/**************************************************************************/ /* shader_compiler.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "shader_compiler.h" #include "core/config/project_settings.h" #include "core/os/os.h" #include "servers/rendering/rendering_server_globals.h" #include "servers/rendering/shader_types.h" #define SL ShaderLanguage static String _mktab(int p_level) { return String("\t").repeat(p_level); } static String _typestr(SL::DataType p_type) { String type = ShaderLanguage::get_datatype_name(p_type); if (!RS::get_singleton()->is_low_end() && ShaderLanguage::is_sampler_type(p_type)) { type = type.replace("sampler", "texture"); //we use textures instead of samplers in Vulkan GLSL } return type; } static int _get_datatype_alignment(SL::DataType p_type) { switch (p_type) { case SL::TYPE_VOID: return 0; case SL::TYPE_BOOL: return 4; case SL::TYPE_BVEC2: return 8; case SL::TYPE_BVEC3: return 16; case SL::TYPE_BVEC4: return 16; case SL::TYPE_INT: return 4; case SL::TYPE_IVEC2: return 8; case SL::TYPE_IVEC3: return 16; case SL::TYPE_IVEC4: return 16; case SL::TYPE_UINT: return 4; case SL::TYPE_UVEC2: return 8; case SL::TYPE_UVEC3: return 16; case SL::TYPE_UVEC4: return 16; case SL::TYPE_FLOAT: return 4; case SL::TYPE_VEC2: return 8; case SL::TYPE_VEC3: return 16; case SL::TYPE_VEC4: return 16; case SL::TYPE_MAT2: return 16; case SL::TYPE_MAT3: return 16; case SL::TYPE_MAT4: return 16; case SL::TYPE_SAMPLER2D: return 16; case SL::TYPE_ISAMPLER2D: return 16; case SL::TYPE_USAMPLER2D: return 16; case SL::TYPE_SAMPLER2DARRAY: return 16; case SL::TYPE_ISAMPLER2DARRAY: return 16; case SL::TYPE_USAMPLER2DARRAY: return 16; case SL::TYPE_SAMPLER3D: return 16; case SL::TYPE_ISAMPLER3D: return 16; case SL::TYPE_USAMPLER3D: return 16; case SL::TYPE_SAMPLERCUBE: return 16; case SL::TYPE_SAMPLERCUBEARRAY: return 16; case SL::TYPE_STRUCT: return 0; case SL::TYPE_MAX: { ERR_FAIL_V(0); } } ERR_FAIL_V(0); } static String _interpstr(SL::DataInterpolation p_interp) { switch (p_interp) { case SL::INTERPOLATION_FLAT: return "flat "; case SL::INTERPOLATION_SMOOTH: return ""; case SL::INTERPOLATION_DEFAULT: return ""; } return ""; } static String _prestr(SL::DataPrecision p_pres, bool p_force_highp = false) { switch (p_pres) { case SL::PRECISION_LOWP: return "lowp "; case SL::PRECISION_MEDIUMP: return "mediump "; case SL::PRECISION_HIGHP: return "highp "; case SL::PRECISION_DEFAULT: return p_force_highp ? "highp " : ""; } return ""; } static String _constr(bool p_is_const) { if (p_is_const) { return "const "; } return ""; } static String _qualstr(SL::ArgumentQualifier p_qual) { switch (p_qual) { case SL::ARGUMENT_QUALIFIER_IN: return ""; case SL::ARGUMENT_QUALIFIER_OUT: return "out "; case SL::ARGUMENT_QUALIFIER_INOUT: return "inout "; } return ""; } static String _opstr(SL::Operator p_op) { return SL::get_operator_text(p_op); } static String _mkid(const String &p_id) { String id = "m_" + p_id.replace("__", "_dus_"); return id.replace("__", "_dus_"); //doubleunderscore is reserved in glsl } static String f2sp0(float p_float) { String num = rtos(p_float); if (!num.contains(".") && !num.contains("e")) { num += ".0"; } return num; } static String get_constant_text(SL::DataType p_type, const Vector &p_values) { switch (p_type) { case SL::TYPE_BOOL: return p_values[0].boolean ? "true" : "false"; case SL::TYPE_BVEC2: case SL::TYPE_BVEC3: case SL::TYPE_BVEC4: { String text = "bvec" + itos(p_type - SL::TYPE_BOOL + 1) + "("; for (int i = 0; i < p_values.size(); i++) { if (i > 0) { text += ","; } text += p_values[i].boolean ? "true" : "false"; } text += ")"; return text; } case SL::TYPE_INT: return itos(p_values[0].sint); case SL::TYPE_IVEC2: case SL::TYPE_IVEC3: case SL::TYPE_IVEC4: { String text = "ivec" + itos(p_type - SL::TYPE_INT + 1) + "("; for (int i = 0; i < p_values.size(); i++) { if (i > 0) { text += ","; } text += itos(p_values[i].sint); } text += ")"; return text; } break; case SL::TYPE_UINT: return itos(p_values[0].uint) + "u"; case SL::TYPE_UVEC2: case SL::TYPE_UVEC3: case SL::TYPE_UVEC4: { String text = "uvec" + itos(p_type - SL::TYPE_UINT + 1) + "("; for (int i = 0; i < p_values.size(); i++) { if (i > 0) { text += ","; } text += itos(p_values[i].uint) + "u"; } text += ")"; return text; } break; case SL::TYPE_FLOAT: return f2sp0(p_values[0].real); case SL::TYPE_VEC2: case SL::TYPE_VEC3: case SL::TYPE_VEC4: { String text = "vec" + itos(p_type - SL::TYPE_FLOAT + 1) + "("; for (int i = 0; i < p_values.size(); i++) { if (i > 0) { text += ","; } text += f2sp0(p_values[i].real); } text += ")"; return text; } break; case SL::TYPE_MAT2: case SL::TYPE_MAT3: case SL::TYPE_MAT4: { String text = "mat" + itos(p_type - SL::TYPE_MAT2 + 2) + "("; for (int i = 0; i < p_values.size(); i++) { if (i > 0) { text += ","; } text += f2sp0(p_values[i].real); } text += ")"; return text; } break; default: ERR_FAIL_V(String()); } } String ShaderCompiler::_get_sampler_name(ShaderLanguage::TextureFilter p_filter, ShaderLanguage::TextureRepeat p_repeat) { if (p_filter == ShaderLanguage::FILTER_DEFAULT) { ERR_FAIL_COND_V(actions.default_filter == ShaderLanguage::FILTER_DEFAULT, String()); p_filter = actions.default_filter; } if (p_repeat == ShaderLanguage::REPEAT_DEFAULT) { ERR_FAIL_COND_V(actions.default_repeat == ShaderLanguage::REPEAT_DEFAULT, String()); p_repeat = actions.default_repeat; } constexpr const char *name_mapping[] = { "SAMPLER_NEAREST_CLAMP", "SAMPLER_LINEAR_CLAMP", "SAMPLER_NEAREST_WITH_MIPMAPS_CLAMP", "SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP", "SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_CLAMP", "SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_CLAMP", "SAMPLER_NEAREST_REPEAT", "SAMPLER_LINEAR_REPEAT", "SAMPLER_NEAREST_WITH_MIPMAPS_REPEAT", "SAMPLER_LINEAR_WITH_MIPMAPS_REPEAT", "SAMPLER_NEAREST_WITH_MIPMAPS_ANISOTROPIC_REPEAT", "SAMPLER_LINEAR_WITH_MIPMAPS_ANISOTROPIC_REPEAT" }; return String(name_mapping[p_filter + (p_repeat == ShaderLanguage::REPEAT_ENABLE ? ShaderLanguage::FILTER_DEFAULT : 0)]); } void ShaderCompiler::_dump_function_deps(const SL::ShaderNode *p_node, const StringName &p_for_func, const HashMap &p_func_code, String &r_to_add, HashSet &added) { int fidx = -1; for (int i = 0; i < p_node->functions.size(); i++) { if (p_node->functions[i].name == p_for_func) { fidx = i; break; } } ERR_FAIL_COND(fidx == -1); Vector uses_functions; for (const StringName &E : p_node->functions[fidx].uses_function) { uses_functions.push_back(E); } uses_functions.sort_custom(); //ensure order is deterministic so the same shader is always produced for (int k = 0; k < uses_functions.size(); k++) { if (added.has(uses_functions[k])) { continue; //was added already } _dump_function_deps(p_node, uses_functions[k], p_func_code, r_to_add, added); SL::FunctionNode *fnode = nullptr; for (int i = 0; i < p_node->functions.size(); i++) { if (p_node->functions[i].name == uses_functions[k]) { fnode = p_node->functions[i].function; break; } } ERR_FAIL_COND(!fnode); r_to_add += "\n"; String header; if (fnode->return_type == SL::TYPE_STRUCT) { header = _mkid(fnode->return_struct_name); } else { header = _typestr(fnode->return_type); } if (fnode->return_array_size > 0) { header += "["; header += itos(fnode->return_array_size); header += "]"; } header += " "; header += _mkid(fnode->name); header += "("; for (int i = 0; i < fnode->arguments.size(); i++) { if (i > 0) { header += ", "; } header += _constr(fnode->arguments[i].is_const); if (fnode->arguments[i].type == SL::TYPE_STRUCT) { header += _qualstr(fnode->arguments[i].qualifier) + _mkid(fnode->arguments[i].type_str) + " " + _mkid(fnode->arguments[i].name); } else { header += _qualstr(fnode->arguments[i].qualifier) + _prestr(fnode->arguments[i].precision) + _typestr(fnode->arguments[i].type) + " " + _mkid(fnode->arguments[i].name); } if (fnode->arguments[i].array_size > 0) { header += "["; header += itos(fnode->arguments[i].array_size); header += "]"; } } header += ")\n"; r_to_add += header; r_to_add += p_func_code[uses_functions[k]]; added.insert(uses_functions[k]); } } static String _get_global_shader_uniform_from_type_and_index(const String &p_buffer, const String &p_index, ShaderLanguage::DataType p_type) { switch (p_type) { case ShaderLanguage::TYPE_BOOL: { return "bool(floatBitsToUint(" + p_buffer + "[" + p_index + "].x))"; } case ShaderLanguage::TYPE_BVEC2: { return "bvec2(floatBitsToUint(" + p_buffer + "[" + p_index + "].xy))"; } case ShaderLanguage::TYPE_BVEC3: { return "bvec3(floatBitsToUint(" + p_buffer + "[" + p_index + "].xyz))"; } case ShaderLanguage::TYPE_BVEC4: { return "bvec4(floatBitsToUint(" + p_buffer + "[" + p_index + "].xyzw))"; } case ShaderLanguage::TYPE_INT: { return "floatBitsToInt(" + p_buffer + "[" + p_index + "].x)"; } case ShaderLanguage::TYPE_IVEC2: { return "floatBitsToInt(" + p_buffer + "[" + p_index + "].xy)"; } case ShaderLanguage::TYPE_IVEC3: { return "floatBitsToInt(" + p_buffer + "[" + p_index + "].xyz)"; } case ShaderLanguage::TYPE_IVEC4: { return "floatBitsToInt(" + p_buffer + "[" + p_index + "].xyzw)"; } case ShaderLanguage::TYPE_UINT: { return "floatBitsToUint(" + p_buffer + "[" + p_index + "].x)"; } case ShaderLanguage::TYPE_UVEC2: { return "floatBitsToUint(" + p_buffer + "[" + p_index + "].xy)"; } case ShaderLanguage::TYPE_UVEC3: { return "floatBitsToUint(" + p_buffer + "[" + p_index + "].xyz)"; } case ShaderLanguage::TYPE_UVEC4: { return "floatBitsToUint(" + p_buffer + "[" + p_index + "].xyzw)"; } case ShaderLanguage::TYPE_FLOAT: { return "(" + p_buffer + "[" + p_index + "].x)"; } case ShaderLanguage::TYPE_VEC2: { return "(" + p_buffer + "[" + p_index + "].xy)"; } case ShaderLanguage::TYPE_VEC3: { return "(" + p_buffer + "[" + p_index + "].xyz)"; } case ShaderLanguage::TYPE_VEC4: { return "(" + p_buffer + "[" + p_index + "].xyzw)"; } case ShaderLanguage::TYPE_MAT2: { return "mat2(" + p_buffer + "[" + p_index + "].xy," + p_buffer + "[" + p_index + "+1].xy)"; } case ShaderLanguage::TYPE_MAT3: { return "mat3(" + p_buffer + "[" + p_index + "].xyz," + p_buffer + "[" + p_index + "+1].xyz," + p_buffer + "[" + p_index + "+2].xyz)"; } case ShaderLanguage::TYPE_MAT4: { return "mat4(" + p_buffer + "[" + p_index + "].xyzw," + p_buffer + "[" + p_index + "+1].xyzw," + p_buffer + "[" + p_index + "+2].xyzw," + p_buffer + "[" + p_index + "+3].xyzw)"; } default: { ERR_FAIL_V("void"); } } } String ShaderCompiler::_dump_node_code(const SL::Node *p_node, int p_level, GeneratedCode &r_gen_code, IdentifierActions &p_actions, const DefaultIdentifierActions &p_default_actions, bool p_assigning, bool p_use_scope) { String code; switch (p_node->type) { case SL::Node::NODE_TYPE_SHADER: { SL::ShaderNode *pnode = (SL::ShaderNode *)p_node; for (int i = 0; i < pnode->render_modes.size(); i++) { if (p_default_actions.render_mode_defines.has(pnode->render_modes[i]) && !used_rmode_defines.has(pnode->render_modes[i])) { r_gen_code.defines.push_back(p_default_actions.render_mode_defines[pnode->render_modes[i]]); used_rmode_defines.insert(pnode->render_modes[i]); } if (p_actions.render_mode_flags.has(pnode->render_modes[i])) { *p_actions.render_mode_flags[pnode->render_modes[i]] = true; } if (p_actions.render_mode_values.has(pnode->render_modes[i])) { Pair &p = p_actions.render_mode_values[pnode->render_modes[i]]; *p.first = p.second; } } // structs for (int i = 0; i < pnode->vstructs.size(); i++) { SL::StructNode *st = pnode->vstructs[i].shader_struct; String struct_code; struct_code += "struct "; struct_code += _mkid(pnode->vstructs[i].name); struct_code += " "; struct_code += "{\n"; for (int j = 0; j < st->members.size(); j++) { SL::MemberNode *m = st->members[j]; if (m->datatype == SL::TYPE_STRUCT) { struct_code += _mkid(m->struct_name); } else { struct_code += _prestr(m->precision); struct_code += _typestr(m->datatype); } struct_code += " "; struct_code += m->name; if (m->array_size > 0) { struct_code += "["; struct_code += itos(m->array_size); struct_code += "]"; } struct_code += ";\n"; } struct_code += "}"; struct_code += ";\n"; for (int j = 0; j < STAGE_MAX; j++) { r_gen_code.stage_globals[j] += struct_code; } } int max_texture_uniforms = 0; int max_uniforms = 0; for (const KeyValue &E : pnode->uniforms) { if (SL::is_sampler_type(E.value.type)) { if (E.value.hint == SL::ShaderNode::Uniform::HINT_SCREEN_TEXTURE || E.value.hint == SL::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE || E.value.hint == SL::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) { continue; // Don't create uniforms in the generated code for these. } max_texture_uniforms++; } else { if (E.value.scope == SL::ShaderNode::Uniform::SCOPE_INSTANCE) { continue; // Instances are indexed directly, don't need index uniforms. } max_uniforms++; } } r_gen_code.texture_uniforms.resize(max_texture_uniforms); Vector uniform_sizes; Vector uniform_alignments; Vector uniform_defines; uniform_sizes.resize(max_uniforms); uniform_alignments.resize(max_uniforms); uniform_defines.resize(max_uniforms); bool uses_uniforms = false; Vector uniform_names; for (const KeyValue &E : pnode->uniforms) { uniform_names.push_back(E.key); } uniform_names.sort_custom(); //ensure order is deterministic so the same shader is always produced for (int k = 0; k < uniform_names.size(); k++) { StringName uniform_name = uniform_names[k]; const SL::ShaderNode::Uniform &uniform = pnode->uniforms[uniform_name]; String ucode; if (uniform.scope == SL::ShaderNode::Uniform::SCOPE_INSTANCE) { //insert, but don't generate any code. p_actions.uniforms->insert(uniform_name, uniform); continue; // Instances are indexed directly, don't need index uniforms. } if (uniform.hint == SL::ShaderNode::Uniform::HINT_SCREEN_TEXTURE || uniform.hint == SL::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE || uniform.hint == SL::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) { continue; // Don't create uniforms in the generated code for these. } if (SL::is_sampler_type(uniform.type)) { // Texture layouts are different for OpenGL GLSL and Vulkan GLSL if (!RS::get_singleton()->is_low_end()) { ucode = "layout(set = " + itos(actions.texture_layout_set) + ", binding = " + itos(actions.base_texture_binding_index + uniform.texture_binding) + ") "; } ucode += "uniform "; } bool is_buffer_global = !SL::is_sampler_type(uniform.type) && uniform.scope == SL::ShaderNode::Uniform::SCOPE_GLOBAL; if (is_buffer_global) { //this is an integer to index the global table ucode += _typestr(ShaderLanguage::TYPE_UINT); } else { ucode += _prestr(uniform.precision, ShaderLanguage::is_float_type(uniform.type)); ucode += _typestr(uniform.type); } ucode += " " + _mkid(uniform_name); if (uniform.array_size > 0) { ucode += "["; ucode += itos(uniform.array_size); ucode += "]"; } ucode += ";\n"; if (SL::is_sampler_type(uniform.type)) { for (int j = 0; j < STAGE_MAX; j++) { r_gen_code.stage_globals[j] += ucode; } GeneratedCode::Texture texture; texture.name = uniform_name; texture.hint = uniform.hint; texture.type = uniform.type; texture.use_color = uniform.use_color; texture.filter = uniform.filter; texture.repeat = uniform.repeat; texture.global = uniform.