/*************************************************************************/ /* bvh.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef BVH_H #define BVH_H // BVH // This class provides a wrapper around BVH tree, which contains most of the functionality // for a dynamic BVH with templated leaf size. // However BVH also adds facilities for pairing, to maintain compatibility with Godot 3.2. // Pairing is a collision pairing system, on top of the basic BVH. #include "bvh_tree.h" #define BVHTREE_CLASS BVH_Tree template class BVH_Manager { public: // note we are using uint32_t instead of BVHHandle, losing type safety, but this // is for compatibility with octree typedef void *(*PairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int); typedef void (*UnpairCallback)(void *, uint32_t, T *, int, uint32_t, T *, int, void *); // these 2 are crucial for fine tuning, and can be applied manually // see the variable declarations for more info. void params_set_node_expansion(real_t p_value) { if (p_value >= 0.0) { tree._node_expansion = p_value; tree._auto_node_expansion = false; } else { tree._auto_node_expansion = true; } } void params_set_pairing_expansion(real_t p_value) { if (p_value >= 0.0) { tree._pairing_expansion = p_value; tree._auto_pairing_expansion = false; } else { tree._auto_pairing_expansion = true; } } void set_pair_callback(PairCallback p_callback, void *p_userdata) { pair_callback = p_callback; pair_callback_userdata = p_userdata; } void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) { unpair_callback = p_callback; unpair_callback_userdata = p_userdata; } BVHHandle create(T *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t p_pairable_mask = 1) { #ifdef TOOLS_ENABLED if (!USE_PAIRS) { if (p_pairable) { WARN_PRINT_ONCE("creating pairable item in BVH with USE_PAIRS set to false"); } } #endif BVHHandle h = tree.item_add(p_userdata, p_aabb, p_subindex, p_pairable, p_pairable_type, p_pairable_mask); if (USE_PAIRS) { _add_changed_item(h, p_aabb); } return h; } //////////////////////////////////////////////////// // wrapper versions that use uint32_t instead of handle // for backward compatibility. Less type safe void move(uint32_t p_handle, const AABB &p_aabb) { BVHHandle h; h.set(p_handle); move(h, p_aabb); } void erase(uint32_t p_handle) { BVHHandle h; h.set(p_handle); erase(h); } void set_pairable(uint32_t p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) { BVHHandle h; h.set(p_handle); set_pairable(h, p_pairable, p_pairable_type, p_pairable_mask); } bool is_pairable(uint32_t p_handle) const { BVHHandle h; h.set(p_handle); return item_is_pairable(h); } int get_subindex(uint32_t p_handle) const { BVHHandle h; h.set(p_handle); return item_get_subindex(h); } T *get(uint32_t p_handle) const { BVHHandle h; h.set(p_handle); return item_get_userdata(h); } //////////////////////////////////////////////////// void move(BVHHandle p_handle, const AABB &p_aabb) { if (tree.item_move(p_handle, p_aabb)) { if (USE_PAIRS) { _add_changed_item(p_handle, p_aabb); } } } void erase(BVHHandle p_handle) { // call unpair and remove all references to the item // before deleting from the tree if (USE_PAIRS) { _remove_changed_item(p_handle); } tree.item_remove(p_handle); } // call e.g. once per frame (this does a trickle optimize) void update() { tree.update(); _check_for_collisions(); #ifdef BVH_INTEGRITY_CHECKS tree.integrity_check_all(); #endif } // prefer calling this directly as type safe void set_pairable(const BVHHandle &p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) { // unpair callback if already paired? NYI tree.item_set_pairable(p_handle, p_pairable, p_pairable_type, p_pairable_mask); } // cull tests int cull_aabb(const AABB &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = p_subindex_array; params.mask = p_mask; params.test_pairable_only = false; params.abb.from(p_aabb); tree.cull_aabb(params); return params.result_count_overall; } int cull_segment(const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = p_subindex_array; params.mask = p_mask; params.segment.from = p_from; params.segment.to = p_to; tree.cull_segment(params); return params.result_count_overall; } int cull_point(const