/* clang-format off */ [vertex] #ifdef USE_GLES_OVER_GL #define lowp #define mediump #define highp #else precision highp float; precision highp int; #endif #include "stdlib.glsl" #define SHADER_IS_SRGB true #define M_PI 3.14159265359 // // attributes // attribute highp vec4 vertex_attrib; // attrib:0 /* clang-format on */ attribute vec3 normal_attrib; // attrib:1 #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) attribute vec4 tangent_attrib; // attrib:2 #endif #if defined(ENABLE_COLOR_INTERP) attribute vec4 color_attrib; // attrib:3 #endif #if defined(ENABLE_UV_INTERP) attribute vec2 uv_attrib; // attrib:4 #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) attribute vec2 uv2_attrib; // attrib:5 #endif #ifdef USE_SKELETON #ifdef USE_SKELETON_SOFTWARE attribute highp vec4 bone_transform_row_0; // attrib:13 attribute highp vec4 bone_transform_row_1; // attrib:14 attribute highp vec4 bone_transform_row_2; // attrib:15 #else attribute vec4 bone_ids; // attrib:6 attribute highp vec4 bone_weights; // attrib:7 uniform highp sampler2D bone_transforms; // texunit:-1 uniform ivec2 skeleton_texture_size; #endif #endif #ifdef USE_INSTANCING attribute highp vec4 instance_xform_row_0; // attrib:8 attribute highp vec4 instance_xform_row_1; // attrib:9 attribute highp vec4 instance_xform_row_2; // attrib:10 attribute highp vec4 instance_color; // attrib:11 attribute highp vec4 instance_custom_data; // attrib:12 #endif // // uniforms // uniform highp mat4 camera_matrix; uniform highp mat4 camera_inverse_matrix; uniform highp mat4 projection_matrix; uniform highp mat4 projection_inverse_matrix; uniform highp mat4 world_transform; uniform highp float time; uniform highp vec2 viewport_size; #ifdef RENDER_DEPTH uniform float light_bias; uniform float light_normal_bias; #endif // // varyings // varying highp vec3 vertex_interp; varying vec3 normal_interp; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) varying vec3 tangent_interp; varying vec3 binormal_interp; #endif #if defined(ENABLE_COLOR_INTERP) varying vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) varying vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) varying vec2 uv2_interp; #endif /* clang-format off */ VERTEX_SHADER_GLOBALS /* clang-format on */ #ifdef RENDER_DEPTH_DUAL_PARABOLOID varying highp float dp_clip; uniform highp float shadow_dual_paraboloid_render_zfar; uniform highp float shadow_dual_paraboloid_render_side; #endif #if defined(USE_SHADOW) && defined(USE_LIGHTING) uniform highp mat4 light_shadow_matrix; varying highp vec4 shadow_coord; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) uniform highp mat4 light_shadow_matrix2; varying highp vec4 shadow_coord2; #endif #if defined(LIGHT_USE_PSSM4) uniform highp mat4 light_shadow_matrix3; uniform highp mat4 light_shadow_matrix4; varying highp vec4 shadow_coord3; varying highp vec4 shadow_coord4; #endif #endif #if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) varying highp vec3 diffuse_interp; varying highp vec3 specular_interp; // general for all lights uniform highp vec4 light_color; uniform highp float light_specular; // directional uniform highp vec3 light_direction; // omni uniform highp vec3 light_position; uniform highp float light_range; uniform highp float light_attenuation; // spot uniform highp float light_spot_attenuation; uniform highp float light_spot_range; uniform highp float light_spot_angle; void light_compute( vec3 N, vec3 L, vec3 V, vec3 light_color, vec3 attenuation, float roughness) { //this makes lights behave closer to linear, but then addition of lights looks bad //better left disabled //#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); /* #define SRGB_APPROX(m_var) {\ float S1 = sqrt(m_var);\ float S2 = sqrt(S1);\ float S3 = sqrt(S2);\ m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ } */ #define SRGB_APPROX(m_var) float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) { // see http://mimosa-pudica.net/improved-oren-nayar.html float LdotV = dot(L, V); float s = LdotV - NdotL * NdotV; float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); float sigma2 = roughness * roughness; // TODO: this needs checking vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); float B = 0.45 * sigma2 / (sigma2 + 0.09); diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); } #else // lambert by default for everything else diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif SRGB_APPROX(diffuse_brdf_NL) diffuse_interp += light_color * diffuse_brdf_NL * attenuation; if (roughness > 0.0) { // D float specular_brdf_NL = 0.0; #if !defined(SPECULAR_DISABLED) //normalized blinn always unless disabled vec3 H = normalize(V + L); float cNdotH = max(dot(N, H), 0.0); float cVdotH = max(dot(V, H), 0.0); float cLdotH = max(dot(L, H), 0.0); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); #endif SRGB_APPROX(specular_brdf_NL) specular_interp += specular_brdf_NL * light_color * attenuation; } } #endif #ifdef USE_VERTEX_LIGHTING #ifdef USE_REFLECTION_PROBE1 uniform highp mat4 refprobe1_local_matrix; varying mediump vec4 refprobe1_reflection_normal_blend; uniform highp vec3 refprobe1_box_extents; #ifndef USE_LIGHTMAP varying mediump vec3 refprobe1_ambient_normal; #endif #endif //reflection probe1 #ifdef USE_REFLECTION_PROBE2 uniform highp mat4 refprobe2_local_matrix; varying mediump vec4 refprobe2_reflection_normal_blend; uniform