/**************************************************************************/ /* vector3.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "vector3.h" #include "core/math/basis.h" void Vector3::rotate(const Vector3 &p_axis, real_t p_angle) { *this = Basis(p_axis, p_angle).xform(*this); } Vector3 Vector3::rotated(const Vector3 &p_axis, real_t p_angle) const { Vector3 r = *this; r.rotate(p_axis, p_angle); return r; } void Vector3::set_axis(int p_axis, real_t p_value) { ERR_FAIL_INDEX(p_axis, 3); coord[p_axis] = p_value; } real_t Vector3::get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis, 3, 0); return operator[](p_axis); } void Vector3::snap(Vector3 p_val) { x = Math::stepify(x, p_val.x); y = Math::stepify(y, p_val.y); z = Math::stepify(z, p_val.z); } Vector3 Vector3::snapped(Vector3 p_val) const { Vector3 v = *this; v.snap(p_val); return v; } Vector3 Vector3::limit_length(const real_t p_len) const { const real_t l = length(); Vector3 v = *this; if (l > 0 && p_len < l) { v /= l; v *= p_len; } return v; } Vector3 Vector3::cubic_interpolaten(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const { Vector3 p0 = p_pre_a; Vector3 p1 = *this; Vector3 p2 = p_b; Vector3 p3 = p_post_b; { //normalize real_t ab = p0.distance_to(p1); real_t bc = p1.distance_to(p2); real_t cd = p2.distance_to(p3); if (ab > 0) { p0 = p1 + (p0 - p1) * (bc / ab); } if (cd > 0) { p3 = p2 + (p3 - p2) * (bc / cd); } } real_t t = p_weight; real_t t2 = t * t; real_t t3 = t2 * t; Vector3 out; out = 0.5f * ((p1 * 2) + (-p0 + p2) * t + (2 * p0 - 5 * p1 + 4 * p2 - p3) * t2 + (-p0 + 3 * p1 - 3 * p2 + p3) * t3); return out; } Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, real_t p_weight) const { Vector3 p0 = p_pre_a; Vector3 p1 = *this; Vector3 p2 = p_b; Vector3 p3 = p_post_b; real_t t = p_weight; real_t t2 = t * t; real_t t3 = t2 * t; Vector3 out; out = 0.5f * ((p1 * 2) + (-p0 + p2) * t + (2 * p0 - 5 * p1 + 4 * p2 - p3) * t2 + (-p0 + 3 * p1 - 3 * p2 + p3) * t3); return out; } Vector3 Vector3::move_toward(const Vector3 &p_to, const real_t p_delta) const { Vector3 v = *this; Vector3 vd = p_to - v; real_t len = vd.length(); return len <= p_delta || len < (real_t)CMP_EPSILON ? p_to : v + vd / len * p_delta; } Basis Vector3::outer(const Vector3 &p_b) const { Vector3 row0(x * p_b.x, x * p_b.y, x * p_b.z); Vector3 row1(y * p_b.x, y * p_b.y, y * p_b.z); Vector3 row2(z * p_b.x, z * p_b.y, z * p_b.z); return Basis(row0, row1, row2); } Basis Vector3::to_diagonal_matrix() const { return Basis(x, 0, 0, 0, y, 0, 0, 0, z); } bool Vector3::is_equal_approx(const Vector3 &p_v) const { return Math::is_equal_approx(x, p_v.x) && Math::is_equal_approx(y, p_v.y) && Math::is_equal_approx(z, p_v.z); } Vector3::operator String() const { return (rtos(x) + ", " + rtos(y) + ", " + rtos(z)); }