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL; texture.array_size = uniform.array_size; if (texture.global) { r_gen_code.uses_global_textures = true; } r_gen_code.texture_uniforms.write[uniform.texture_order] = texture; } else { if (!uses_uniforms) { uses_uniforms = true; } uniform_defines.write[uniform.order] = ucode; if (is_buffer_global) { //globals are indices into the global table uniform_sizes.write[uniform.order] = ShaderLanguage::get_datatype_size(ShaderLanguage::TYPE_UINT); uniform_alignments.write[uniform.order] = _get_datatype_alignment(ShaderLanguage::TYPE_UINT); } else { // The following code enforces a 16-byte alignment of uniform arrays. if (uniform.array_size > 0) { int size = ShaderLanguage::get_datatype_size(uniform.type) * uniform.array_size; int m = (16 * uniform.array_size); if ((size % m) != 0) { size += m - (size % m); } uniform_sizes.write[uniform.order] = size; uniform_alignments.write[uniform.order] = 16; } else { uniform_sizes.write[uniform.order] = ShaderLanguage::get_datatype_size(uniform.type); uniform_alignments.write[uniform.order] = _get_datatype_alignment(uniform.type); } } } p_actions.uniforms->insert(uniform_name, uniform); } for (int i = 0; i < max_uniforms; i++) { r_gen_code.uniforms += uniform_defines[i]; } // add up int offset = 0; for (int i = 0; i < uniform_sizes.size(); i++) { int align = offset % uniform_alignments[i]; if (align != 0) { offset += uniform_alignments[i] - align; } r_gen_code.uniform_offsets.push_back(offset); offset += uniform_sizes[i]; } r_gen_code.uniform_total_size = offset; if (r_gen_code.uniform_total_size % 16 != 0) { //UBO sizes must be multiples of 16 r_gen_code.uniform_total_size += 16 - (r_gen_code.uniform_total_size % 16); } uint32_t index = p_default_actions.base_varying_index; List> var_frag_to_light; Vector varying_names; for (const KeyValue &E : pnode->varyings) { varying_names.push_back(E.key); } varying_names.sort_custom(); //ensure order is deterministic so the same shader is always produced for (int k = 0; k < varying_names.size(); k++) { StringName varying_name = varying_names[k]; const SL::ShaderNode::Varying &varying = pnode->varyings[varying_name]; if (varying.stage == SL::ShaderNode::Varying::STAGE_FRAGMENT_TO_LIGHT || varying.stage == SL::ShaderNode::Varying::STAGE_FRAGMENT) { var_frag_to_light.push_back(Pair(varying_name, varying)); fragment_varyings.insert(varying_name); continue; } if (varying.type < SL::TYPE_INT) { continue; // Ignore boolean types to prevent crashing (if varying is just declared). } String vcode; String interp_mode = _interpstr(varying.interpolation); vcode += _prestr(varying.precision, ShaderLanguage::is_float_type(varying.type)); vcode += _typestr(varying.type); vcode += " " + _mkid(varying_name); uint32_t inc = 1U; if (varying.array_size > 0) { inc = (uint32_t)varying.array_size; vcode += "["; vcode += itos(varying.array_size); vcode += "]"; } switch (varying.type) { case SL::TYPE_MAT2: inc *= 2U; break; case SL::TYPE_MAT3: inc *= 3U; break; case SL::TYPE_MAT4: inc *= 4U; break; default: break; } vcode += ";\n"; // GLSL ES 3.0 does not allow layout qualifiers for varyings if (!RS::get_singleton()->is_low_end()) { r_gen_code.stage_globals[STAGE_VERTEX] += "layout(location=" + itos(index) + ") "; r_gen_code.stage_globals[STAGE_FRAGMENT] += "layout(location=" + itos(index) + ") "; } r_gen_code.stage_globals[STAGE_VERTEX] += interp_mode + "out " + vcode; r_gen_code.stage_globals[STAGE_FRAGMENT] += interp_mode + "in " + vcode; index += inc; } if (var_frag_to_light.size() > 0) { String gcode = "\n\nstruct {\n"; for (const Pair &E : var_frag_to_light) { gcode += "\t" + _prestr(E.second.precision) + _typestr(E.second.type) + " " + _mkid(E.first); if (E.second.array_size > 0) { gcode += "["; gcode += itos(E.second.array_size); gcode += "]"; } gcode += ";\n"; } gcode += "} frag_to_light;\n"; r_gen_code.stage_globals[STAGE_FRAGMENT] += gcode; } for (int i = 0; i < pnode->vconstants.size(); i++) { const SL::ShaderNode::Constant &cnode = pnode->vconstants[i]; String gcode; gcode += _constr(true); gcode += _prestr(cnode.precision, ShaderLanguage::is_float_type(cnode.type)); if (cnode.type == SL::TYPE_STRUCT) { gcode += _mkid(cnode.type_str); } else { gcode += _typestr(cnode.type); } gcode += " " + _mkid(String(cnode.name)); if (cnode.array_size > 0) { gcode += "["; gcode += itos(cnode.array_size); gcode += "]"; } gcode += "="; gcode += _dump_node_code(cnode.initializer, p_level, r_gen_code, p_actions, p_default_actions, p_assigning); gcode += ";\n"; for (int j = 0; j < STAGE_MAX; j++) { r_gen_code.stage_globals[j] += gcode; } } HashMap function_code; //code for functions for (int i = 0; i < pnode->functions.size(); i++) { SL::FunctionNode *fnode = pnode->functions[i].function; function = fnode; current_func_name = fnode->name; function_code[fnode->name] = _dump_node_code(fnode->body, p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); function = nullptr; } //place functions in actual code HashSet added_funcs_per_stage[STAGE_MAX]; for (int i = 0; i < pnode->functions.size(); i++) { SL::FunctionNode *fnode = pnode->functions[i].function; function = fnode; current_func_name = fnode->name; if (p_actions.entry_point_stages.has(fnode->name)) { Stage stage = p_actions.entry_point_stages[fnode->name]; _dump_function_deps(pnode, fnode->name, function_code, r_gen_code.stage_globals[stage], added_funcs_per_stage[stage]); r_gen_code.code[fnode->name] = function_code[fnode->name]; } function = nullptr; } //code+=dump_node_code(pnode->body,p_level); } break; case SL::Node::NODE_TYPE_STRUCT: { } break; case SL::Node::NODE_TYPE_FUNCTION: { } break; case SL::Node::NODE_TYPE_BLOCK: { SL::BlockNode *bnode = (SL::BlockNode *)p_node; //variables if (!bnode->single_statement) { code += _mktab(p_level - 1) + "{\n"; } for (int i = 0; i < bnode->statements.size(); i++) { String scode = _dump_node_code(bnode->statements[i], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); if (bnode->statements[i]->type == SL::Node::NODE_TYPE_CONTROL_FLOW || bnode->single_statement) { code += scode; //use directly if (bnode->use_comma_between_statements && i + 1 < bnode->statements.size()) { code += ","; } } else { code += _mktab(p_level) + scode + ";\n"; } } if (!bnode->single_statement) { code += _mktab(p_level - 1) + "}\n"; } } break; case SL::Node::NODE_TYPE_VARIABLE_DECLARATION: { SL::VariableDeclarationNode *vdnode = (SL::VariableDeclarationNode *)p_node; String declaration; declaration += _constr(vdnode->is_const); if (vdnode->datatype == SL::TYPE_STRUCT) { declaration += _mkid(vdnode->struct_name); } else { declaration += _prestr(vdnode->precision) + _typestr(vdnode->datatype); } declaration += " "; for (int i = 0; i < vdnode->declarations.size(); i++) { bool is_array = vdnode->declarations[i].size > 0; if (i > 0) { declaration += ","; } declaration += _mkid(vdnode->declarations[i].name); if (is_array) { declaration += "["; if (vdnode->declarations[i].size_expression != nullptr) { declaration += _dump_node_code(vdnode->declarations[i].size_expression, p_level, r_gen_code, p_actions, p_default_actions, p_assigning); } else { declaration += itos(vdnode->declarations[i].size); } declaration += "]"; } if (!is_array || vdnode->declarations[i].single_expression) { if (!vdnode->declarations[i].initializer.is_empty()) { declaration += "="; declaration += _dump_node_code(vdnode->declarations[i].initializer[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); } } else { int size = vdnode->declarations[i].initializer.size(); if (size > 0) { declaration += "="; if (vdnode->datatype == SL::TYPE_STRUCT) { declaration += _mkid(vdnode->struct_name); } else { declaration += _typestr(vdnode->datatype); } declaration += "["; declaration += itos(size); declaration += "]"; declaration += "("; for (int j = 0; j < size; j++) { if (j > 0) { declaration += ","; } declaration += _dump_node_code(vdnode->declarations[i].initializer[j], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); } declaration += ")"; } } } code += declaration; } break; case SL::Node::NODE_TYPE_VARIABLE: { SL::VariableNode *vnode = (SL::VariableNode *)p_node; bool use_fragment_varying = false; if (!vnode->is_local && !