/*************************************************************************/ /* triangle_mesh.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "triangle_mesh.h" #include "core/sort_array.h" int TriangleMesh::_create_bvh(BVH *p_bvh, BVH **p_bb, int p_from, int p_size, int p_depth, int &max_depth, int &max_alloc) { if (p_depth > max_depth) { max_depth = p_depth; } if (p_size == 1) { return p_bb[p_from] - p_bvh; } else if (p_size == 0) { return -1; } AABB aabb; aabb = p_bb[p_from]->aabb; for (int i = 1; i < p_size; i++) { aabb.merge_with(p_bb[p_from + i]->aabb); } int li = aabb.get_longest_axis_index(); switch (li) { case Vector3::AXIS_X: { SortArray sort_x; sort_x.nth_element(0, p_size, p_size / 2, &p_bb[p_from]); //sort_x.sort(&p_bb[p_from],p_size); } break; case Vector3::AXIS_Y: { SortArray sort_y; sort_y.nth_element(0, p_size, p_size / 2, &p_bb[p_from]); //sort_y.sort(&p_bb[p_from],p_size); } break; case Vector3::AXIS_Z: { SortArray sort_z; sort_z.nth_element(0, p_size, p_size / 2, &p_bb[p_from]); //sort_z.sort(&p_bb[p_from],p_size); } break; } int left = _create_bvh(p_bvh, p_bb, p_from, p_size / 2, p_depth + 1, max_depth, max_alloc); int right = _create_bvh(p_bvh, p_bb, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, max_depth, max_alloc); int index = max_alloc++; BVH *_new = &p_bvh[index]; _new->aabb = aabb; _new->center = aabb.position + aabb.size * 0.5; _new->face_index = -1; _new->left = left; _new->right = right; return index; } void TriangleMesh::get_indices(PoolVector *r_triangles_indices) const { if (!valid) return; const int triangles_num = triangles.size(); // Parse vertices indices PoolVector::Read triangles_read = triangles.read(); r_triangles_indices->resize(triangles_num * 3); PoolVector::Write r_indices_write = r_triangles_indices->write(); for (int i = 0; i < triangles_num; ++i) { r_indices_write[3 * i + 0] = triangles_read[i].indices[0]; r_indices_write[3 * i + 1] = triangles_read[i].indices[1]; r_indices_write[3 * i + 2] = triangles_read[i].indices[2]; } } void TriangleMesh::create(const PoolVector &p_faces) { valid = false; int fc = p_faces.size(); ERR_FAIL_COND(!fc || ((fc % 3) != 0)); fc /= 3; triangles.resize(fc); bvh.resize(fc * 3); //will never be larger than this (todo make better) PoolVector::Write bw = bvh.write(); { //create faces and indices and base bvh //except for the Set for repeated triangles, everything //goes in-place. PoolVector::Read r = p_faces.read(); PoolVector::Write w = triangles.write(); Map db; for (int i = 0; i < fc; i++) { Triangle &f = w[i]; const Vector3 *v = &r[i * 3]; for (int j = 0; j < 3; j++) { int vidx = -1; Vector3 vs = v[j].snapped(Vector3(0.0001, 0.0001, 0.0001)); Map::Element *E = db.find(vs); if (E) { vidx = E->get(); } else { vidx = db.size(); db[vs] = vidx; } f.indices[j] = vidx; if (j == 0) bw[i].aabb.position = vs; else bw[i].aabb.expand_to(vs); } f.normal = Face3(r[i * 3 + 0], r[i * 3 + 1], r[i * 3 + 2]).get_plane().get_normal(); bw[i].left = -1; bw[i].right = -1; bw[i].face_index = i; bw[i].center = bw[i].aabb.position + bw[i].aabb.size * 0.5; } vertices.resize(db.size()); PoolVector::Write vw = vertices.write(); for (Map::Element *E = db.front(); E; E = E->next()) { vw[E->get()] = E->key(); } } PoolVector bwptrs; bwptrs.resize(fc); PoolVector::Write bwp = bwptrs.write(); for (int i = 0; i < fc; i++) { bwp[i] = &bw[i]; } max_depth = 0; int max_alloc = fc; _create_bvh(bw.ptr(), bwp.ptr(), 0, fc, 1, max_depth, max_alloc); bw.release(); //clearup bvh.resize(max_alloc); //resize back valid = true; } Vector3 TriangleMesh::get_area_normal(const AABB &p_aabb) const { uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth); enum { TEST_AABB_BIT = 0, VISIT_LEFT_BIT = 1, VISIT_RIGHT_BIT = 2, VISIT_DONE_BIT = 3, VISITED_BIT_SHIFT = 29, NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1, VISITED_BIT_MASK = ~NODE_IDX_MASK, }; int n_count = 0; Vector3 n; int level = 0; PoolVector::Read trianglesr = triangles.read(); PoolVector::Read verticesr = vertices.read(); PoolVector::Read bvhr = bvh.read(); const Triangle *triangleptr = trianglesr.ptr(); int pos = bvh.size() - 1; const BVH *bvhptr = bvhr.ptr(); stack[0] = pos; while (true) { uint32_t node = stack[level] & NODE_IDX_MASK; const BVH &b = bvhptr[node]; bool done = false; switch (stack[level] >> VISITED_BIT_SHIFT) { case TEST_AABB_BIT: { bool valid = b.aabb.intersects(p_aabb); if (!valid) { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { if (b.face_index >= 0) { const Triangle &s = triangleptr[b.face_index]; n += s.normal; n_count++; stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node; } } continue; } case VISIT_LEFT_BIT: { stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.left | TEST_AABB_BIT; level++; continue; } case VISIT_RIGHT_BIT: { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.right | TEST_AABB_BIT; level++; continue; } case VISIT_DONE_BIT: { if (level == 0) { done = true; break; } else level--; continue; } } if (done) break; } if (n_count > 0) n /= n_count; return n; } bool TriangleMesh::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const { uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth); enum { TEST_AABB_BIT = 0, VISIT_LEFT_BIT = 1, VISIT_RIGHT_BIT = 2, VISIT_DONE_BIT = 3, VISITED_BIT_SHIFT = 29, NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1, VISITED_BIT_MASK = ~NODE_IDX_MASK, }; Vector3 n = (p_end - p_begin).normalized(); real_t d = 1e10; bool inters = false; int level = 0; PoolVector::Read trianglesr = triangles.read(); PoolVector::Read verticesr = vertices.read(); PoolVector::Read bvhr = bvh.read(); const Triangle *triangleptr = trianglesr.ptr(); const Vector3 *vertexptr = verticesr.ptr(); int pos = bvh.size() - 1; const BVH *bvhptr = bvhr.ptr(); stack[0] = pos; while (true) { uint32_t node = stack[level] & NODE_IDX_MASK; const BVH &b = bvhptr[node]; bool done = false; switch (stack[level] >> VISITED_BIT_SHIFT) { case TEST_AABB_BIT: { bool valid = b.aabb.intersects_segment(p_begin, p_end); //bool valid = b.aabb.intersects(ray_aabb); if (!valid) { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { if (b.face_index >= 0) { const Triangle &s = triangleptr[b.face_index]; Face3 f3(vertexptr[s.indices[0]], vertexptr[s.indices[1]], vertexptr[s.indices[2]]); Vector3 res; if (f3.intersects_segment(p_begin, p_end, &res)) { real_t nd = n.dot(res); if (nd < d) { d = nd; r_point = res; r_normal = f3.get_plane().get_normal(); inters = true; } } stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node; } } continue; } case VISIT_LEFT_BIT: { stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.left | TEST_AABB_BIT; level++; continue; } case VISIT_RIGHT_BIT: { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.right | TEST_AABB_BIT; level++; continue; } case VISIT_DONE_BIT: { if (level == 0) { done = true; break; } else level--; continue; } } if (done) break; } if (inters) { if (n.dot(r_normal) > 0) r_normal = -r_normal; } return inters; } bool TriangleMesh::intersect_ray(const Vector3 &p_begin, const Vector3 &p_dir, Vector3 &r_point, Vector3 &r_normal) const { uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth); enum { TEST_AABB_BIT = 0, VISIT_LEFT_BIT = 1, VISIT_RIGHT_BIT = 2, VISIT_DONE_BIT = 3, VISITED_BIT_SHIFT = 29, NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1, VISITED_BIT_MASK = ~NODE_IDX_MASK, }; Vector3 n = p_dir; real_t d = 1e20; bool inters = false; int level = 0; PoolVector::Read trianglesr = triangles.read(); PoolVector::Read verticesr = vertices.read(); PoolVector::Read bvhr = bvh.read(); const Triangle *triangleptr = trianglesr.ptr(); const Vector3 *vertexptr = verticesr.ptr(); int pos = bvh.size() - 1; const BVH *bvhptr = bvhr.ptr(); stack[0] = pos; while (true) { uint32_t node = stack[level] & NODE_IDX_MASK; const BVH &b = bvhptr[node]; bool done = false; switch (stack[level] >> VISITED_BIT_SHIFT) { case TEST_AABB_BIT: { bool valid = b.aabb.intersects_ray(p_begin, p_dir); if (!valid) { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { if (b.face_index >= 0) { const Triangle &s = triangleptr[b.face_index]; Face3 f3(vertexptr[s.indices[0]], vertexptr[s.indices[1]], vertexptr[s.indices[2]]); Vector3 res; if (f3.intersects_ray(p_begin, p_dir, &res)) { real_t nd = n.dot(res); if (nd < d) { d = nd; r_point = res; r_normal = f3.get_plane().get_normal(); inters = true; } } stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node; } } continue; } case VISIT_LEFT_BIT: { stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.left | TEST_AABB_BIT; level++; continue; } case VISIT_RIGHT_BIT: { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.right | TEST_AABB_BIT; level++; continue; } case VISIT_DONE_BIT: { if (level == 0) { done = true; break; } else level--; continue; } } if (done) break; } if (inters) { if (n.dot(r_normal) > 0) r_normal = -r_normal; } return inters; } bool TriangleMesh::intersect_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const { uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth); //p_fully_inside = true; enum { TEST_AABB_BIT = 0, VISIT_LEFT_BIT = 1, VISIT_RIGHT_BIT = 2, VISIT_DONE_BIT = 3, VISITED_BIT_SHIFT = 29, NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1, VISITED_BIT_MASK = ~NODE_IDX_MASK, }; int level = 0; PoolVector::Read trianglesr = triangles.read(); PoolVector::Read verticesr = vertices.read(); PoolVector::Read bvhr = bvh.read(); const Triangle *triangleptr = trianglesr.ptr(); const Vector3 *vertexptr = verticesr.ptr(); int pos = bvh.size() - 1; const BVH *bvhptr = bvhr.ptr(); stack[0] = pos; while (true) { uint32_t node = stack[level] & NODE_IDX_MASK; const BVH &b = bvhptr[node]; bool done = false; switch (stack[level] >> VISITED_BIT_SHIFT) { case TEST_AABB_BIT: { bool valid = b.aabb.intersects_convex_shape(p_planes, p_plane_count, p_points, p_point_count); if (!valid) { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { if (b.face_index >= 0) { const Triangle &s = triangleptr[b.face_index]; for (int j = 0; j < 3; ++j) { const Vector3 &point = vertexptr[s.indices[j]]; const Vector3 &next_point = vertexptr[s.indices[(j + 1) % 3]]; Vector3 res; bool over = true; for (int i = 0; i < p_plane_count; i++) { const Plane &p = p_planes[i]; if (p.intersects_segment(point, next_point, &res)) { bool inisde = true; for (int k = 0; k < p_plane_count; k++) { if (k == i) continue; const Plane &pp = p_planes[k]; if (pp.is_point_over(res)) { inisde = false; break; } } if (inisde) return true; } if (p.is_point_over(point)) { over = false; break; } } if (over) return true; } stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node; } } continue; } case VISIT_LEFT_BIT: { stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.left | TEST_AABB_BIT; level++; continue; } case VISIT_RIGHT_BIT: { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.right | TEST_AABB_BIT; level++; continue; } case VISIT_DONE_BIT: { if (level == 0) { done = true; break; } else level--; continue; } } if (done) break; } return false; } bool TriangleMesh::inside_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, Vector3 p_scale) const { uint32_t *stack = (uint32_t *)alloca(sizeof(int) * max_depth); enum { TEST_AABB_BIT = 0, VISIT_LEFT_BIT = 1, VISIT_RIGHT_BIT = 2, VISIT_DONE_BIT = 3, VISITED_BIT_SHIFT = 29, NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1, VISITED_BIT_MASK = ~NODE_IDX_MASK, }; int level = 0; PoolVector::Read trianglesr = triangles.read(); PoolVector::Read verticesr = vertices.read(); PoolVector::Read bvhr = bvh.read(); Transform scale(Basis().scaled(p_scale)); const Triangle *triangleptr = trianglesr.ptr(); const Vector3 *vertexptr = verticesr.ptr(); int pos = bvh.size() - 1; const BVH *bvhptr = bvhr.ptr(); stack[0] = pos; while (true) { uint32_t node = stack[level] & NODE_IDX_MASK; const BVH &b = bvhptr[node]; bool done = false; switch (stack[level] >> VISITED_BIT_SHIFT) { case TEST_AABB_BIT: { bool intersects = scale.xform(b.aabb).intersects_convex_shape(p_planes, p_plane_count, p_points, p_point_count); if (!intersects) return false; bool inside = scale.xform(b.aabb).inside_convex_shape(p_planes, p_plane_count); if (inside) { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { if (b.face_index >= 0) { const Triangle &s = triangleptr[b.face_index]; for (int j = 0; j < 3; ++j) { Vector3 point = scale.xform(vertexptr[s.indices[j]]); for (int i = 0; i < p_plane_count; i++) { const Plane &p = p_planes[i]; if (p.is_point_over(point)) return false; } } stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; } else { stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node; } } continue; } case VISIT_LEFT_BIT: { stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.left | TEST_AABB_BIT; level++; continue; } case VISIT_RIGHT_BIT: { stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node; stack[level + 1] = b.right | TEST_AABB_BIT; level++; continue; } case VISIT_DONE_BIT: { if (level == 0) { done = true; break; } else level--; continue; } } if (done) break; } return true; } bool TriangleMesh::is_valid() const { return valid; } PoolVector TriangleMesh::get_faces() const { if (!valid) return PoolVector(); PoolVector faces; int ts = triangles.size(); faces.resize(triangles.size()); PoolVector::Write w = faces.write(); PoolVector::Read r = triangles.read(); PoolVector::Read rv = vertices.read(); for (int i = 0; i < ts; i++) { for (int j = 0; j < 3; j++) { w[i].vertex[j] = rv[r[i].indices[j]]; } } w.release(); return faces; } TriangleMesh::TriangleMesh() { valid = false; max_depth = 0; }