highp vec3 refprobe2_box_extents; #ifndef USE_LIGHTMAP varying mediump vec3 refprobe2_ambient_normal; #endif #endif //reflection probe2 #endif //vertex lighting for refprobes #if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) varying vec4 fog_interp; uniform mediump vec4 fog_color_base; #ifdef LIGHT_MODE_DIRECTIONAL uniform mediump vec4 fog_sun_color_amount; #endif uniform bool fog_transmit_enabled; uniform mediump float fog_transmit_curve; #ifdef FOG_DEPTH_ENABLED uniform highp float fog_depth_begin; uniform mediump float fog_depth_curve; uniform mediump float fog_max_distance; #endif #ifdef FOG_HEIGHT_ENABLED uniform highp float fog_height_min; uniform highp float fog_height_max; uniform mediump float fog_height_curve; #endif #endif //fog void main() { highp vec4 vertex = vertex_attrib; mat4 world_matrix = world_transform; #ifdef USE_INSTANCING { highp mat4 m = mat4( instance_xform_row_0, instance_xform_row_1, instance_xform_row_2, vec4(0.0, 0.0, 0.0, 1.0)); world_matrix = world_matrix * transpose(m); } #endif vec3 normal = normal_attrib; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) vec3 tangent = tangent_attrib.xyz; float binormalf = tangent_attrib.a; vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #if defined(ENABLE_COLOR_INTERP) color_interp = color_attrib; #ifdef USE_INSTANCING color_interp *= instance_color; #endif #endif #if defined(ENABLE_UV_INTERP) uv_interp = uv_attrib; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif #ifdef OVERRIDE_POSITION highp vec4 position; #endif #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = world_matrix * vertex; normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((world_matrix * vec4(tangent, 0.0)).xyz); binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); #endif #endif #ifdef USE_SKELETON highp mat4 bone_transform = mat4(0.0); #ifdef USE_SKELETON_SOFTWARE // passing the transform as attributes bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0); bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0); bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0); bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0); #else // look up transform from the "pose texture" { for (int i = 0; i < 4; i++) { ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0); highp mat4 b = mat4( texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)), texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)), texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)), vec4(0.0, 0.0, 0.0, 1.0)); bone_transform += transpose(b) * bone_weights[i]; } } #endif world_matrix = bone_transform * world_matrix; #endif #ifdef USE_INSTANCING vec4 instance_custom = instance_custom_data; #else vec4 instance_custom = vec4(0.0); #endif mat4 modelview = camera_inverse_matrix * world_matrix; float roughness = 1.0; #define world_transform world_matrix { /* clang-format off */ VERTEX_SHADER_CODE /* clang-format on */ } vec4 outvec = vertex; // use local coordinates #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = modelview * vertex; normal = normalize((modelview * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); #endif #endif #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = camera_inverse_matrix * vertex; normal = normalize((camera_inverse_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((camera_inverse_matrix * vec4(tangent, 0.0)).xyz); binormal = normalize((camera_inverse_matrix * vec4(binormal, 0.0)).xyz); #endif #endif vertex_interp = vertex.xyz; normal_interp = normal; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef RENDER_DEPTH #ifdef RENDER_DEPTH_DUAL_PARABOLOID vertex_interp.z *= shadow_dual_paraboloid_render_side; normal_interp.z *= shadow_dual_paraboloid_render_side; dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias; highp float distance = length(vtx); vtx = normalize(vtx); vtx.xy /= 1.0 - vtx.z; vtx.z = (distance / shadow_dual_paraboloid_render_zfar); vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; #else float z_ofs = light_bias; z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias; vertex_interp.z -= z_ofs; #endif //dual parabolloid #endif //depth //vertex lighting #if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) //vertex shaded version of lighting (more limited) vec3 L; vec3 light_att; #ifdef LIGHT_MODE_OMNI vec3 light_vec = light_position - vertex_interp; float light_length = length(light_vec); float normalized_distance = light_length / light_range; if (normalized_distance < 1.0) { float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation); vec3 attenuation = vec3(omni_attenuation); light_att = vec3(omni_attenuation); } else { light_att = vec3(0.0); } L = normalize(light_vec); #endif #ifdef LIGHT_MODE_SPOT vec3 light_rel_vec = light_position - vertex_interp; float light_length = length(light_rel_vec); float normalized_distance = light_length / light_range; if (normalized_distance < 1.0) { float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation); vec3 spot_dir = light_direction; float spot_cutoff = light_spot_angle; float angle = dot(-normalize(light_rel_vec), spot_dir); if (angle > spot_cutoff) { float scos = max(angle, spot_cutoff); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); light_att = vec3(spot_attenuation); } else { light_att = vec3(0.0); } } else { light_att = vec3(0.0); } L = normalize(light_rel_vec); #endif #ifdef LIGHT_MODE_DIRECTIONAL vec3 light_vec = -light_direction; light_att = vec3(1.0); //no base attenuation L = normalize(light_vec); #endif diffuse_interp = vec3(0.0); specular_interp = vec3(0.0); light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness); #endif //shadows (for both vertex and fragment) #if defined(USE_SHADOW) && defined(USE_LIGHTING) vec4 vi4 = vec4(vertex_interp, 1.0); shadow_coord = light_shadow_matrix * vi4; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) shadow_coord2 = light_shadow_matrix2 * vi4; #endif #if defined(LIGHT_USE_PSSM4) shadow_coord3 = light_shadow_matrix3 * vi4; shadow_coord4 = light_shadow_matrix4 * vi4; #endif #endif //use shadow and use lighting #ifdef USE_VERTEX_LIGHTING #ifdef USE_REFLECTION_PROBE1 { vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp)); vec3 local_pos = (refprobe1_local_matrix * vec4(vertex_interp, 1.0)).xyz; vec3 inner_pos = abs(local_pos / refprobe1_box_extents); float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); { vec3 local_ref_vec = (refprobe1_local_matrix * vec4(ref_normal, 0.0)).xyz; refprobe1_reflection_normal_blend.xyz = local_ref_vec; refprobe1_reflection_normal_blend.a = blend; } #ifndef USE_LIGHTMAP refprobe1_ambient_normal = (refprobe1_local_matrix * vec4(normal_interp, 0.0)).xyz; #endif } #endif //USE_REFLECTION_PROBE1 #ifdef USE_REFLECTION_PROBE2 { vec3 ref_normal = normalize(reflect(vertex_interp, normal_interp)); vec3 local_pos = (refprobe2_local_matrix * vec4(vertex_interp, 1.0)).xyz; vec3 inner_pos = abs(local_pos / refprobe2_box_extents); float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); { vec3 local_ref_vec = (refprobe2_local_matrix * vec4(ref_normal, 0.0)).xyz; refprobe2_reflection_normal_blend.xyz = local_ref_vec; refprobe2_reflection_normal_blend.a = blend; } #ifndef USE_LIGHTMAP refprobe2_ambient_normal = (refprobe2_local_matrix * vec4(normal_interp, 0.0)).xyz; #endif } #endif //USE_REFLECTION_PROBE2 #if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) float fog_amount = 0.0; #ifdef LIGHT_MODE_DIRECTIONAL vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(normalize(vertex_interp), light_direction), 0.0), 8.0)); #else vec3 fog_color = fog_color_base.rgb; #endif #ifdef FOG_DEPTH_ENABLED { float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex)); fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a; } #endif #ifdef FOG_HEIGHT_ENABLED { float y = (camera_matrix * vec4(vertex_interp, 1.0)).y; fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); } #endif fog_interp = vec4(fog_color, fog_amount); #endif //fog #endif //use vertex lighting #ifdef OVERRIDE_POSITION gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif } /* clang-format off */ [fragment] #ifndef USE_GLES_OVER_GL #ifdef GL_EXT_shader_texture_lod #extension GL_EXT_shader_texture_lod : enable #define texture2DLod(img, coord, lod) texture2DLodEXT(img, coord, lod) #define textureCubeLod(img, coord, lod) textureCubeLodEXT(img, coord, lod) #endif #endif #ifdef GL_ARB_shader_texture_lod #extension GL_ARB_shader_texture_lod : enable #endif #if !defined(GL_EXT_shader_texture_lod) && !defined(GL_ARB_shader_texture_lod) #define texture2DLod(img, coord, lod) texture2D(img, coord, lod) #define textureCubeLod(img, coord, lod) textureCube(img, coord, lod) #endif #ifdef USE_GLES_OVER_GL #define lowp #define mediump #define highp #else #if defined(USE_HIGHP_PRECISION) precision highp float; precision highp int; #else precision mediump float; precision mediump int; #endif #endif #include "stdlib.glsl" #define M_PI 3.14159265359 #define SHADER_IS_SRGB true // // uniforms // uniform highp mat4 camera_matrix; /* clang-format on */ uniform highp mat4 camera_inverse_matrix; uniform highp mat4 projection_matrix; uniform highp mat4 projection_inverse_matrix; uniform highp mat4 world_transform; uniform highp float time; uniform highp vec2 viewport_size; #if defined(SCREEN_UV_USED) uniform vec2 screen_pixel_size; #endif // I think supporting this in GLES2 is difficult // uniform highp sampler2D depth_buffer; #if defined(SCREEN_TEXTURE_USED) uniform highp sampler2D screen_texture; //texunit:-4 #endif #ifdef USE_REFLECTION_PROBE1 #ifdef USE_VERTEX_LIGHTING varying mediump vec4 refprobe1_reflection_normal_blend; #ifndef USE_LIGHTMAP varying mediump vec3 refprobe1_ambient_normal; #endif #else uniform bool refprobe1_use_box_project; uniform highp vec3 refprobe1_box_extents; uniform vec3 refprobe1_box_offset; uniform highp mat4 refprobe1_local_matrix; #endif //use vertex lighting uniform bool refprobe1_exterior; uniform highp samplerCube reflection_probe1; //texunit:-5 uniform float refprobe1_intensity; uniform vec4 refprobe1_ambient; #endif //USE_REFLECTION_PROBE1 #ifdef USE_REFLECTION_PROBE2 #ifdef USE_VERTEX_LIGHTING varying mediump vec4 refprobe2_reflection_normal_blend; #ifndef USE_LIGHTMAP varying mediump vec3 refprobe2_ambient_normal; #endif #else uniform bool refprobe2_use_box_project; uniform highp vec3 refprobe2_box_extents; uniform vec3 refprobe2_box_offset; uniform highp mat4 refprobe2_local_matrix; #endif //use vertex lighting uniform bool refprobe2_exterior; uniform highp samplerCube reflection_probe2; //texunit:-6 uniform float refprobe2_intensity; uniform vec4 refprobe2_ambient; #endif //USE_REFLECTION_PROBE2 #define RADIANCE_MAX_LOD 6.0 #if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) void