(p_actions.entry_point_stages.has(current_func_name) && p_actions.entry_point_stages[current_func_name] == STAGE_VERTEX)) { if (p_assigning) { if (shader->varyings.has(vnode->name)) { use_fragment_varying = true; } } else { if (fragment_varyings.has(vnode->name)) { use_fragment_varying = true; } } } if (p_assigning && p_actions.write_flag_pointers.has(vnode->name)) { *p_actions.write_flag_pointers[vnode->name] = true; } if (p_default_actions.usage_defines.has(vnode->name) && !used_name_defines.has(vnode->name)) { String define = p_default_actions.usage_defines[vnode->name]; if (define.begins_with("@")) { define = p_default_actions.usage_defines[define.substr(1, define.length())]; } r_gen_code.defines.push_back(define); used_name_defines.insert(vnode->name); } if (p_actions.usage_flag_pointers.has(vnode->name) && !used_flag_pointers.has(vnode->name)) { *p_actions.usage_flag_pointers[vnode->name] = true; used_flag_pointers.insert(vnode->name); } if (p_default_actions.renames.has(vnode->name)) { code = p_default_actions.renames[vnode->name]; } else { if (shader->uniforms.has(vnode->name)) { //its a uniform! const ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[vnode->name]; if (u.texture_order >= 0) { StringName name; if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_SCREEN_TEXTURE) { name = "color_buffer"; if (u.filter >= ShaderLanguage::FILTER_NEAREST_MIPMAP) { r_gen_code.uses_screen_texture_mipmaps = true; } r_gen_code.uses_screen_texture = true; } else if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE) { name = "normal_roughness_buffer"; r_gen_code.uses_normal_roughness_texture = true; } else if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) { name = "depth_buffer"; r_gen_code.uses_depth_texture = true; } else { name = _mkid(vnode->name); //texture, use as is } code = name; } else { //a scalar or vector if (u.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL) { code = actions.base_uniform_string + _mkid(vnode->name); //texture, use as is //global variable, this means the code points to an index to the global table code = _get_global_shader_uniform_from_type_and_index(p_default_actions.global_buffer_array_variable, code, u.type); } else if (u.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) { //instance variable, index it as such code = "(" + p_default_actions.instance_uniform_index_variable + "+" + itos(u.instance_index) + ")"; code = _get_global_shader_uniform_from_type_and_index(p_default_actions.global_buffer_array_variable, code, u.type); } else { //regular uniform, index from UBO code = actions.base_uniform_string + _mkid(vnode->name); } } } else { if (use_fragment_varying) { code = "frag_to_light."; } code += _mkid(vnode->name); //its something else (local var most likely) use as is } } if (vnode->name == time_name) { if (p_actions.entry_point_stages.has(current_func_name) && p_actions.entry_point_stages[current_func_name] == STAGE_VERTEX) { r_gen_code.uses_vertex_time = true; } if (p_actions.entry_point_stages.has(current_func_name) && p_actions.entry_point_stages[current_func_name] == STAGE_FRAGMENT) { r_gen_code.uses_fragment_time = true; } } } break; case SL::Node::NODE_TYPE_ARRAY_CONSTRUCT: { SL::ArrayConstructNode *acnode = (SL::ArrayConstructNode *)p_node; int sz = acnode->initializer.size(); if (acnode->datatype == SL::TYPE_STRUCT) { code += _mkid(acnode->struct_name); } else { code += _typestr(acnode->datatype); } code += "["; code += itos(acnode->initializer.size()); code += "]"; code += "("; for (int i = 0; i < sz; i++) { code += _dump_node_code(acnode->initializer[i], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); if (i != sz - 1) { code += ", "; } } code += ")"; } break; case SL::Node::NODE_TYPE_ARRAY: { SL::ArrayNode *anode = (SL::ArrayNode *)p_node; bool use_fragment_varying = false; if (!anode->is_local && !