/**************************************************************************/ /* quick_hull.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "quick_hull.h" #include "core/map.h" uint32_t QuickHull::debug_stop_after = 0xFFFFFFFF; bool QuickHull::_flag_warnings = true; Error QuickHull::build(const Vector &p_points, Geometry::MeshData &r_mesh, real_t p_over_tolerance_epsilon) { /* CREATE AABB VOLUME */ AABB aabb; aabb.create_from_points(p_points); if (aabb.size == Vector3()) { return ERR_CANT_CREATE; } Vector valid_points; valid_points.resize(p_points.size()); Set valid_cache; for (int i = 0; i < p_points.size(); i++) { Vector3 sp = p_points[i].snapped(Vector3(0.0001, 0.0001, 0.0001)); if (valid_cache.has(sp)) { valid_points.write[i] = false; } else { valid_points.write[i] = true; valid_cache.insert(sp); } } /* CREATE INITIAL SIMPLEX */ int longest_axis = aabb.get_longest_axis_index(); //first two vertices are the most distant int simplex[4] = { 0 }; { real_t max = 0, min = 0; for (int i = 0; i < p_points.size(); i++) { if (!valid_points[i]) { continue; } real_t d = p_points[i][longest_axis]; if (i == 0 || d < min) { simplex[0] = i; min = d; } if (i == 0 || d > max) { simplex[1] = i; max = d; } } } //third vertex is one most further away from the line { real_t maxd = 0; Vector3 rel12 = p_points[simplex[0]] - p_points[simplex[1]]; for (int i = 0; i < p_points.size(); i++) { if (!valid_points[i]) { continue; } Vector3 n = rel12.cross(p_points[simplex[0]] - p_points[i]).cross(rel12).normalized(); real_t d = Math::abs(n.dot(p_points[simplex[0]]) - n.dot(p_points[i])); if (i == 0 || d > maxd) { maxd = d; simplex[2] = i; } } } //fourth vertex is the one most further away from the plane { real_t maxd = 0; Plane p(p_points[simplex[0]], p_points[simplex[1]], p_points[simplex[2]]); for (int i = 0; i < p_points.size(); i++) { if (!valid_points[i]) { continue; } real_t d = Math::abs(p.distance_to(p_points[i])); if (i == 0 || d > maxd) { maxd = d; simplex[3] = i; } } } //compute center of simplex, this is a point always warranted to be inside Vector3 center; for (int i = 0; i < 4; i++) { center += p_points[simplex[i]]; } center /= 4.0; //add faces List faces; for (int i = 0; i < 4; i++) { static const int face_order[4][3] = { { 0, 1, 2 }, { 0, 1, 3 }, { 0, 2, 3 }, { 1, 2, 3 } }; Face f; for (int j = 0; j < 3; j++) { f.vertices[j] = simplex[face_order[i][j]]; } Plane p(p_points[f.vertices[0]], p_points[f.vertices[1]], p_points[f.vertices[2]]); if (p.is_point_over(center)) { //flip face to clockwise if facing inwards SWAP(f.vertices[0], f.vertices[1]); p = -p; } f.plane = p; faces.push_back(f); } real_t over_tolerance = p_over_tolerance_epsilon * (aabb.size.x + aabb.size.y + aabb.size.z); /* COMPUTE AVAILABLE VERTICES */ for (int i = 0; i < p_points.size(); i++) { if (i == simplex[0]) { continue; } if (i == simplex[1]) { continue; } if (i == simplex[2]) { continue; } if (i == simplex[3]) { continue; } if (!valid_points[i]) { continue; } for (List::Element *E = faces.front(); E; E = E->next()) { if (E->get().plane.distance_to(p_points[i]) > over_tolerance) { E->get().points_over.push_back(i); break; } } } faces.sort(); // sort them, so the ones with points are in the back /* BUILD HULL */ //poop face (while still remain) //find further away point //find lit faces //determine horizon edges //build new faces with horizon edges, them assign points side from all lit faces //remove lit faces uint32_t debug_stop = debug_stop_after; while (debug_stop > 0 && faces.back()->get().points_over.size()) { debug_stop--; Face &f = faces.back()->get(); //find vertex most outside int next = -1; real_t next_d = 0; for (int i = 0; i < f.points_over.size(); i++) { real_t d = f.plane.distance_to(p_points[f.points_over[i]]); if (d > next_d) { next_d = d; next = i; } } ERR_FAIL_COND_V(next == -1, ERR_BUG); Vector3 v = p_points[f.points_over[next]]; //find lit faces and lit edges List::Element *> lit_faces; //lit face is a death sentence Map lit_edges; //create this on the flight, should not be that bad for performance and simplifies code a lot for (List::Element *E = faces.front(); E; E = E->next()) { if (E->get().plane.distance_to(v) > 0) { lit_faces.push_back(E); for (int i = 0; i < 3; i++) { uint32_t a = E->get().vertices[i]; uint32_t b = E->get().vertices[(i + 1) % 3]; Edge e(a, b); Map::Element *F = lit_edges.find(e); if (!F) { F = lit_edges.insert(e, FaceConnect()); } if (e.vertices[0] == a) { //left F->get().left = E; } else { F->get().right = E; } } } } //create new faces from horizon edges List::Element *> new_faces; //new faces for (Map::Element *E = lit_edges.front(); E; E = E->next()) { FaceConnect &fc = E->get(); if (fc.left && fc.right) { continue; //edge is uninteresting, not on horizont } //create new face! Face face; face.vertices[0] = f.points_over[next]; face.vertices[1] = E->key().vertices[0]; face.vertices[2] = E->key().vertices[1]; Plane