/*************************************************************************/ /* bvh_tree.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef BVH_TREE_H #define BVH_TREE_H // BVH Tree // This is an implementation of a dynamic BVH with templated leaf size. // This differs from most dynamic BVH in that it can handle more than 1 object // in leaf nodes. This can make it far more efficient in certain circumstances. // It also means that the splitting logic etc have to be completely different // to a simpler tree. // Note that MAX_CHILDREN should be fixed at 2 for now. #include "core/local_vector.h" #include "core/math/aabb.h" #include "core/math/bvh_abb.h" #include "core/math/geometry.h" #include "core/math/vector3.h" #include "core/pooled_list.h" #include "core/print_string.h" #include // never do these checks in release #if defined(TOOLS_ENABLED) && defined(DEBUG_ENABLED) //#define BVH_VERBOSE //#define BVH_VERBOSE_TREE //#define BVH_VERBOSE_FRAME //#define BVH_CHECKS //#define BVH_INTEGRITY_CHECKS #endif // debug only assert #ifdef BVH_CHECKS #define BVH_ASSERT(a) CRASH_COND((a) == false) #else #define BVH_ASSERT(a) #endif #ifdef BVH_VERBOSE #define VERBOSE_PRINT print_line #else #define VERBOSE_PRINT(a) #endif // really just a namespace struct BVHCommon { // these could possibly also be the same constant, // although this may be useful for debugging. // or use zero for invalid and +1 based indices. static const uint32_t INVALID = (0xffffffff); static const uint32_t INACTIVE = (0xfffffffe); }; // really a handle, can be anything // note that zero is a valid reference for the BVH .. this may involve using // a plus one based ID for clients that expect 0 to be invalid. struct BVHHandle { // conversion operator operator uint32_t() const { return _data; } void set(uint32_t p_value) { _data = p_value; } uint32_t _data; void set_invalid() { _data = BVHCommon::INVALID; } bool is_invalid() const { return _data == BVHCommon::INVALID; } uint32_t id() const { return _data; } void set_id(uint32_t p_id) { _data = p_id; } bool operator==(const BVHHandle &p_h) const { return _data == p_h._data; } bool operator!=(const BVHHandle &p_h) const { return (*this == p_h) == false; } }; // helper class to make iterative versions of recursive functions template class BVH_IterativeInfo { public: enum { ALLOCA_STACK_SIZE = 128 }; int32_t depth = 1; int32_t threshold = ALLOCA_STACK_SIZE - 2; T *stack; //only used in rare occasions when you run out of alloca memory // because tree is too unbalanced. LocalVector aux_stack; int32_t get_alloca_stacksize() const { return ALLOCA_STACK_SIZE * sizeof(T); } T *get_first() const { return &stack[0]; } // pop the last member of the stack, or return false bool pop(T &r_value) { if (!depth) { return false; } depth--; r_value = stack[depth]; return true; } // request new addition to stack T *request() { if (depth > threshold) { if (aux_stack.empty()) { aux_stack.resize(ALLOCA_STACK_SIZE * 2); memcpy(aux_stack.ptr(), stack, get_alloca_stacksize()); } else { aux_stack.resize(aux_stack.size() * 2); } stack = aux_stack.ptr(); threshold = aux_stack.size() - 2; } return &stack[depth++]; } }; template class BVH_Tree { friend class BVH; #include "bvh_pair.inc" #include "bvh_structs.inc" public: BVH_Tree() { for (int n = 0; n < NUM_TREES; n++) { _root_node_id[n] = BVHCommon::INVALID; } // disallow zero leaf ids // (as these ids are stored as negative numbers in the node) uint32_t dummy_leaf_id; _leaves.request(dummy_leaf_id); } private: bool node_add_child(uint32_t p_node_id, uint32_t p_child_node_id) { TNode &tnode = _nodes[p_node_id]; if (tnode.is_full_of_children()) return false; tnode.children[tnode.num_children] = p_child_node_id; tnode.num_children += 1; // back link in the child to the parent TNode &tnode_child = _nodes[p_child_node_id]; tnode_child.parent_id = p_node_id; return true; } void node_replace_child(uint32_t p_parent_id, uint32_t p_old_child_id, uint32_t p_new_child_id) { TNode &parent = _nodes[p_parent_id]; BVH_ASSERT(!parent.is_leaf()); int child_num = parent.find_child(p_old_child_id); BVH_ASSERT(child_num != BVHCommon::INVALID); parent.children[child_num] = p_new_child_id; TNode &new_child = _nodes[p_new_child_id]; new_child.parent_id = p_parent_id; } void node_remove_child(uint32_t p_parent_id, uint32_t p_child_id, bool p_prevent_sibling = false) { TNode &parent = _nodes[p_parent_id]; BVH_ASSERT(!parent.is_leaf()); int child_num = parent.find_child(p_child_id); BVH_ASSERT(child_num != BVHCommon::INVALID); parent.remove_child_internal(child_num); // no need to keep back references for children at the moment uint32_t sibling_id; // always a node id, as tnode is never a leaf bool sibling_present = false; // if there are more children, or this is the root node, don't try and delete if (parent.num_children > 1) { return; } // if there is 1 sibling, it can be moved to be a child of the if (parent.num_children == 1) { // else there is now a redundant node with one child, which can be removed sibling_id = parent.children[0]; sibling_present = true; } // now there may be no children in this node .. in which case it