesh::set_offset(const Point2 &p_offset) { if (lbl_offset != p_offset) { lbl_offset = p_offset; request_update(); } } Point2 TextMesh::get_offset() const { return lbl_offset; } void TextMesh::set_curve_step(real_t p_step) { if (curve_step != p_step) { curve_step = CLAMP(p_step, 0.1, 10.0); dirty_cache = true; request_update(); } } real_t TextMesh::get_curve_step() const { return curve_step; } void TextMesh::set_text_direction(TextServer::Direction p_text_direction) { ERR_FAIL_COND((int)p_text_direction < -1 || (int)p_text_direction > 3); if (text_direction != p_text_direction) { text_direction = p_text_direction; dirty_text = true; request_update(); } } TextServer::Direction TextMesh::get_text_direction() const { return text_direction; } void TextMesh::set_language(const String &p_language) { if (language != p_language) { language = p_language; dirty_text = true; request_update(); } } String TextMesh::get_language() const { return language; } void TextMesh::set_structured_text_bidi_override(TextServer::StructuredTextParser p_parser) { if (st_parser != p_parser) { st_parser = p_parser; dirty_text = true; request_update(); } } TextServer::StructuredTextParser TextMesh::get_structured_text_bidi_override() const { return st_parser; } void TextMesh::set_structured_text_bidi_override_options(Array p_args) { if (st_args != p_args) { st_args = p_args; dirty_text = true; request_update(); } } Array TextMesh::get_structured_text_bidi_override_options() const { return st_args; } void TextMesh::set_uppercase(bool p_uppercase) { if (uppercase != p_uppercase) { uppercase = p_uppercase; dirty_text = true; request_update(); } } bool TextMesh::is_uppercase() const { return uppercase; }