reflection_process(samplerCube reflection_map, #ifdef USE_VERTEX_LIGHTING vec3 ref_normal, #ifndef USE_LIGHTMAP vec3 amb_normal, #endif float ref_blend, #else //no vertex lighting vec3 normal, vec3 vertex, mat4 local_matrix, bool use_box_project, vec3 box_extents, vec3 box_offset, #endif //vertex lighting bool exterior, float intensity, vec4 ref_ambient, float roughness, vec3 ambient, vec3 skybox, inout highp vec4 reflection_accum, inout highp vec4 ambient_accum) { vec4 reflection; #ifdef USE_VERTEX_LIGHTING reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb; float blend = ref_blend; //crappier blend formula for vertex blend *= blend; blend = max(0.0, 1.0 - blend); #else //fragment lighting vec3 local_pos = (local_matrix * vec4(vertex, 1.0)).xyz; if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box return; } vec3 inner_pos = abs(local_pos / box_extents); float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); blend = mix(length(inner_pos), blend, blend); blend *= blend; blend = max(0.0, 1.0 - blend); //reflect and make local vec3 ref_normal = normalize(reflect(vertex, normal)); ref_normal = (local_matrix * vec4(ref_normal, 0.0)).xyz; if (use_box_project) { //box project vec3 nrdir = normalize(ref_normal); vec3 rbmax = (box_extents - local_pos) / nrdir; vec3 rbmin = (-box_extents - local_pos) / nrdir; vec3 rbminmax = mix(rbmin, rbmax, vec3(greaterThan(nrdir, vec3(0.0, 0.0, 0.0)))); float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); vec3 posonbox = local_pos + nrdir * fa; ref_normal = posonbox - box_offset.xyz; } reflection.rgb = textureCubeLod(reflection_map, ref_normal, roughness * RADIANCE_MAX_LOD).rgb; #endif if (exterior) { reflection.rgb = mix(skybox, reflection.rgb, blend); } reflection.rgb *= intensity; reflection.a = blend; reflection.rgb *= blend; reflection_accum += reflection; #ifndef USE_LIGHTMAP vec4 ambient_out; #ifndef USE_VERTEX_LIGHTING vec3 amb_normal = (local_matrix * vec4(normal, 0.0)).xyz; #endif ambient_out.rgb = textureCubeLod(reflection_map, amb_normal, RADIANCE_MAX_LOD).rgb; ambient_out.rgb = mix(ref_ambient.rgb, ambient_out.rgb, ref_ambient.a); if (exterior) { ambient_out.rgb = mix(ambient, ambient_out.rgb, blend); } ambient_out.a = blend; ambient_out.rgb *= blend; ambient_accum += ambient_out; #endif } #endif //use refprobe 1 or 2 #ifdef USE_LIGHTMAP uniform mediump sampler2D lightmap; //texunit:-4 uniform mediump float lightmap_energy; #endif #ifdef USE_LIGHTMAP_CAPTURE uniform mediump vec4[12] lightmap_captures; uniform bool lightmap_capture_sky; #endif #ifdef USE_RADIANCE_MAP uniform samplerCube radiance_map; // texunit:-2 uniform mat4 radiance_inverse_xform; #endif uniform float bg_energy; uniform float ambient_sky_contribution; uniform vec4 ambient_color; uniform float ambient_energy; #ifdef USE_LIGHTING #ifdef USE_VERTEX_LIGHTING //get from vertex varying highp vec3 diffuse_interp; varying highp vec3 specular_interp; uniform highp vec3 light_direction; //may be used by fog, so leave here #else //done in fragment // general for all lights uniform highp vec4 light_color; uniform highp float light_specular; // directional uniform highp vec3 light_direction; // omni uniform highp vec3 light_position; uniform highp float light_attenuation; // spot uniform highp float light_spot_attenuation; uniform highp float light_spot_range; uniform highp float light_spot_angle; #endif //this is needed outside above if because dual paraboloid wants it uniform highp float light_range; #ifdef USE_SHADOW uniform highp vec2 shadow_pixel_size; #if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT) uniform highp sampler2D light_shadow_atlas; //texunit:-3 #endif #ifdef LIGHT_MODE_DIRECTIONAL uniform highp sampler2D light_directional_shadow; // texunit:-3 uniform highp vec4 light_split_offsets; #endif varying highp vec4 shadow_coord; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) varying highp vec4 shadow_coord2; #endif #if defined(LIGHT_USE_PSSM4) varying highp vec4 shadow_coord3; varying highp vec4 shadow_coord4; #endif uniform vec4 light_clamp; #endif // light shadow // directional shadow #endif // // varyings // varying highp vec3 vertex_interp; varying vec3 normal_interp; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) varying vec3 tangent_interp; varying vec3 binormal_interp; #endif #if defined(ENABLE_COLOR_INTERP) varying vec4 color_interp; #endif #if defined(ENABLE_UV_INTERP) varying vec2 uv_interp; #endif #if defined(ENABLE_UV2_INTERP) || defined(USE_LIGHTMAP) varying vec2 uv2_interp; #endif varying vec3 view_interp; vec3 F0(float metallic, float specular, vec3 albedo) { float dielectric = 0.16 * specular * specular; // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; // see https://google.github.io/filament/Filament.md.html return mix(vec3(dielectric), albedo, vec3(metallic)); } /* clang-format off */ FRAGMENT_SHADER_GLOBALS /* clang-format on */ #ifdef RENDER_DEPTH_DUAL_PARABOLOID varying highp float dp_clip; #endif #ifdef USE_LIGHTING // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. // We're dividing this factor off because the overall term we'll end up looks like // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): // // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) // // We're basically regouping this as // // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] // // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. // // The contents of the D and G (G1) functions (GGX) are taken from // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). // Eqns 71-72 and 85-86 (see also Eqns 43 and 80). /* float G_GGX_2cos(float cos_theta_m, float alpha) { // Schlick's approximation // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) // Eq. (19), although see Heitz (2014) the about the problems with his derivation. // It nevertheless approximates GGX well with k = alpha/2. float k = 0.5 * alpha; return 0.5 / (cos_theta_m * (1.0 - k) + k); // float cos2 = cos_theta_m * cos_theta_m; // float sin2 = (1.0 - cos2); // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); } */ // This approximates G_GGX_2cos(cos_theta_l, alpha) * G_GGX_2cos(cos_theta_v, alpha) // See Filament docs, Specular G section. float V_GGX(float cos_theta_l, float cos_theta_v, float alpha) { return 0.5 / mix(2.0 * cos_theta_l * cos_theta_v, cos_theta_l + cos_theta_v, alpha); } float D_GGX(float cos_theta_m, float alpha) { float alpha2 = alpha * alpha; float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; return alpha2 / (M_PI * d * d); } /* float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float s_x = alpha_x * cos_phi; float s_y = alpha_y * sin_phi; return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); } */ // This approximates G_GGX_anisotropic_2cos(cos_theta_l, ...) * G_GGX_anisotropic_2cos(cos_theta_v, ...) // See Filament docs, Anisotropic specular BRDF section. float V_GGX_anisotropic(float alpha_x, float alpha_y, float TdotV, float TdotL, float BdotV, float BdotL, float NdotV, float NdotL) { float Lambda_V = NdotL * length(vec3(alpha_x * TdotV, alpha_y * BdotV, NdotV)); float Lambda_L = NdotV * length(vec3(alpha_x * TdotL, alpha_y * BdotL, NdotL)); return 0.5 / (Lambda_V + Lambda_L); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi, float NdotH) { float alpha2 = alpha_x * alpha_y; highp vec3 v = vec3(alpha_y * cos_phi, alpha_x * sin_phi, alpha2 * NdotH); highp float v2 = dot(v, v); float w2 = alpha2 / v2; float D = alpha2 * w2 * w2 * (1.0 / M_PI); return D; /* float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float r_x = cos_phi / alpha_x; float r_y = sin_phi / alpha_y; float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); */ } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } float GTR1(float NdotH, float a) { if (a >= 1.0) return 1.0 / M_PI; float a2 = a * a; float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; return (a2 - 1.0) / (M_PI * log(a2) * t); } void light_compute( vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float specular, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) { //this makes lights behave closer to linear, but then addition of lights looks bad //better left disabled //#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); /* #define SRGB_APPROX(m_var) {\ float S1 = sqrt(m_var);\ float S2 = sqrt(S1);\ float S3 = sqrt(S2);\ m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ } */ #define SRGB_APPROX(m_var) #if defined(USE_LIGHT_SHADER_CODE) // light is written by the light shader vec3 normal = N; vec3 albedo = diffuse_color; vec3 light = L; vec3 view = V; /* clang-format off */ LIGHT_SHADER_CODE /* clang-format on */ #else float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(abs(NdotV), 1e-6); #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) vec3 H = normalize(V + L); #endif #if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) float cNdotH = max(dot(N, H), 0.0); #endif #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_USE_CLEARCOAT) float cLdotH = max(dot(L, H), 0.0); #endif if (metallic < 1.0) { #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) { // see http://mimosa-pudica.net/improved-oren-nayar.html float LdotV = dot(L, V); float s = LdotV - NdotL * NdotV; float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); float sigma2 = roughness * roughness; // TODO: this needs checking vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); float B = 0.45 * sigma2 / (sigma2 + 0.09); diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); } #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; /* float energyBias = mix(roughness, 0.0, 0.5); float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); float fd90 = energyBias + 2.0 * VoH * VoH * roughness; float f0 = 1.0; float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; */ } #else // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif SRGB_APPROX(diffuse_brdf_NL) diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; #if defined(TRANSMISSION_USED) diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; #endif #if defined(LIGHT_USE_RIM) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; #endif } if (roughness > 0.0) { #if defined(SPECULAR_SCHLICK_GGX) vec3 specular_brdf_NL = vec3(0.0); #else float specular_brdf_NL = 0.0; #endif #if defined(SPECULAR_BLINN) //normalized blinn float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); #elif defined(SPECULAR_PHONG) vec3 R = normalize(-reflect(L, N)); float cRdotV = max(0.0, dot(R, V)); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float phong = pow(cRdotV, shininess); phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); #elif defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; #elif