p(p_points[face.vertices[0]], p_points[face.vertices[1]], p_points[face.vertices[2]]); if (p.is_point_over(center)) { //flip face to clockwise if facing inwards SWAP(face.vertices[0], face.vertices[1]); p = -p; } face.plane = p; new_faces.push_back(faces.push_back(face)); } //distribute points into new faces for (List::Element *>::Element *F = lit_faces.front(); F; F = F->next()) { Face &lf = F->get()->get(); for (int i = 0; i < lf.points_over.size(); i++) { if (lf.points_over[i] == f.points_over[next]) { //do not add current one continue; } Vector3 p = p_points[lf.points_over[i]]; for (List::Element *>::Element *E = new_faces.front(); E; E = E->next()) { Face &f2 = E->get()->get(); if (f2.plane.distance_to(p) > over_tolerance) { f2.points_over.push_back(lf.points_over[i]); break; } } } } //erase lit faces while (lit_faces.size()) { faces.erase(lit_faces.front()->get()); lit_faces.pop_front(); } //put faces that contain no points on the front for (List::Element *>::Element *E = new_faces.front(); E; E = E->next()) { Face &f2 = E->get()->get(); if (f2.points_over.size() == 0) { faces.move_to_front(E->get()); } } //whew, done with iteration, go next } /* CREATE MESHDATA */ //make a map of edges again Map ret_edges; List ret_faces; for (List::Element *E = faces.front(); E; E = E->next()) { Geometry::MeshData::Face f; f.plane = E->get().plane; for (int i = 0; i < 3; i++) { f.indices.push_back(E->get().vertices[i]); } List::Element *F = ret_faces.push_back(f); for (int i = 0; i < 3; i++) { uint32_t a = E->get().vertices[i]; uint32_t b = E->get().vertices[(i + 1) % 3]; Edge e(a, b); Map::Element *G = ret_edges.find(e); if (!G) { G = ret_edges.insert(e, RetFaceConnect()); } if (e.vertices[0] == a) { //left G->get().left = F; } else { G->get().right = F; } } } //fill faces bool warning_f = false; bool warning_o_equal_e = false; bool warning_o = false; bool warning_not_f2 = false; for (List::Element *E = ret_faces.front(); E; E = E->next()) { Geometry::MeshData::Face &f = E->get(); for (int i = 0; i < f.indices.size(); i++) { int a = E->get().indices[i]; int b = E->get().indices[(i + 1) % f.indices.size()]; Edge e(a, b); Map::Element *F = ret_edges.find(e); if (unlikely(!F)) { warning_f = true; continue; } List::Element *O = F->get().left == E ? F->get().right : F->get().left; if (unlikely(O == E)) { warning_o_equal_e = true; continue; } if (unlikely(!O)) { warning_o = true; continue; } if (O->get().plane.is_equal_approx(f.plane)) { //merge and delete edge and contiguous face, while repointing edges (uuugh!) int ois = O->get().indices.size(); for (int j = 0; j < ois; j++) { //search a if (O->get().indices[j] == a) { //append the rest for (int k = 0; k < ois; k++) { int idx = O->get().indices[(k + j) % ois]; int idxn = O->get().indices[(k + j + 1) % ois]; if (idx == b && idxn == a) { //already have b! break; } if (idx != a) { f.indices.insert(i + 1, idx); i++; } Edge e2(idx, idxn); Map::Element *F2 = ret_edges.find(e2); if (unlikely(!F2)) { warning_not_f2 = true; continue; } //change faceconnect, point to this face instead if (F2->get().left == O) { F2->get().left = E; } else if (F2->get().right == O) { F2->get().right = E; } } break; } } // remove all edge connections to this face for (Map::Element *G = ret_edges.front(); G; G = G->next()) { if (G->get().left == O) { G->get().left = nullptr; } if (G->get().right == O) { G->get().right = nullptr; } } ret_edges.erase(F); //remove the edge ret_faces.erase(O); //remove the face } } } if (_flag_warnings) { if (warning_f) { WARN_PRINT("QuickHull : !F"); } if (warning_o_equal_e) { WARN_PRINT("QuickHull : O == E"); } if (warning_o) { WARN_PRINT("QuickHull : O == nullptr"); } if (warning_not_f2) { WARN_PRINT("QuickHull : !F2"); } } //fill mesh r_mesh.faces.clear(); r_mesh.faces.resize(ret_faces.size()); int idx = 0; for (List::Element *E = ret_faces.front(); E; E = E->next()) { r_mesh.faces.write[idx++] = E->get(); } r_mesh.edges.resize(ret_edges.size()); idx = 0; for (Map::Element *E = ret_edges.front(); E; E = E->next()) { Geometry::MeshData::Edge e; e.a = E->key().vertices[0]; e.b = E->key().vertices[1]; r_mesh.edges.write[idx++] = e; } // we are only interested in outputting the points that are used Vector out_indices; for (int n = 0; n < r_mesh.faces.size(); n++) { Geometry::MeshData::Face face = r_mesh.faces[n]; for (int i = 0; i < face.indices.size(); i++) { face.indices.set(i, find_or_create_output_index(face.indices[i], out_indices)); } r_mesh.faces.set(n, face); } for (int n = 0; n < r_mesh.edges.size(); n++) { Geometry::MeshData::Edge e = r_mesh.edges[n]; e.a = find_or_create_output_index(e.a, out_indices); e.b = find_or_create_output_index(e.b, out_indices); r_mesh.edges.set(n, e); } // rejig the final vertices r_mesh.vertices.resize(out_indices.size()); for (int n = 0; n < out_indices.size(); n++) { r_mesh.vertices.set(n, p_points[out_indices[n]]); } return OK; }