Vector3 &p_point, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) { typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = p_subindex_array; params.mask = p_mask; params.point = p_point; tree.cull_point(params); return params.result_count_overall; } int cull_convex(const Vector &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) { if (!p_convex.size()) return 0; Vector convex_points = Geometry::compute_convex_mesh_points(&p_convex[0], p_convex.size()); if (convex_points.size() == 0) return 0; typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = p_result_max; params.result_array = p_result_array; params.subindex_array = nullptr; params.mask = p_mask; params.hull.planes = &p_convex[0]; params.hull.num_planes = p_convex.size(); params.hull.points = &convex_points[0]; params.hull.num_points = convex_points.size(); tree.cull_convex(params); return params.result_count_overall; } private: // do this after moving etc. void _check_for_collisions() { AABB bb; typename BVHTREE_CLASS::CullParams params; params.result_count_overall = 0; params.result_max = INT_MAX; params.result_array = nullptr; params.subindex_array = nullptr; params.mask = 0xFFFFFFFF; for (unsigned int n = 0; n < changed_items.size(); n++) { const BVHHandle &h = changed_items[n]; // use the expanded aabb for pairing const AABB &expanded_aabb = tree._pairs[h.id()].expanded_aabb; BVH_ABB abb; abb.from(expanded_aabb); // find all the existing paired aabbs that are no longer // paired, and send callbacks _find_leavers(h, abb); uint32_t changed_item_ref_id = h.id(); // set up the test from this item. // this includes whether to test the non pairable tree, // and the item mask. tree.item_fill_cullparams(h, params); params.abb = abb; params.result_count_overall = 0; // might not be needed tree.cull_aabb(params, false); for (unsigned int i = 0; i < tree._cull_hits.size(); i++) { uint32_t ref_id = tree._cull_hits[i]; // don't collide against ourself if (ref_id == changed_item_ref_id) continue; #ifdef BVH_CHECKS // if neither are pairable, they should ignore each other // THIS SHOULD NEVER HAPPEN .. now we only test the pairable tree // if the changed item is not pairable CRASH_COND(params.test_pairable_only && !tree._extra[ref_id].pairable); #endif // checkmasks is already done in the cull routine. BVHHandle h_collidee; h_collidee.set_id(ref_id); // find NEW enterers, and send callbacks for them only _collide(h, h_collidee); } } _reset(); } public: void item_get_AABB(BVHHandle p_handle, AABB &r_aabb) { BVH_ABB abb; tree.item_get_ABB(p_handle, abb); abb.to(r_aabb); } private: // supplemental funcs bool item_is_pairable(BVHHandle p_handle) const { return _get_extra(p_handle).pairable; } T *item_get_userdata(BVHHandle p_handle) const { return _get_extra(p_handle).userdata; } int item_get_subindex(BVHHandle p_handle) const { return _get_extra(p_handle).subindex; } void _unpair(BVHHandle p_from, BVHHandle p_to) { tree._handle_sort(p_from, p_to); typename BVHTREE_CLASS::ItemPairs &pairs_from = tree._pairs[p_from.id()]; typename BVHTREE_CLASS::ItemPairs &pairs_to = tree._pairs[p_to.id()]; void *ud_from = pairs_from.remove_pair_to(p_to); pairs_to.remove_pair_to(p_from); // callback if (unpair_callback) { typename BVHTREE_CLASS::ItemExtra &exa = tree._extra[p_from.id()]; typename BVHTREE_CLASS::ItemExtra &exb = tree._extra[p_to.id()]; unpair_callback(pair_callback_userdata, p_from, exa.userdata, exa.subindex, p_to, exb.userdata, exb.subindex, ud_from); } } // returns true if unpair bool _find_leavers_process_pair(typename BVHTREE_CLASS::ItemPairs &p_pairs_from, const BVH_ABB &p_abb_from, BVHHandle p_from, BVHHandle p_to) { BVH_ABB abb_to; tree.item_get_ABB(p_to, abb_to); // do they overlap? if (p_abb_from.intersects(abb_to)) return false; _unpair(p_from, p_to); return true; } // find all the existing paired aabbs that are no longer // paired, and send callbacks void _find_leavers(BVHHandle p_handle, const BVH_ABB &expanded_abb_from) { typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_handle.id()]; // opportunity to de-extend pairs, before removing leavers p_from.update(); BVH_ABB abb_from = expanded_abb_from; // remove from pairing list