/*************************************************************************/ /* space_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "space_sw.h" #include "collision_solver_sw.h" #include "core/project_settings.h" #include "physics_server_sw.h" #define TEST_MOTION_MARGIN_MIN_VALUE 0.0001 #define TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR 0.05 _FORCE_INLINE_ static bool _can_collide_with(CollisionObjectSW *p_object, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { if (!(p_object->get_collision_layer() & p_collision_mask)) { return false; } if (p_object->get_type() == CollisionObjectSW::TYPE_AREA && !p_collide_with_areas) { return false; } if (p_object->get_type() == CollisionObjectSW::TYPE_BODY && !p_collide_with_bodies) { return false; } return true; } int PhysicsDirectSpaceStateSW::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { ERR_FAIL_COND_V(space->locked, false); int amount = space->broadphase->cull_point(p_point, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); int cc = 0; //Transform ai = p_xform.affine_inverse(); for (int i = 0; i < amount; i++) { if (cc >= p_result_max) { break; } if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) { continue; } //area can't be picked by ray (default) if (p_exclude.has(space->intersection_query_results[i]->get_self())) { continue; } const CollisionObjectSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; Transform inv_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); inv_xform.affine_invert(); if (!col_obj->get_shape(shape_idx)->intersect_point(inv_xform.xform(p_point))) { continue; } r_results[cc].collider_id = col_obj->get_instance_id(); if (r_results[cc].collider_id != 0) { r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id); } else { r_results[cc].collider = nullptr; } r_results[cc].rid = col_obj->get_self(); r_results[cc].shape = shape_idx; cc++; } return cc; } bool PhysicsDirectSpaceStateSW::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, bool p_pick_ray) { ERR_FAIL_COND_V(space->locked, false); Vector3 begin, end; Vector3 normal; begin = p_from; end = p_to; normal = (end - begin).normalized(); int amount = space->broadphase->cull_segment(begin, end, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); //todo, create another array that references results, compute AABBs and check closest point to ray origin, sort, and stop evaluating results when beyond first collision bool collided = false; Vector3 res_point, res_normal; int res_shape; const CollisionObjectSW *res_obj; real_t min_d = 1e10; for (int i = 0; i < amount; i++) { if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) { continue; } if (p_pick_ray && !(space->intersection_query_results[i]->is_ray_pickable())) { continue; } if (p_exclude.has(space->intersection_query_results[i]->get_self())) { continue; } const CollisionObjectSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; Transform inv_xform = col_obj->get_shape_inv_transform(shape_idx) * col_obj->get_inv_transform(); Vector3 local_from = inv_xform.xform(begin); Vector3 local_to = inv_xform.xform(end); const ShapeSW *shape = col_obj->get_shape(shape_idx); Vector3 shape_point, shape_normal; if (shape->intersect_segment(local_from, local_to, shape_point, shape_normal)) { Transform xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); shape_point = xform.xform(shape_point); real_t ld = normal.dot(shape_point); if (ld < min_d) { min_d = ld; res_point = shape_point; res_normal = inv_xform.basis.xform_inv(shape_normal).normalized(); res_shape = shape_idx; res_obj = col_obj; collided = true; } } } if (!collided) { return false; } r_result.collider_id = res_obj->get_instance_id(); if (r_result.collider_id != 0) { r_result.collider = ObjectDB::get_instance(r_result.collider_id); } else { r_result.collider = nullptr; } r_result.normal = res_normal; r_result.position = res_point; r_result.rid = res_obj->get_self(); r_result.shape = res_shape; return true; } int PhysicsDirectSpaceStateSW::intersect_shape(const RID &p_shape, const Transform &p_xform, real_t p_margin, ShapeResult *r_results, int p_result_max, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { if (p_result_max <= 0) { return 0; } ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, 0); AABB aabb = p_xform.xform(shape->get_aabb()); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); int cc = 0; //Transform ai = p_xform.affine_inverse(); for (int i = 0; i < amount; i++) { if (cc >= p_result_max) { break; } if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) { continue; } //area can't be picked by ray (default) if (p_exclude.has(space->intersection_query_results[i]->get_self())) { continue; } const CollisionObjectSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; if (!CollisionSolverSW::solve_static(shape, p_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), nullptr, nullptr, nullptr, p_margin, 0)) { continue; } if (r_results) { r_results[cc].collider_id = col_obj->get_instance_id(); if (r_results[cc].collider_id != 0) { r_results[cc].collider = ObjectDB::get_instance(r_results[cc].collider_id); } else { r_results[cc].collider = nullptr; } r_results[cc].rid = col_obj->get_self(); r_results[cc].shape = shape_idx; } cc++; } return cc; } bool PhysicsDirectSpaceStateSW::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, real_t p_margin, real_t &p_closest_safe, real_t &p_closest_unsafe, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas, ShapeRestInfo *r_info) { ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, false); AABB aabb = p_xform.xform(shape->get_aabb()); aabb = aabb.merge(AABB(aabb.position + p_motion, aabb.size)); //motion aabb = aabb.grow(p_margin); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); real_t best_safe = 1; real_t best_unsafe = 1; Transform xform_inv = p_xform.affine_inverse(); MotionShapeSW mshape; mshape.shape = shape; mshape.motion = xform_inv.basis.xform(p_motion); bool best_first = true; Vector3 motion_normal = p_motion.normalized(); Vector3 closest_A, closest_B; for (int i = 0; i < amount; i++) { if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) { continue; } if (p_exclude.has(space->intersection_query_results[i]->get_self())) { continue; //ignore excluded } const CollisionObjectSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; Vector3 point_A, point_B; Vector3 sep_axis = motion_normal; Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); //test initial overlap, does it collide if going all the way? if (CollisionSolverSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) { continue; } //test initial overlap, ignore objects it's inside of. sep_axis = motion_normal; if (!CollisionSolverSW::solve_distance(shape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, aabb, &sep_axis)) { continue; } //just do kinematic solving real_t low = 0.0; real_t hi = 1.0; real_t fraction_coeff = 0.5; for (int j = 0; j < 8; j++) { //steps should be customizable.. real_t fraction = low + (hi - low) * fraction_coeff; mshape.motion = xform_inv.basis.xform(p_motion * fraction); Vector3 lA, lB; Vector3 sep = motion_normal; //important optimization for this to work fast enough bool collided = !CollisionSolverSW::solve_distance(&mshape, p_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, aabb, &sep); if (collided) { hi = fraction; if ((j == 0) || (low > 0.0)) { // Did it not collide before? // When alternating or first iteration, use dichotomy. fraction_coeff = 0.5; } else { // When colliding again, converge faster towards low fraction // for more accurate results with long motions that collide near the start. fraction_coeff = 0.25; } } else { point_A = lA; point_B = lB; low = fraction; if ((j == 0) || (hi < 1.0)) { // Did it collide before? // When alternating or first iteration, use dichotomy. fraction_coeff = 0.5; } else { // When not colliding again, converge faster towards high fraction // for more accurate results with long motions that collide near the end. fraction_coeff = 0.75; } } } if (low < best_safe) { best_first = true; //force reset best_safe = low; best_unsafe = hi; } if (r_info && (best_first || (point_A.distance_squared_to(point_B) < closest_A.distance_squared_to(closest_B) && low <= best_safe))) { closest_A = point_A; closest_B = point_B; r_info->collider_id = col_obj->get_instance_id(); r_info->rid = col_obj->get_self(); r_info->shape = shape_idx; r_info->point = closest_B; r_info->normal = (closest_A - closest_B).normalized(); best_first = false; if (col_obj->get_type() == CollisionObjectSW::TYPE_BODY) { const BodySW *body = static_cast(col_obj); Vector3 rel_vec = closest_B - (body->get_transform().origin + body->get_center_of_mass()); r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec); } } } p_closest_safe = best_safe; p_closest_unsafe = best_unsafe; return