// Copyright 2009-2020 Intel Corporation // SPDX-License-Identifier: Apache-2.0 #pragma once #include "linearspace2.h" #include "linearspace3.h" #include "quaternion.h" #include "bbox.h" #include "vec4.h" namespace embree { #define VectorT typename L::Vector #define ScalarT typename L::Vector::Scalar //////////////////////////////////////////////////////////////////////////////// // Affine Space //////////////////////////////////////////////////////////////////////////////// template struct AffineSpaceT { L l; /*< linear part of affine space */ VectorT p; /*< affine part of affine space */ //////////////////////////////////////////////////////////////////////////////// // Constructors, Assignment, Cast, Copy Operations //////////////////////////////////////////////////////////////////////////////// __forceinline AffineSpaceT ( ) { } __forceinline AffineSpaceT ( const AffineSpaceT& other ) { l = other.l; p = other.p; } __forceinline AffineSpaceT ( const L & other ) { l = other ; p = VectorT(zero); } __forceinline AffineSpaceT& operator=( const AffineSpaceT& other ) { l = other.l; p = other.p; return *this; } __forceinline AffineSpaceT( const VectorT& vx, const VectorT& vy, const VectorT& vz, const VectorT& p ) : l(vx,vy,vz), p(p) {} __forceinline AffineSpaceT( const L& l, const VectorT& p ) : l(l), p(p) {} template __forceinline AffineSpaceT( const AffineSpaceT& s ) : l(s.l), p(s.p) {} //////////////////////////////////////////////////////////////////////////////// // Constants //////////////////////////////////////////////////////////////////////////////// __forceinline AffineSpaceT( ZeroTy ) : l(zero), p(zero) {} __forceinline AffineSpaceT( OneTy ) : l(one), p(zero) {} /*! return matrix for scaling */ static __forceinline AffineSpaceT scale(const VectorT& s) { return L::scale(s); } /*! return matrix for translation */ static __forceinline AffineSpaceT translate(const VectorT& p) { return AffineSpaceT(one,p); } /*! return matrix for rotation, only in 2D */ static __forceinline AffineSpaceT rotate(const ScalarT& r) { return L::rotate(r); } /*! return matrix for rotation around arbitrary point (2D) or axis (3D) */ static __forceinline AffineSpaceT rotate(const VectorT& u, const ScalarT& r) { return L::rotate(u,r); } /*! return matrix for rotation around arbitrary axis and point, only in 3D */ static __forceinline AffineSpaceT rotate(const VectorT& p, const VectorT& u, const ScalarT& r) { return translate(+p) * rotate(u,r) * translate(-p); } /*! return matrix for looking at given point, only in 3D */ static __forceinline AffineSpaceT lookat(const VectorT& eye, const VectorT& point, const VectorT& up) { VectorT Z = normalize(point-eye); VectorT U = normalize(cross(up,Z)); VectorT V = normalize(cross(Z,U)); return AffineSpaceT(L(U,V,Z),eye); } }; // template specialization to get correct identity matrix for type AffineSpace3fa template<> __forceinline AffineSpaceT::AffineSpaceT( OneTy ) : l(one), p(0.f, 0.f, 0.f, 1.f) {} //////////////////////////////////////////////////////////////////////////////// // Unary Operators //////////////////////////////////////////////////////////////////////////////// template __forceinline AffineSpaceT operator -( const AffineSpaceT& a ) { return AffineSpaceT(-a.l,-a.p); } template __forceinline AffineSpaceT operator +( const AffineSpaceT& a ) { return AffineSpaceT(+a.l,+a.p); } template __forceinline AffineSpaceT rcp( const AffineSpaceT& a ) { L il = rcp(a.l); return AffineSpaceT(il,-(il*a.p)); } //////////////////////////////////////////////////////////////////////////////// // Binary Operators //////////////////////////////////////////////////////////////////////////////// template __forceinline const AffineSpaceT operator +( const AffineSpaceT& a, const AffineSpaceT& b ) { return AffineSpaceT(a.l+b.l,a.p+b.p); } template __forceinline const AffineSpaceT operator -( const AffineSpaceT& a, const AffineSpaceT& b ) { return AffineSpaceT(a.l-b.l,a.p-b.p); } template __forceinline const AffineSpaceT operator *( const ScalarT & a, const AffineSpaceT& b ) { return AffineSpaceT(a*b.l,a*b.p); } template __forceinline const AffineSpaceT operator *( const AffineSpaceT& a, const AffineSpaceT& b ) { return AffineSpaceT(a.l*b.l,a.l*b.p+a.p); } template __forceinline const AffineSpaceT operator /( const AffineSpaceT& a, const AffineSpaceT& b ) { return a * rcp(b); } template __forceinline const AffineSpaceT operator /( const AffineSpaceT& a, const