defined(SPECULAR_DISABLED) // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default #if defined(LIGHT_USE_ANISOTROPY) float alpha = roughness * roughness; float aspect = sqrt(1.0 - anisotropy * 0.9); float ax = alpha / aspect; float ay = alpha * aspect; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH, cNdotH); //float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); float G = V_GGX_anisotropic(ax, ay, dot(T, V), dot(T, L), dot(B, V), dot(B, L), cNdotV, cNdotL); #else float alpha = roughness * roughness; float D = D_GGX(cNdotH, alpha); //float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha); float G = V_GGX(cNdotL, cNdotV, alpha); #endif // F vec3 f0 = F0(metallic, specular, diffuse_color); float cLdotH5 = SchlickFresnel(cLdotH); vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); specular_brdf_NL = cNdotL * D * F * G; #endif SRGB_APPROX(specular_brdf_NL) specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; #if defined(LIGHT_USE_CLEARCOAT) #if !defined(SPECULAR_SCHLICK_GGX) float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); float Fr = mix(.04, 1.0, cLdotH5); //float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); float Gr = V_GGX(cNdotL, cNdotV, 0.25); float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation; #endif } #endif //defined(USE_LIGHT_SHADER_CODE) } #endif // shadows #ifdef USE_SHADOW #define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, texture2D(p_shadow, p_pos).r) #define SAMPLE_SHADOW_TEXEL_PROJ(p_shadow, p_pos) step(p_pos.z, texture2DProj(p_shadow, p_pos).r) float sample_shadow(highp sampler2D shadow, highp vec4 spos) { #ifdef SHADOW_MODE_PCF_13 spos.xyz /= spos.w; vec2 pos = spos.xy; float depth = spos.z; float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth); return avg * (1.0 / 13.0); #endif #ifdef SHADOW_MODE_PCF_5 spos.xyz /= spos.w; vec2 pos = spos.xy; float depth = spos.z; float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); return avg * (1.0 / 5.0); #endif #if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13) return SAMPLE_SHADOW_TEXEL_PROJ(shadow, spos); #endif } #endif #if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) #if defined(USE_VERTEX_LIGHTING) varying vec4 fog_interp; #else uniform mediump vec4 fog_color_base; #ifdef LIGHT_MODE_DIRECTIONAL uniform mediump vec4 fog_sun_color_amount; #endif uniform bool fog_transmit_enabled; uniform mediump float fog_transmit_curve; #ifdef FOG_DEPTH_ENABLED uniform highp float fog_depth_begin; uniform mediump float fog_depth_curve; uniform mediump float fog_max_distance; #endif #ifdef FOG_HEIGHT_ENABLED uniform highp float fog_height_min; uniform highp float fog_height_max; uniform mediump float fog_height_curve; #endif #endif //vertex lit #endif //fog void main() { #ifdef RENDER_DEPTH_DUAL_PARABOLOID if (dp_clip > 0.0) discard; #endif highp vec3 vertex = vertex_interp; vec3 view = -normalize(vertex_interp); vec3 albedo = vec3(1.0); vec3 transmission = vec3(0.0); float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); float sss_strength = 0.0; //unused float alpha = 1.0; float side = 1.0; float specular_blob_intensity = 1.0; #if defined(SPECULAR_TOON) specular_blob_intensity *= specular * 2.0; #endif #if defined(ENABLE_AO) float ao = 1.0; float ao_light_affect = 0.0; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) vec3 binormal = normalize(binormal_interp) * side; vec3 tangent = normalize(tangent_interp) * side; #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif vec3 normal = normalize(normal_interp) * side; #if defined(ENABLE_NORMALMAP) vec3 normalmap = vec3(0.5); #endif float normaldepth = 1.0; #if defined(ALPHA_SCISSOR_USED) float alpha_scissor = 0.5; #endif #if defined(SCREEN_UV_USED) vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif { /* clang-format off */ FRAGMENT_SHADER_CODE /* clang-format on */ } #if defined(ENABLE_NORMALMAP) normalmap.xy = normalmap.xy * 2.0 - 1.0; normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; //normal = normalmap; #endif normal = normalize(normal); vec3 N = normal; vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); vec3 eye_position = view; #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif #ifdef USE_DEPTH_PREPASS if (alpha < 0.99) { discard; } #endif #ifdef BASE_PASS //none #ifdef USE_RADIANCE_MAP vec3 ref_vec = reflect(-eye_position, N); ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); ref_vec.z *= -1.0; specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy; { vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy; ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution); } #else ambient_light = ambient_color.rgb; #endif ambient_light *= ambient_energy; #if defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) vec4 ambient_accum = vec4(0.0); vec4 reflection_accum = vec4(0.0); #ifdef USE_REFLECTION_PROBE1 reflection_process(reflection_probe1, #ifdef USE_VERTEX_LIGHTING refprobe1_reflection_normal_blend.rgb, #ifndef USE_LIGHTMAP refprobe1_ambient_normal, #endif refprobe1_reflection_normal_blend.a, #else normal_interp, vertex_interp, refprobe1_local_matrix, refprobe1_use_box_project, refprobe1_box_extents, refprobe1_box_offset, #endif refprobe1_exterior, refprobe1_intensity, refprobe1_ambient, roughness, ambient_light, specular_light, reflection_accum, ambient_accum); #endif // USE_REFLECTION_PROBE1 #ifdef USE_REFLECTION_PROBE2 