true; } bool PhysicsDirectSpaceStateSW::collide_shape(RID p_shape, const Transform &p_shape_xform, real_t p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { if (p_result_max <= 0) { return false; } ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, 0); AABB aabb = p_shape_xform.xform(shape->get_aabb()); aabb = aabb.grow(p_margin); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); bool collided = false; r_result_count = 0; PhysicsServerSW::CollCbkData cbk; cbk.max = p_result_max; cbk.amount = 0; cbk.ptr = r_results; CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk; PhysicsServerSW::CollCbkData *cbkptr = &cbk; for (int i = 0; i < amount; i++) { if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) { continue; } const CollisionObjectSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; if (p_exclude.has(col_obj->get_self())) { continue; } if (CollisionSolverSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) { collided = true; } } r_result_count = cbk.amount; return collided; } struct _RestCallbackData { const CollisionObjectSW *object; const CollisionObjectSW *best_object; int local_shape; int best_local_shape; int shape; int best_shape; Vector3 best_contact; Vector3 best_normal; real_t best_len; real_t min_allowed_depth; }; static void _rest_cbk_result(const Vector3 &p_point_A, const Vector3 &p_point_B, void *p_userdata) { _RestCallbackData *rd = (_RestCallbackData *)p_userdata; Vector3 contact_rel = p_point_B - p_point_A; real_t len = contact_rel.length(); if (len < rd->min_allowed_depth) { return; } if (len <= rd->best_len) { return; } rd->best_len = len; rd->best_contact = p_point_B; rd->best_normal = contact_rel / len; rd->best_object = rd->object; rd->best_shape = rd->shape; rd->best_local_shape = rd->local_shape; } bool PhysicsDirectSpaceStateSW::rest_info(RID p_shape, const Transform &p_shape_xform, real_t p_margin, ShapeRestInfo *r_info, const Set &p_exclude, uint32_t p_collision_mask, bool p_collide_with_bodies, bool p_collide_with_areas) { ShapeSW *shape = static_cast(PhysicsServer::get_singleton())->shape_owner.get(p_shape); ERR_FAIL_COND_V(!shape, 0); real_t margin = MAX(p_margin, TEST_MOTION_MARGIN_MIN_VALUE); real_t min_contact_depth = margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR; AABB aabb = p_shape_xform.xform(shape->get_aabb()); aabb = aabb.grow(margin); int amount = space->broadphase->cull_aabb(aabb, space->intersection_query_results, SpaceSW::INTERSECTION_QUERY_MAX, space->intersection_query_subindex_results); _RestCallbackData rcd; rcd.best_len = 0; rcd.best_object = nullptr; rcd.best_shape = 0; rcd.min_allowed_depth = min_contact_depth; for (int i = 0; i < amount; i++) { if (!_can_collide_with(space->intersection_query_results[i], p_collision_mask, p_collide_with_bodies, p_collide_with_areas)) { continue; } const CollisionObjectSW *col_obj = space->intersection_query_results[i]; int shape_idx = space->intersection_query_subindex_results[i]; if (p_exclude.has(col_obj->get_self())) { continue; } rcd.object = col_obj; rcd.shape = shape_idx; bool sc = CollisionSolverSW::solve_static(shape, p_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, margin); if (!sc) { continue; } } if (rcd.best_len == 0 || !rcd.best_object) { return false; } r_info->collider_id = rcd.best_object->get_instance_id(); r_info->shape = rcd.best_shape; r_info->normal = rcd.best_normal; r_info->point = rcd.best_contact; r_info->rid = rcd.best_object->get_self(); if (rcd.best_object->get_type() == CollisionObjectSW::TYPE_BODY) { const BodySW *body = static_cast(rcd.best_object); Vector3 rel_vec = rcd.best_contact - (body->get_transform().origin + body->get_center_of_mass()); r_info->linear_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec); } else { r_info->linear_velocity = Vector3(); } return true; } Vector3 PhysicsDirectSpaceStateSW::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const { CollisionObjectSW *obj = PhysicsServerSW::singleton->area_owner.getornull(p_object); if (!obj) { obj = PhysicsServerSW::singleton->body_owner.getornull(p_object); } ERR_FAIL_COND_V(!obj, Vector3()); ERR_FAIL_COND_V(obj->get_space() != space, Vector3()); float min_distance = 1e20; Vector3 min_point; bool shapes_found = false; for (int i = 0; i < obj->get_shape_count(); i++) { if (obj->is_shape_disabled(i)) { continue; } Transform shape_xform = obj->get_transform() * obj->get_shape_transform(i); ShapeSW *shape = obj->get_shape(i); Vector3 point = shape->get_closest_point_to(shape_xform.affine_inverse().xform(p_point)); point = shape_xform.xform(point); float dist = point.distance_to(p_point); if (dist < min_distance) { min_distance = dist; min_point = point; } shapes_found = true; } if (!shapes_found) { return obj->get_transform().origin; //no shapes found, use distance to origin. } else { return min_point; } } PhysicsDirectSpaceStateSW::PhysicsDirectSpaceStateSW() { space = nullptr; } //////////////////////////////////////////////////////////////////////////////////////////////////////////// int SpaceSW::_cull_aabb_for_body(BodySW *p_body, const AABB &p_aabb) { int amount = broadphase->cull_aabb(p_aabb, intersection_query_results, INTERSECTION_QUERY_MAX, intersection_query_subindex_results); for (int i = 0; i < amount; i++) { bool keep = true; if (intersection_query_results[i] == p_body) { keep = false; } else if (intersection_query_results[i]->get_type() == CollisionObjectSW::TYPE_AREA) { keep = false; } else if ((static_cast(intersection_query_results[i])->test_collision_mask(p_body)) == 0) { keep = false; } else if (static_cast(intersection_query_results[i])->has_exception(p_body->get_self()) || p_body->has_exception(intersection_query_results[i]->get_self())) { keep = false; } if (!keep) { if (i < amount - 1) { SWAP(intersection_query_results[i], intersection_query_results[amount - 1]); SWAP(intersection_query_subindex_results[i], intersection_query_subindex_results[amount - 1]); } amount--; i--; } } return amount; } int SpaceSW::test_body_ray_separation(BodySW *p_body, const Transform &p_transform, bool p_infinite_inertia, Vector3 &r_recover_motion, PhysicsServer::SeparationResult *r_results, int p_result_max, real_t p_margin) { AABB body_aabb; bool shapes_found = false; for (int i = 0; i < p_body->get_shape_count(); i++) { if (p_body->is_shape_disabled(i)) { continue; } if (!shapes_found) { body_aabb = p_body->get_shape_aabb(i); shapes_found = true; } else { body_aabb = body_aabb.merge(p_body->get_shape_aabb(i)); } } if (!shapes_found) { return 0; } // Undo the currently transform the physics server is aware of and apply the provided one body_aabb = p_transform.xform(p_body->get_inv_transform().xform(body_aabb)); body_aabb = body_aabb.grow(p_margin); Transform body_transform = p_transform; for (int i = 0; i < p_result_max; i++) { //reset results r_results[i].collision_depth = -1.0; } int rays_found = 0; { // raycast AND separate const int max_results = 32; int recover_attempts = 4; Vector3 sr[max_results * 2]; PhysicsServerSW::CollCbkData cbk; cbk.max = max_results; PhysicsServerSW::CollCbkData *cbkptr = &cbk; CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk; do { Vector3 recover_motion; bool collided = false; int amount = _cull_aabb_for_body(p_body, body_aabb); for (int j = 0; j < p_body->get_shape_count(); j++) { if (p_body->is_shape_disabled(j)) { continue; } ShapeSW *body_shape = p_body->get_shape(j); if (body_shape->get_type() != PhysicsServer::SHAPE_RAY) { continue; } Transform body_shape_xform = body_transform * p_body->get_shape_transform(j); for (int i = 0; i < amount; i++) { const CollisionObjectSW *col_obj = intersection_query_results[i]; int shape_idx = intersection_query_subindex_results[i]; cbk.amount = 0; cbk.ptr = sr; if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) { const BodySW *b = static_cast(col_obj); if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) { continue; } } ShapeSW *against_shape = col_obj->get_shape(shape_idx); if (CollisionSolverSW::solve_static(body_shape, body_shape_xform, against_shape, col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, p_margin)) { if (cbk.amount > 0) { collided = true; } int ray_index = -1; //reuse shape for (int k = 0; k < rays_found; k++) { if (r_results[k].collision_local_shape == j) { ray_index = k; } } if (ray_index == -1 && rays_found < p_result_max) { ray_index = rays_found; rays_found++; } if (ray_index != -1) { PhysicsServer::SeparationResult &result = r_results[ray_index]; for (int k = 0; k < cbk.amount; k++) { Vector3 a = sr[k * 2 + 0]; Vector3 b = sr[k * 2 + 1]; // Compute plane on b towards a. Vector3 n = (a - b).normalized(); float d = n.dot(b); // Compute depth on recovered motion. float depth = n.dot(a + recover_motion) - d; // Apply recovery without margin. float separation_depth = depth - p_margin; if (separation_depth > 0.0) { // Only recover if there is penetration. recover_motion -= n * separation_depth; } if (depth > result.collision_depth) { result.collision_depth = depth; result.collision_point = b; result.collision_normal = -n; result.collision_local_shape = j; result.collider = col_obj->get_self(); result.collider_id = col_obj->get_instance_id(); result.collider_shape = shape_idx; if (col_obj->get_type() == CollisionObjectSW::TYPE_BODY) { BodySW *body = (BodySW *)col_obj; Vector3 rel_vec = b - (body->get_transform().origin + body->get_center_of_mass()); result.collider_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec); } } } } } } } if (!collided || recover_motion == Vector3()) { break; } body_transform.origin += recover_motion; body_aabb.position += recover_motion; recover_attempts--; } while (recover_attempts); } r_recover_motion = body_transform.origin - p_transform.origin; return rays_found; } bool SpaceSW::test_body_motion(BodySW *p_body, const Transform &p_from, const Vector3 &p_motion, bool p_infinite_inertia, real_t p_margin, PhysicsServer::MotionResult *r_result, bool p_exclude_raycast_shapes, const Set &p_exclude) { //give me back regular physics engine logic //this is madness //and most people using this function will think //what it does is simpler than using physics //this took about a week to get right.. //but is it right? who knows at this point.. if (r_result) { r_result->collider_id = 0; r_result->collider_shape = 0; } AABB body_aabb; bool shapes_found = false; for (int i = 0; i < p_body->get_shape_count(); i++) { if (p_body->is_shape_disabled(i)) { continue; } if (!shapes_found) { body_aabb = p_body->get_shape_aabb(i); shapes_found = true; } else { body_aabb = body_aabb.merge(p_body->get_shape_aabb(i)); } } if (!shapes_found) { if (r_result) { *r_result = PhysicsServer::MotionResult(); r_result->motion = p_motion; } return false; } real_t margin = MAX(p_margin, TEST_MOTION_MARGIN_MIN_VALUE); // Undo the currently transform the physics server is aware of and apply the provided one body_aabb = p_from.xform(p_body->get_inv_transform().xform(body_aabb)); body_aabb = body_aabb.grow(margin); real_t min_contact_depth = margin * TEST_MOTION_MIN_CONTACT_DEPTH_FACTOR; float motion_length = p_motion.length(); Vector3 motion_normal = p_motion / motion_length; Transform body_transform = p_from; bool recovered = false; { //STEP 1, FREE BODY IF STUCK const int max_results = 32; int recover_attempts = 4; Vector3 sr[max_results * 2]; do { PhysicsServerSW::CollCbkData cbk; cbk.max = max_results; cbk.amount = 0; cbk.ptr = sr; PhysicsServerSW::CollCbkData *cbkptr = &cbk; CollisionSolverSW::CallbackResult cbkres = PhysicsServerSW::_shape_col_cbk; bool collided = false; int amount = _cull_aabb_for_body(p_body, body_aabb); for (int j = 0; j < p_body->get_shape_count(); j++) { if (p_body->is_shape_disabled(j)) { continue; } Transform body_shape_xform = body_transform * p_body->get_shape_transform(j); ShapeSW *body_shape = p_body->get_shape(j); if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) { continue; } for (int i = 0; i < amount; i++) { const CollisionObjectSW *col_obj = intersection_query_results[i]; if (p_exclude.has(col_obj->get_self())) { continue; } int shape_idx = intersection_query_subindex_results[i]; if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) { const BodySW *b = static_cast(col_obj); if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) { continue; } } if (CollisionSolverSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), cbkres, cbkptr, nullptr, margin)) { collided = cbk.amount > 0; } } } if (!collided) { break; } recovered = true; Vector3 recover_motion; for (int i = 0; i < cbk.amount; i++) { Vector3 a = sr[i * 2 + 0]; Vector3 b = sr[i * 2 + 1]; // Compute plane on b towards a. Vector3 n = (a - b).normalized(); float d = n.dot(b); // Compute depth on recovered motion. float depth = n.dot(a + recover_motion) - d; if (depth > min_contact_depth + CMP_EPSILON) { // Only recover if there is penetration. recover_motion -= n * (depth - min_contact_depth) * 0.4; } } if (recover_motion == Vector3()) { collided = false; break; } body_transform.origin += recover_motion; body_aabb.position += recover_motion; recover_attempts--; } while (recover_attempts); } real_t safe = 1.0; real_t unsafe = 1.0; int best_shape = -1; { // STEP 2 ATTEMPT MOTION AABB motion_aabb = body_aabb; motion_aabb.position += p_motion; motion_aabb = motion_aabb.merge(body_aabb); int amount = _cull_aabb_for_body(p_body, motion_aabb); for (int j = 0; j < p_body->get_shape_count(); j++) { if (p_body->is_shape_disabled(j)) { continue; } Transform body_shape_xform = body_transform * p_body->get_shape_transform(j); ShapeSW *body_shape = p_body->get_shape(j); if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) { continue; } Transform body_shape_xform_inv = body_shape_xform.affine_inverse(); MotionShapeSW mshape; mshape.shape = body_shape; mshape.motion = body_shape_xform_inv.basis.xform(p_motion); bool stuck = false; real_t best_safe = 1; real_t best_unsafe = 1; for (int i = 0; i < amount; i++) { const CollisionObjectSW *col_obj = intersection_query_results[i]; if (p_exclude.has(col_obj->get_self())) { continue; } int shape_idx = intersection_query_subindex_results[i]; if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) { const BodySW *b = static_cast(col_obj); if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) { continue; } } //test initial overlap, does it collide if going all the way? Vector3 point_A, point_B; Vector3 sep_axis = motion_normal; Transform col_obj_xform = col_obj->get_transform() * col_obj->get_shape_transform(shape_idx); //test initial overlap, does it collide if going all the way? if (CollisionSolverSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) { continue; } sep_axis = motion_normal; if (!CollisionSolverSW::solve_distance(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, point_A, point_B, motion_aabb, &sep_axis)) { stuck = true; break; } //just do kinematic solving real_t low = 0.0; real_t hi = 1.0; real_t fraction_coeff = 0.5; for (int k = 0; k < 8; k++) { //steps should be customizable.. real_t fraction = low + (hi - low) * fraction_coeff; mshape.motion = body_shape_xform_inv.basis.xform(p_motion * fraction); Vector3 lA, lB; Vector3 sep = motion_normal; //important optimization for this to work fast enough bool collided = !CollisionSolverSW::solve_distance(&mshape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj_xform, lA, lB, motion_aabb, &sep); if (collided) { hi = fraction; if ((k == 0) || (low > 0.0)) { // Did it not collide before? // When alternating or first iteration, use dichotomy. fraction_coeff = 0.5; } else { // When colliding again, converge faster towards low fraction // for more accurate results with long motions that collide near the start. fraction_coeff = 0.25; } } else { point_A = lA; point_B = lB; low = fraction; if ((k == 0) || (hi < 1.0)) { // Did it collide before? // When alternating or first iteration, use dichotomy. fraction_coeff = 0.5; } else { // When not colliding again, converge faster towards high fraction // for more accurate results with long motions that collide near the end. fraction_coeff = 0.75; } } } if (low < best_safe) { best_safe = low; best_unsafe = hi; } } if (stuck) { safe = 0; unsafe = 0; best_shape = j; //sadly it's the best break; } if (best_safe == 1.0) { continue; } if (best_safe < safe) { safe = best_safe; unsafe = best_unsafe; best_shape = j; } } } bool collided = false; if (recovered || (safe < 1)) { if (safe >= 1) { best_shape = -1; //no best shape with cast, reset to -1 } //it collided, let's get the rest info in unsafe advance Transform ugt = body_transform; ugt.origin += p_motion * unsafe; _RestCallbackData rcd; rcd.best_len = 0; rcd.best_object = nullptr; rcd.best_shape = 0; // Allowed depth can't be lower than motion length, in order to handle contacts at low speed. rcd.min_allowed_depth = MIN(motion_length, min_contact_depth); int from_shape = best_shape != -1 ? best_shape : 0; int to_shape = best_shape != -1 ? best_shape + 1 : p_body->get_shape_count(); for (int j = from_shape; j < to_shape; j++) { if (p_body->is_shape_disabled(j)) { continue; } Transform body_shape_xform = ugt * p_body->get_shape_transform(j); ShapeSW *body_shape = p_body->get_shape(j); if (p_exclude_raycast_shapes && body_shape->get_type() == PhysicsServer::SHAPE_RAY) { continue; } body_aabb.position += p_motion * unsafe; int amount = _cull_aabb_for_body(p_body, body_aabb); for (int i = 0; i < amount; i++) { const CollisionObjectSW *col_obj = intersection_query_results[i]; if (p_exclude.has(col_obj->get_self())) { continue; } int shape_idx = intersection_query_subindex_results[i]; if (CollisionObjectSW::TYPE_BODY == col_obj->get_type()) { const