for every partner for (unsigned int n = 0; n < p_from.extended_pairs.size(); n++) { BVHHandle h_to = p_from.extended_pairs[n].handle; if (_find_leavers_process_pair(p_from, abb_from, p_handle, h_to)) { // we need to keep the counter n up to date if we deleted a pair // as the number of items in p_from.extended_pairs will have decreased by 1 // and we don't want to miss an item n--; } } } // find NEW enterers, and send callbacks for them only // handle a and b void _collide(BVHHandle p_ha, BVHHandle p_hb) { // only have to do this oneway, lower ID then higher ID tree._handle_sort(p_ha, p_hb); typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_ha.id()]; typename BVHTREE_CLASS::ItemPairs &p_to = tree._pairs[p_hb.id()]; // does this pair exist already? // or only check the one with lower number of pairs for greater speed if (p_from.num_pairs <= p_to.num_pairs) { if (p_from.contains_pair_to(p_hb)) return; } else { if (p_to.contains_pair_to(p_ha)) return; } // callback void *callback_userdata = nullptr; if (pair_callback) { const typename BVHTREE_CLASS::ItemExtra &exa = _get_extra(p_ha); const typename BVHTREE_CLASS::ItemExtra &exb = _get_extra(p_hb); callback_userdata = pair_callback(pair_callback_userdata, p_ha, exa.userdata, exa.subindex, p_hb, exb.userdata, exb.subindex); } // new pair! .. only really need to store the userdata on the lower handle, but both have storage so... p_from.add_pair_to(p_hb, callback_userdata); p_to.add_pair_to(p_ha, callback_userdata); } // if we remove an item, we need to immediately remove the pairs, to prevent reading the pair after deletion void _remove_pairs_containing(BVHHandle p_handle) { typename BVHTREE_CLASS::ItemPairs &p_from = tree._pairs[p_handle.id()]; // remove from pairing list for every partner. // can't easily use a for loop here, because removing changes the size of the list while (p_from.extended_pairs.size()) { BVHHandle h_to = p_from.extended_pairs[0].handle; _unpair(p_handle, h_to); } } private: const typename BVHTREE_CLASS::ItemExtra &_get_extra(BVHHandle p_handle) const { return tree._extra[p_handle.id()]; } const typename BVHTREE_CLASS::ItemRef &_get_ref(BVHHandle p_handle) const { return tree._refs[p_handle.id()]; } void _reset() { changed_items.clear(); _tick++; } void _add_changed_item(BVHHandle p_handle, const AABB &aabb) { // only if uses pairing // no .. non pairable items seem to be able to pair with pairable // aabb check with expanded aabb. This greatly decreases processing // at the cost of slightly less accurate pairing checks AABB &expanded_aabb = tree._pairs[p_handle.id()].expanded_aabb; if (expanded_aabb.encloses(aabb)) return; uint32_t &last_updated_tick = tree._extra[p_handle.id()].last_updated_tick; if (last_updated_tick == _tick) return; // already on changed list // mark as on list last_updated_tick = _tick; // opportunity to de-extend pairs (before collision detection, which will delete then recreate pairs) // new expanded aabb expanded_aabb = aabb; expanded_aabb.grow_by(tree._pairing_expansion); changed_items.push_back(p_handle); } void _remove_changed_item(BVHHandle p_handle) { // Care has to be taken here for items that are deleted. The ref ID // could be reused on the same tick for new items. This is probably // rare but should be taken into consideration // callbacks _remove_pairs_containing(p_handle); // remove from changed items (not very efficient yet) for (unsigned int n = 0; n < changed_items.size(); n++) { if (changed_items[n] == p_handle) { changed_items.remove_unordered(n); } } // reset the last updated tick (may not be necessary but just in case) tree._extra[p_handle.id()].last_updated_tick = 0; } PairCallback pair_callback; UnpairCallback unpair_callback; void *pair_callback_userdata; void *unpair_callback_userdata; BVHTREE_CLASS tree; // for collision pairing, // maintain a list of all items moved etc on each frame / tick LocalVector changed_items; uint32_t _tick; public: BVH_Manager() { _tick = 1; // start from 1 so items with 0 indicate never updated pair_callback = nullptr; unpair_callback = nullptr; pair_callback_userdata = nullptr; unpair_callback_userdata = nullptr; } }; #undef BVHTREE_CLASS #endif // BVH_H