reflection_process(reflection_probe2, #ifdef USE_VERTEX_LIGHTING refprobe2_reflection_normal_blend.rgb, #ifndef USE_LIGHTMAP refprobe2_ambient_normal, #endif refprobe2_reflection_normal_blend.a, #else normal_interp, vertex_interp, refprobe2_local_matrix, refprobe2_use_box_project, refprobe2_box_extents, refprobe2_box_offset, #endif refprobe2_exterior, refprobe2_intensity, refprobe2_ambient, roughness, ambient_light, specular_light, reflection_accum, ambient_accum); #endif // USE_REFLECTION_PROBE2 if (reflection_accum.a > 0.0) { specular_light = reflection_accum.rgb / reflection_accum.a; } #ifndef USE_LIGHTMAP if (ambient_accum.a > 0.0) { ambient_light = ambient_accum.rgb / ambient_accum.a; } #endif #endif // defined(USE_REFLECTION_PROBE1) || defined(USE_REFLECTION_PROBE2) #ifdef USE_LIGHTMAP //ambient light will come entirely from lightmap is lightmap is used ambient_light = texture2D(lightmap, uv2_interp).rgb * lightmap_energy; #endif #ifdef USE_LIGHTMAP_CAPTURE { vec3 cone_dirs[12] = vec3[]( vec3(0, 0, 1), vec3(0.866025, 0, 0.5), vec3(0.267617, 0.823639, 0.5), vec3(-0.700629, 0.509037, 0.5), vec3(-0.700629, -0.509037, 0.5), vec3(0.267617, -0.823639, 0.5), vec3(0, 0, -1), vec3(0.866025, 0, -0.5), vec3(0.267617, 0.823639, -0.5), vec3(-0.700629, 0.509037, -0.5), vec3(-0.700629, -0.509037, -0.5), vec3(0.267617, -0.823639, -0.5)); vec3 local_normal = normalize(camera_matrix * vec4(normal, 0.0)).xyz; vec4 captured = vec4(0.0); float sum = 0.0; for (int i = 0; i < 12; i++) { float amount = max(0.0, dot(local_normal, cone_dirs[i])); //not correct, but creates a nice wrap around effect captured += lightmap_captures[i] * amount; sum += amount; } captured /= sum; if (lightmap_capture_sky) { ambient_light = mix(ambient_light, captured.rgb, captured.a); } else { ambient_light = captured.rgb; } } #endif #endif //BASE PASS // // Lighting // #ifdef USE_LIGHTING #ifndef USE_VERTEX_LIGHTING vec3 L; #endif vec3 light_att = vec3(1.0); #ifdef LIGHT_MODE_OMNI #ifndef USE_VERTEX_LIGHTING vec3 light_vec = light_position - vertex; float light_length = length(light_vec); float normalized_distance = light_length / light_range; if (normalized_distance < 1.0) { float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation); light_att = vec3(omni_attenuation); } else { light_att = vec3(0.0); } L = normalize(light_vec); #endif #ifdef USE_SHADOW { highp vec4 splane = shadow_coord; float shadow_len = length(splane.xyz); splane.xyz = normalize(splane.xyz); vec4 clamp_rect = light_clamp; if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len / light_range; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; splane.w = 1.0; float shadow = sample_shadow(light_shadow_atlas, splane); light_att *= shadow; } #endif #endif //type omni #ifdef LIGHT_MODE_DIRECTIONAL #ifndef USE_VERTEX_LIGHTING vec3 light_vec = -light_direction; L = normalize(light_vec); #endif float depth_z = -vertex.z; #ifdef USE_SHADOW #ifdef USE_VERTEX_LIGHTING //compute shadows in a mobile friendly way #ifdef LIGHT_USE_PSSM4 //take advantage of prefetch float shadow1 = sample_shadow(light_directional_shadow, shadow_coord); float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2); float shadow3 = sample_shadow(light_directional_shadow, shadow_coord3); float shadow4 = sample_shadow(light_directional_shadow, shadow_coord4); if (depth_z < light_split_offsets.w) { float pssm_fade = 0.0; float shadow_att = 1.0; #ifdef LIGHT_USE_PSSM_BLEND float shadow_att2 = 1.0; float pssm_blend = 0.0; bool use_blend = true; #endif if (depth_z < light_split_offsets.y) { if (depth_z < light_split_offsets.x) { shadow_att = shadow1; #ifdef LIGHT_USE_PSSM_BLEND shadow_att2 = shadow2; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { shadow_att = shadow2; #ifdef LIGHT_USE_PSSM_BLEND shadow_att2 = shadow3; pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #endif } } else { if (depth_z < light_split_offsets.z) { shadow_att = shadow3; #if defined(LIGHT_USE_PSSM_BLEND) shadow_att2 = shadow4; pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); #endif } else { shadow_att = shadow4; pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) use_blend = false; #endif } } #if defined(LIGHT_USE_PSSM_BLEND) if (use_blend) { shadow_att = mix(shadow_att, shadow_att2, pssm_blend); } #endif light_att *= shadow_att; } #endif //LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 //take advantage of prefetch float shadow1 = sample_shadow(light_directional_shadow, shadow_coord); float shadow2 = sample_shadow(light_directional_shadow, shadow_coord2); if (depth_z < light_split_offsets.y) { float shadow_att = 1.0; float pssm_fade = 0.0; #ifdef LIGHT_USE_PSSM_BLEND float shadow_att2 = 1.0; float pssm_blend = 0.0; bool use_blend = true; #endif if (depth_z < light_split_offsets.x) { float pssm_fade = 0.0; shadow_att = shadow1; #ifdef LIGHT_USE_PSSM_BLEND shadow_att2 = shadow2; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { shadow_att = shadow2; pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #ifdef LIGHT_USE_PSSM_BLEND use_blend = false; #endif } #ifdef LIGHT_USE_PSSM_BLEND if (use_blend) { shadow_att = mix(shadow_att, shadow_att2, pssm_blend); } #endif light_att *= shadow_att; } #endif //LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) light_att *= sample_shadow(light_directional_shadow, shadow_coord); #endif //orthogonal #else //fragment version of pssm { #ifdef LIGHT_USE_PSSM4 if (depth_z < light_split_offsets.w) { #elif defined(LIGHT_USE_PSSM2) if (depth_z < light_split_offsets.y) { #else if (depth_z < light_split_offsets.x) { #endif //pssm2 highp vec4 pssm_coord; float pssm_fade = 0.0; #ifdef LIGHT_USE_PSSM_BLEND float pssm_blend; highp vec4 pssm_coord2; bool use_blend = true; #endif #ifdef LIGHT_USE_PSSM4 if (depth_z < light_split_offsets.y) { if (depth_z < light_split_offsets.x) { pssm_coord = shadow_coord; #ifdef LIGHT_USE_PSSM_BLEND pssm_coord2 = shadow_coord2; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { pssm_coord = shadow_coord2; #ifdef LIGHT_USE_PSSM_BLEND pssm_coord2 = shadow_coord3; pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #endif } } else { if (depth_z < light_split_offsets.z) { pssm_coord = shadow_coord3; #if defined(LIGHT_USE_PSSM_BLEND) pssm_coord2 = shadow_coord4; pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); #endif } else { pssm_coord = shadow_coord4; pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) use_blend = false; #endif } } #endif // LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 if (depth_z < light_split_offsets.x) { pssm_coord = shadow_coord; #ifdef LIGHT_USE_PSSM_BLEND pssm_coord2 = shadow_coord2; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { pssm_coord = shadow_coord2; pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #ifdef LIGHT_USE_PSSM_BLEND use_blend = false; #endif } #endif // LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) { pssm_coord = shadow_coord; } #endif float shadow = sample_shadow(light_directional_shadow, pssm_coord); #ifdef LIGHT_USE_PSSM_BLEND if (use_blend) { shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2), pssm_blend); } #endif light_att *= shadow; } } #endif //use vertex lighting #endif //use shadow #endif #ifdef LIGHT_MODE_SPOT light_att = vec3(1.0); #ifndef USE_VERTEX_LIGHTING vec3 light_rel_vec = light_position - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length / light_range; if (normalized_distance < 1.0) { float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation); vec3 spot_dir = light_direction; float spot_cutoff = light_spot_angle; float angle = dot(-normalize(light_rel_vec), spot_dir); if (angle > spot_cutoff) { float scos = max(angle, spot_cutoff); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); light_att = vec3(spot_attenuation); } else { light_att = vec3(0.0); } } else { light_att = vec3(0.0); } L = normalize(light_rel_vec); #endif #ifdef USE_SHADOW { highp vec4 splane = shadow_coord; float shadow = sample_shadow(light_shadow_atlas, splane); light_att *= shadow; } #endif #endif // LIGHT_MODE_SPOT #ifdef USE_VERTEX_LIGHTING //vertex lighting specular_light += specular_interp * specular_blob_intensity * light_att; diffuse_light += diffuse_interp * albedo * light_att; #else //fragment lighting light_compute( normal, L, eye_position, binormal, tangent, light_color.xyz, light_att, albedo, transmission, specular_blob_intensity * light_specular, roughness, metallic, specular, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); #endif //vertex lighting #endif //USE_LIGHTING //compute and merge #ifndef RENDER_DEPTH #ifdef SHADELESS gl_FragColor = vec4(albedo, alpha); #else ambient_light *= albedo; #if defined(ENABLE_AO) ambient_light *= ao; ao_light_affect = mix(1.0, ao, ao_light_affect); specular_light *= ao_light_affect; diffuse_light *= ao_light_affect; #endif diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; // environment BRDF approximation { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else //TODO: this curve is not really designed for gammaspace, should be adjusted const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; vec3 f0 = F0(metallic, specular, albedo); specular_light *= env.x * f0 + env.y; #endif } gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); //add emission if in base pass #ifdef BASE_PASS gl_FragColor.rgb += emission; #endif // gl_FragColor = vec4(normal, 1.0); #endif //unshaded //apply fog #if defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) #if defined(USE_VERTEX_LIGHTING) #if defined(BASE_PASS) gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_interp.rgb, fog_interp.a); #else gl_FragColor.rgb *= (1.0 - fog_interp.a); #endif // BASE_PASS #else //pixel based fog float fog_amount = 0.0; #ifdef LIGHT_MODE_DIRECTIONAL vec3 fog_color = mix(fog_color_base.rgb, fog_sun_color_amount.rgb, fog_sun_color_amount.a * pow(max(dot(eye_position, light_direction), 0.0), 8.0)); #else vec3 fog_color = fog_color_base.rgb; #endif #ifdef FOG_DEPTH_ENABLED { float fog_z = smoothstep(fog_depth_begin, fog_max_distance, length(vertex)); fog_amount = pow(fog_z, fog_depth_curve) * fog_color_base.a; if (fog_transmit_enabled) { vec3 total_light = gl_FragColor.rgb; float transmit = pow(fog_z, fog_transmit_curve); fog_color = mix(max(total_light, fog_color), fog_color, transmit); } } #endif #ifdef FOG_HEIGHT_ENABLED { float y = (camera_matrix * vec4(vertex, 1.0)).y; fog_amount = max(fog_amount, pow(smoothstep(fog_height_min, fog_height_max, y), fog_height_curve)); } #endif #if defined(BASE_PASS) gl_FragColor.rgb = mix(gl_FragColor.rgb, fog_color, fog_amount); #else gl_FragColor.rgb *= (1.0 - fog_amount); #endif // BASE_PASS #endif //use vertex lit #endif // defined(FOG_DEPTH_ENABLED) || defined(FOG_HEIGHT_ENABLED) #endif // not RENDER_DEPTH }