BodySW *b = static_cast(col_obj); if (p_infinite_inertia && PhysicsServer::BODY_MODE_STATIC != b->get_mode() && PhysicsServer::BODY_MODE_KINEMATIC != b->get_mode()) { continue; } } rcd.object = col_obj; rcd.shape = shape_idx; rcd.local_shape = j; bool sc = CollisionSolverSW::solve_static(body_shape, body_shape_xform, col_obj->get_shape(shape_idx), col_obj->get_transform() * col_obj->get_shape_transform(shape_idx), _rest_cbk_result, &rcd, nullptr, margin); if (!sc) { continue; } } } if (rcd.best_len != 0) { if (r_result) { r_result->collider = rcd.best_object->get_self(); r_result->collider_id = rcd.best_object->get_instance_id(); r_result->collider_shape = rcd.best_shape; r_result->collision_local_shape = rcd.best_local_shape; r_result->collision_normal = rcd.best_normal; r_result->collision_point = rcd.best_contact; r_result->collision_depth = rcd.best_len; r_result->collision_safe_fraction = safe; r_result->collision_unsafe_fraction = unsafe; //r_result->collider_metadata = rcd.best_object->get_shape_metadata(rcd.best_shape); const BodySW *body = static_cast(rcd.best_object); Vector3 rel_vec = rcd.best_contact - (body->get_transform().origin + body->get_center_of_mass()); r_result->collider_velocity = body->get_linear_velocity() + (body->get_angular_velocity()).cross(rel_vec); r_result->motion = safe * p_motion; r_result->remainder = p_motion - safe * p_motion; r_result->motion += (body_transform.get_origin() - p_from.get_origin()); } collided = true; } } if (!collided && r_result) { r_result->motion = p_motion; r_result->remainder = Vector3(); r_result->motion += (body_transform.get_origin() - p_from.get_origin()); } return collided; } void *SpaceSW::_broadphase_pair(CollisionObjectSW *p_object_A, int p_subindex_A, CollisionObjectSW *p_object_B, int p_subindex_B, void *p_pair_data, void *p_self) { bool valid_collision_pair = p_object_A->test_collision_mask(p_object_B); if (p_pair_data) { // Checking an existing pair. if (valid_collision_pair) { // Nothing to do, pair is still valid. return p_pair_data; } else { // Logical collision not valid anymore, unpair. _broadphase_unpair(p_object_A, p_subindex_A, p_object_B, p_subindex_B, p_pair_data, p_self); return nullptr; } } if (!valid_collision_pair) { return nullptr; } CollisionObjectSW::Type type_A = p_object_A->get_type(); CollisionObjectSW::Type type_B = p_object_B->get_type(); if (type_A > type_B) { SWAP(p_object_A, p_object_B); SWAP(p_subindex_A, p_subindex_B); SWAP(type_A, type_B); } SpaceSW *self = (SpaceSW *)p_self; self->collision_pairs++; if (type_A == CollisionObjectSW::TYPE_AREA) { AreaSW *area_a = static_cast(p_object_A); if (type_B == CollisionObjectSW::TYPE_AREA) { AreaSW *area_b = static_cast(p_object_B); Area2PairSW *area2_pair = memnew(Area2PairSW(area_b, p_subindex_B, area_a, p_subindex_A)); return area2_pair; } else { BodySW *body_b = static_cast(p_object_B); AreaPairSW *area_pair = memnew(AreaPairSW(body_b, p_subindex_B, area_a, p_subindex_A)); return area_pair; } } else { BodySW *body_a = static_cast(p_object_A); BodySW *body_b = static_cast(p_object_B); BodyPairSW *body_pair = memnew(BodyPairSW(body_a, p_subindex_A, body_b, p_subindex_B)); return body_pair; } return nullptr; } void SpaceSW::_broadphase_unpair(CollisionObjectSW *p_object_A, int p_subindex_A, CollisionObjectSW *p_object_B, int p_subindex_B, void *p_pair_data, void *p_self) { if (!p_pair_data) { return; } SpaceSW *self = (SpaceSW *)p_self; self->collision_pairs--; ConstraintSW *c = (ConstraintSW *)p_pair_data; memdelete(c); } const SelfList::List &SpaceSW::get_active_body_list() const { return active_list; } void SpaceSW::body_add_to_active_list(SelfList *p_body) { active_list.add(p_body); } void SpaceSW::body_remove_from_active_list(SelfList *p_body) { active_list.remove(p_body); } void SpaceSW::body_add_to_inertia_update_list(SelfList *p_body) { inertia_update_list.add(p_body); } void SpaceSW::body_remove_from_inertia_update_list(SelfList *p_body) { inertia_update_list.remove(p_body); } BroadPhaseSW *SpaceSW::get_broadphase() { return broadphase; } void SpaceSW::add_object(CollisionObjectSW *p_object) { ERR_FAIL_COND(objects.has(p_object)); objects.insert(p_object); } void SpaceSW::remove_object(CollisionObjectSW *p_object) { ERR_FAIL_COND(!objects.has(p_object)); objects.erase(p_object); } const Set &SpaceSW::get_objects() const { return objects; } void