ScalarT & b ) { return a * rcp(b); } template __forceinline AffineSpaceT& operator *=( AffineSpaceT& a, const AffineSpaceT& b ) { return a = a * b; } template __forceinline AffineSpaceT& operator *=( AffineSpaceT& a, const ScalarT & b ) { return a = a * b; } template __forceinline AffineSpaceT& operator /=( AffineSpaceT& a, const AffineSpaceT& b ) { return a = a / b; } template __forceinline AffineSpaceT& operator /=( AffineSpaceT& a, const ScalarT & b ) { return a = a / b; } template __forceinline VectorT xfmPoint (const AffineSpaceT& m, const VectorT& p) { return madd(VectorT(p.x),m.l.vx,madd(VectorT(p.y),m.l.vy,madd(VectorT(p.z),m.l.vz,m.p))); } template __forceinline VectorT xfmVector(const AffineSpaceT& m, const VectorT& v) { return xfmVector(m.l,v); } template __forceinline VectorT xfmNormal(const AffineSpaceT& m, const VectorT& n) { return xfmNormal(m.l,n); } __forceinline const BBox xfmBounds(const AffineSpaceT >& m, const BBox& b) { BBox3fa dst = empty; const Vec3fa p0(b.lower.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p0)); const Vec3fa p1(b.lower.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p1)); const Vec3fa p2(b.lower.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p2)); const Vec3fa p3(b.lower.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p3)); const Vec3fa p4(b.upper.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p4)); const Vec3fa p5(b.upper.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p5)); const Vec3fa p6(b.upper.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p6)); const Vec3fa p7(b.upper.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p7)); return dst; } //////////////////////////////////////////////////////////////////////////////// /// Comparison Operators //////////////////////////////////////////////////////////////////////////////// template __forceinline bool operator ==( const AffineSpaceT& a, const AffineSpaceT& b ) { return a.l == b.l && a.p == b.p; } template __forceinline bool operator !=( const AffineSpaceT& a, const AffineSpaceT& b ) { return a.l != b.l || a.p != b.p; } //////////////////////////////////////////////////////////////////////////////// /// Select //////////////////////////////////////////////////////////////////////////////// template __forceinline AffineSpaceT select ( const typename L::Vector::Scalar::Bool& s, const AffineSpaceT& t, const AffineSpaceT& f ) { return AffineSpaceT(select(s,t.l,f.l),select(s,t.p,f.p)); } //////////////////////////////////////////////////////////////////////////////// // Output Operators //////////////////////////////////////////////////////////////////////////////// template static embree_ostream operator<<(embree_ostream cout, const AffineSpaceT& m) { return cout << "{ l = " << m.l << ", p = " << m.p << " }"; } //////////////////////////////////////////////////////////////////////////////// // Template Instantiations //////////////////////////////////////////////////////////////////////////////// typedef AffineSpaceT AffineSpace2f; typedef AffineSpaceT AffineSpace3f; typedef AffineSpaceT AffineSpace3fa; typedef AffineSpaceT AffineSpace3fx; typedef AffineSpaceT AffineSpace3ff; typedef AffineSpaceT OrthonormalSpace3f; template using AffineSpace3vf = AffineSpaceT>>>; typedef AffineSpaceT>>> AffineSpace3vf4; typedef AffineSpaceT>>> AffineSpace3vf8; typedef AffineSpaceT>>> AffineSpace3vf16; template using AffineSpace3vff = AffineSpaceT>>>; typedef AffineSpaceT>>> AffineSpace3vfa4; typedef AffineSpaceT>>> AffineSpace3vfa8; typedef AffineSpaceT>>> AffineSpace3vfa16; ////////////////////////////////////////////////////////////////////////////// /// Interpolation ////////////////////////////////////////////////////////////////////////////// template __forceinline AffineSpaceT lerp(const AffineSpaceT& M0, const AffineSpaceT& M1, const R& t) { return AffineSpaceT(lerp(M0.l,M1.l,t),lerp(M0.p,M1.p,t)); } // slerp interprets the 16 floats of the matrix M = D * R * S as components of // three matrizes (D, R, S) that are interpolated individually. template __forceinline AffineSpaceT>> slerp(const AffineSpaceT>>& M0, const AffineSpaceT>>& M1, const T& t) { QuaternionT q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w); QuaternionT q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w); QuaternionT q = slerp(q0, q1, t); AffineSpaceT>> S = lerp(M0, M1, t); AffineSpaceT>> D(one); D.p.x = S.l.vx.y; D.p.y = S.l.vx.z; D.p.z = S.l.vy.z; S.l.vx.y = 0; S.l.vx.z = 0; S.l.vy.z = 0; AffineSpaceT>> R = LinearSpace3>(q); return D * R * S; } // this is a specialized version for Vec3fa because that does // not play along nicely with the other templated Vec3/Vec4 types __forceinline AffineSpace3fa slerp(const AffineSpace3ff& M0, const AffineSpace3ff& M1, const float& t) { Quaternion3f q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w); Quaternion3f q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w); Quaternion3f q = slerp(q0, q1, t); AffineSpace3fa S = lerp(M0, M1, t); AffineSpace3fa D(one); D.p.x = S.l.vx.y; D.p.y = S.l.vx.z; D.p.z = S.l.vy.z; S.l.vx.y = 0; S.l.vx.z = 0; S.l.vy.z = 0; AffineSpace3fa R = LinearSpace3fa(q); return D * R * S; } __forceinline AffineSpace3fa quaternionDecompositionToAffineSpace(const AffineSpace3ff& qd) { // compute affine transform from quaternion decomposition Quaternion3f q(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w); AffineSpace3fa M = qd; AffineSpace3fa D(one); D.p.x = M.l.vx.y; D.p.y = M.l.vx.z; D.p.z = M.l.vy.z; M.l.vx.y = 0; M.l.vx.z = 0; M.l.vy.z = 0; AffineSpace3fa R = LinearSpace3fa(q); return D * R * M; } __forceinline void quaternionDecomposition(const AffineSpace3ff& qd, Vec3fa& T, Quaternion3f& q, AffineSpace3fa& S) { q = Quaternion3f(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w); S = qd; T.x = qd.l.vx.y; T.y = qd.l.vx.z; T.z = qd.l.vy.z; S.l.vx.y = 0; S.l.vx.z = 0; S.l.vy.z = 0; } __forceinline AffineSpace3fx quaternionDecomposition(Vec3fa const& T, Quaternion3f const& q, AffineSpace3fa const& S) { AffineSpace3ff M = S; M.l.vx.w = q.i; M.l.vy.w = q.j; M.l.vz.w = q.k; M.p.w = q.r; M.l.vx.y = T.x; M.l.vx.z = T.y; M.l.vy.z = T.z; return M; } struct __aligned(16) QuaternionDecomposition { float scale_x = 1.f; float scale_y = 1.f; float scale_z = 1.f; float skew_xy = 0.f; float skew_xz = 0.f; float skew_yz = 0.f; float shift_x = 0.f; float shift_y = 0.f; float shift_z = 0.f; float quaternion_r = 1.f; float quaternion_i = 0.f; float quaternion_j = 0.f; float quaternion_k = 0.f; float translation_x = 0.f; float translation_y = 0.f; float translation_z = 0.f; }; __forceinline QuaternionDecomposition quaternionDecomposition(AffineSpace3ff const& M) { QuaternionDecomposition qd; qd.scale_x = M.l.vx.x; qd.scale_y = M.l.vy.y; qd.scale_z = M.l.vz.z; qd.shift_x = M.p.x; qd.shift_y = M.p.y; qd.shift_z = M.p.z; qd.translation_x = M.l.vx.y; qd.translation_y = M.l.vx.z; qd.translation_z = M.l.vy.z; qd.skew_xy = M.l.vy.x; qd.skew_xz = M.l.vz.x; qd.skew_yz = M.l.vz.y; qd.quaternion_r = M.p.w; qd.quaternion_i = M.l.vx.w; qd.quaternion_j = M.l.vy.w; qd.quaternion_k = M.l.vz.w; return qd; } //////////////////////////////////////////////////////////////////////////////// /* * ! Template Specialization for 2D: return matrix for rotation around point * (rotation around arbitrarty vector is not meaningful in 2D) */ template<> __forceinline AffineSpace2f AffineSpace2f::rotate(const Vec2f& p, const float& r) { return translate(+p)*AffineSpace2f(LinearSpace2f::rotate(r))*translate(-p); } //////////////////////////////////////////////////////////////////////////////// // Similarity Transform // // checks, if M is a similarity transformation, i.e if there exists a factor D // such that for all x,y: distance(Mx, My) = D * distance(x, y) //////////////////////////////////////////////////////////////////////////////// __forceinline bool similarityTransform(const AffineSpace3fa& M, float* D) { if (D) *D = 0.f; if (abs(dot(M.l.vx, M.l.vy)) > 1e-5f) return false; if (abs(dot(M.l.vx, M.l.vz)) > 1e-5f) return false; if (abs(dot(M.l.vy, M.l.vz)) > 1e-5f) return false; const float D_x = dot(M.l.vx, M.l.vx); const float D_y = dot(M.l.vy, M.l.vy); const float D_z = dot(M.l.vz, M.l.vz); if (abs(D_x - D_y) > 1e-5f || abs(D_x - D_z) > 1e-5f || abs(D_y - D_z) > 1e-5f) return false; if (D) *D = sqrtf(D_x); return true; } __forceinline void AffineSpace3fa_store_unaligned(const AffineSpace3fa &source, AffineSpace3fa* ptr) { Vec3fa::storeu(&ptr->l.vx, source.l.vx); Vec3fa::storeu(&ptr->l.vy, source.l.vy); Vec3fa::storeu(&ptr->l.vz, source.l.vz); Vec3fa::storeu(&ptr->p, source.p); } __forceinline AffineSpace3fa AffineSpace3fa_load_unaligned(AffineSpace3fa* ptr) { AffineSpace3fa space; space.l.vx = Vec3fa::loadu(&ptr->l.vx); space.l.vy = Vec3fa::loadu(&ptr->l.vy); space.l.vz = Vec3fa::loadu(&ptr->l.vz); space.p = Vec3fa::loadu(&ptr->p); return space; } #undef VectorT #undef ScalarT }