can be deleted // remove node if empty // remove link from parent uint32_t grandparent_id = parent.parent_id; // special case for root node if (grandparent_id == BVHCommon::INVALID) { if (sibling_present) { // change the root node change_root_node(sibling_id); // delete the old root node as no longer needed _nodes.free(p_parent_id); } return; } if (sibling_present) { node_replace_child(grandparent_id, p_parent_id, sibling_id); } else { node_remove_child(grandparent_id, p_parent_id, true); } // put the node on the free list to recycle _nodes.free(p_parent_id); } // this relies on _current_tree being accurate void change_root_node(uint32_t p_new_root_id) { _root_node_id[_current_tree] = p_new_root_id; TNode &root = _nodes[p_new_root_id]; // mark no parent root.parent_id = BVHCommon::INVALID; } void node_make_leaf(uint32_t p_node_id) { uint32_t child_leaf_id; TLeaf *child_leaf = _leaves.request(child_leaf_id); child_leaf->clear(); // zero is reserved at startup, to prevent this id being used // (as they are stored as negative values in the node, and zero is already taken) BVH_ASSERT(child_leaf_id != 0); TNode &node = _nodes[p_node_id]; node.neg_leaf_id = -(int)child_leaf_id; } void node_remove_item(uint32_t p_ref_id, BVH_ABB *r_old_aabb = nullptr) { // get the reference ItemRef &ref = _refs[p_ref_id]; uint32_t owner_node_id = ref.tnode_id; // debug draw special // This may not be needed if (owner_node_id == BVHCommon::INVALID) return; TNode &tnode = _nodes[owner_node_id]; CRASH_COND(!tnode.is_leaf()); TLeaf &leaf = _node_get_leaf(tnode); // if the aabb is not determining the corner size, then there is no need to refit! // (optimization, as merging AABBs takes a lot of time) const BVH_ABB &old_aabb = leaf.get_aabb(ref.item_id); // shrink a little to prevent using corner aabbs // in order to miss the corners first we shrink by node_expansion // (which is added to the overall bound of the leaf), then we also // shrink by an epsilon, in order to miss out the very corner aabbs // which are important in determining the bound. Any other aabb // within this can be removed and not affect the overall bound. BVH_ABB node_bound = tnode.aabb; node_bound.expand(-_node_expansion - 0.001f); bool refit = true; if (node_bound.is_other_within(old_aabb)) { refit = false; } // record the old aabb if required (for incremental remove_and_reinsert) if (r_old_aabb) { *r_old_aabb = old_aabb; } leaf.remove_item_unordered(ref.item_id); if (leaf.num_items) { // the swapped item has to have its reference changed to, to point to the new item id uint32_t swapped_ref_id = leaf.get_item_ref_id(ref.item_id); ItemRef &swapped_ref = _refs[swapped_ref_id]; swapped_ref.item_id = ref.item_id; // only have to refit if it is an edge item // This is a VERY EXPENSIVE STEP // we defer the refit updates until the update function is called once per frame if (refit) { leaf.set_dirty(true); } } else { // remove node if empty // remove link from parent if (tnode.parent_id != BVHCommon::INVALID) { // DANGER .. this can potentially end up with root node with 1 child ... // we don't want this and must check for it uint32_t parent_id = tnode.parent_id; node_remove_child(parent_id, owner_node_id); refit_upward(parent_id); // put the node on the free list to recycle _nodes.free(owner_node_id); } // else if no parent, it is the root node. Do not delete } ref.tnode_id = BVHCommon::INVALID; ref.item_id = BVHCommon::INVALID; // unset } // returns true if needs refit of PARENT tree only, the node itself AABB is calculated // within this routine bool _node_add_item(uint32_t p_node_id, uint32_t p_ref_id, const BVH_ABB &p_aabb) { ItemRef &ref = _refs[p_ref_id]; ref.tnode_id = p_node_id; TNode &node = _nodes[p_node_id]; BVH_ASSERT(node.is_leaf()); TLeaf &leaf = _node_get_leaf(node); // optimization - we only need to do a refit // if the added item is changing the AABB of the node. // in most cases it won't. bool needs_refit = true; // expand bound now BVH_ABB expanded = p_aabb; expanded.expand(_node_expansion); // the bound will only be valid if there is an item in there already if (leaf.num_items) { if (node.aabb.is_other_within(expanded)) { // no change to node AABBs needs_refit = false; } else { node.aabb.merge(expanded); } } else { // bound of the node = the new aabb node.aabb = expanded; } ref.item_id = leaf.request_item(); BVH_ASSERT(ref.item_id != BVHCommon::INVALID); // set the aabb of the new item leaf.get_aabb(ref.item_id) = p_aabb; // back reference on the item back to the item reference leaf.get_item_ref_id(ref.item_id) = p_ref_id; return needs_refit; } uint32_t _node_create_another_child(uint32_t p_node_id, const BVH_ABB &p_aabb) { uint32_t child_node_id; TNode *child_node = _nodes.request(child_node_id); child_node->clear(); // may not be necessary child_node->aabb = p_aabb; node_add_child(p_node_id, child_node_id); return child_node_id; } #include "bvh_cull.inc" #include "bvh_debug.inc" #include "bvh_integrity.inc" #include "bvh_logic.inc" #include "bvh_misc.inc" #include "bvh_public.inc" #include "bvh_refit.inc" #include "bvh_split.inc" }; #undef VERBOSE_PRINT #endif // BVH_TREE_H