SpaceSW::body_add_to_state_query_list(SelfList *p_body) { state_query_list.add(p_body); } void SpaceSW::body_remove_from_state_query_list(SelfList *p_body) { state_query_list.remove(p_body); } void SpaceSW::area_add_to_monitor_query_list(SelfList *p_area) { monitor_query_list.add(p_area); } void SpaceSW::area_remove_from_monitor_query_list(SelfList *p_area) { monitor_query_list.remove(p_area); } void SpaceSW::area_add_to_moved_list(SelfList *p_area) { area_moved_list.add(p_area); } void SpaceSW::area_remove_from_moved_list(SelfList *p_area) { area_moved_list.remove(p_area); } const SelfList::List &SpaceSW::get_moved_area_list() const { return area_moved_list; } void SpaceSW::call_queries() { while (state_query_list.first()) { BodySW *b = state_query_list.first()->self(); state_query_list.remove(state_query_list.first()); b->call_queries(); } while (monitor_query_list.first()) { AreaSW *a = monitor_query_list.first()->self(); monitor_query_list.remove(monitor_query_list.first()); a->call_queries(); } } void SpaceSW::setup() { contact_debug_count = 0; while (inertia_update_list.first()) { inertia_update_list.first()->self()->update_inertias(); inertia_update_list.remove(inertia_update_list.first()); } } void SpaceSW::update() { broadphase->update(); } void SpaceSW::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) { switch (p_param) { case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: contact_recycle_radius = p_value; break; case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: contact_max_separation = p_value; break; case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: contact_max_allowed_penetration = p_value; break; case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD: body_linear_velocity_sleep_threshold = p_value; break; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD: body_angular_velocity_sleep_threshold = p_value; break; case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: body_time_to_sleep = p_value; break; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: body_angular_velocity_damp_ratio = p_value; break; case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: constraint_bias = p_value; break; } } real_t SpaceSW::get_param(PhysicsServer::SpaceParameter p_param) const { switch (p_param) { case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS: return contact_recycle_radius; case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION: return contact_max_separation; case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION: return contact_max_allowed_penetration; case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD: return body_linear_velocity_sleep_threshold; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD: return body_angular_velocity_sleep_threshold; case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP: return body_time_to_sleep; case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO: return body_angular_velocity_damp_ratio; case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS: return constraint_bias; } return 0; } void SpaceSW::lock() { locked = true; } void SpaceSW::unlock() { locked = false; } bool SpaceSW::is_locked() const { return locked; } PhysicsDirectSpaceStateSW *SpaceSW::get_direct_state() { return direct_access; } SpaceSW::SpaceSW() { collision_pairs = 0; active_objects = 0; island_count = 0; contact_debug_count = 0; locked = false; contact_recycle_radius = 0.01; contact_max_separation = 0.05; contact_max_allowed_penetration = 0.01; constraint_bias = 0.01; body_linear_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_linear", 0.1); body_angular_velocity_sleep_threshold = GLOBAL_DEF("physics/3d/sleep_threshold_angular", (8.0 / 180.0 * Math_PI)); body_time_to_sleep = GLOBAL_DEF("physics/3d/time_before_sleep", 0.5); ProjectSettings::get_singleton()->set_custom_property_info("physics/3d/time_before_sleep", PropertyInfo(Variant::REAL, "physics/3d/time_before_sleep", PROPERTY_HINT_RANGE, "0,5,0.01,or_greater")); body_angular_velocity_damp_ratio = 10; broadphase = BroadPhaseSW::create_func(); broadphase->set_pair_callback(_broadphase_pair, this); broadphase->set_unpair_callback(_broadphase_unpair, this); area = nullptr; direct_access = memnew(PhysicsDirectSpaceStateSW); direct_access->space = this; for (int i = 0; i < ELAPSED_TIME_MAX; i++) { elapsed_time[i] = 0; } } SpaceSW::~SpaceSW() { memdelete(broadphase); memdelete(direct_access); }