(p_actions.entry_point_stages.has(current_func_name) && p_actions.entry_point_stages[current_func_name] == STAGE_VERTEX)) { if (anode->assign_expression != nullptr && shader->varyings.has(anode->name)) { use_fragment_varying = true; } else { if (p_assigning) { if (shader->varyings.has(anode->name)) { use_fragment_varying = true; } } else { if (fragment_varyings.has(anode->name)) { use_fragment_varying = true; } } } } if (p_assigning && p_actions.write_flag_pointers.has(anode->name)) { *p_actions.write_flag_pointers[anode->name] = true; } if (p_default_actions.usage_defines.has(anode->name) && !used_name_defines.has(anode->name)) { String define = p_default_actions.usage_defines[anode->name]; if (define.begins_with("@")) { define = p_default_actions.usage_defines[define.substr(1, define.length())]; } r_gen_code.defines.push_back(define); used_name_defines.insert(anode->name); } if (p_actions.usage_flag_pointers.has(anode->name) && !used_flag_pointers.has(anode->name)) { *p_actions.usage_flag_pointers[anode->name] = true; used_flag_pointers.insert(anode->name); } if (p_default_actions.renames.has(anode->name)) { code = p_default_actions.renames[anode->name]; } else { if (shader->uniforms.has(anode->name)) { //its a uniform! const ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[anode->name]; if (u.texture_order >= 0) { code = _mkid(anode->name); //texture, use as is } else { //a scalar or vector if (u.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_GLOBAL) { code = actions.base_uniform_string + _mkid(anode->name); //texture, use as is //global variable, this means the code points to an index to the global table code = _get_global_shader_uniform_from_type_and_index(p_default_actions.global_buffer_array_variable, code, u.type); } else if (u.scope == ShaderLanguage::ShaderNode::Uniform::SCOPE_INSTANCE) { //instance variable, index it as such code = "(" + p_default_actions.instance_uniform_index_variable + "+" + itos(u.instance_index) + ")"; code = _get_global_shader_uniform_from_type_and_index(p_default_actions.global_buffer_array_variable, code, u.type); } else { //regular uniform, index from UBO code = actions.base_uniform_string + _mkid(anode->name); } } } else { if (use_fragment_varying) { code = "frag_to_light."; } code += _mkid(anode->name); } } if (anode->call_expression != nullptr) { code += "."; code += _dump_node_code(anode->call_expression, p_level, r_gen_code, p_actions, p_default_actions, p_assigning, false); } else if (anode->index_expression != nullptr) { code += "["; code += _dump_node_code(anode->index_expression, p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += "]"; } else if (anode->assign_expression != nullptr) { code += "="; code += _dump_node_code(anode->assign_expression, p_level, r_gen_code, p_actions, p_default_actions, true, false); } if (anode->name == time_name) { if (p_actions.entry_point_stages.has(current_func_name) && p_actions.entry_point_stages[current_func_name] == STAGE_VERTEX) { r_gen_code.uses_vertex_time = true; } if (p_actions.entry_point_stages.has(current_func_name) && p_actions.entry_point_stages[current_func_name] == STAGE_FRAGMENT) { r_gen_code.uses_fragment_time = true; } } } break; case SL::Node::NODE_TYPE_CONSTANT: { SL::ConstantNode *cnode = (SL::ConstantNode *)p_node; if (cnode->array_size == 0) { return get_constant_text(cnode->datatype, cnode->values); } else { if (cnode->get_datatype() == SL::TYPE_STRUCT) { code += _mkid(cnode->struct_name); } else { code += _typestr(cnode->datatype); } code += "["; code += itos(cnode->array_size); code += "]"; code += "("; for (int i = 0; i < cnode->array_size; i++) { if (i > 0) { code += ","; } else { code += ""; } code += _dump_node_code(cnode->array_declarations[0].initializer[i], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); } code += ")"; } } break; case SL::Node::NODE_TYPE_OPERATOR: { SL::OperatorNode *onode = (SL::OperatorNode *)p_node; switch (onode->op) { case SL::OP_ASSIGN: case SL::OP_ASSIGN_ADD: case SL::OP_ASSIGN_SUB: case SL::OP_ASSIGN_MUL: case SL::OP_ASSIGN_DIV: case SL::OP_ASSIGN_SHIFT_LEFT: case SL::OP_ASSIGN_SHIFT_RIGHT: case SL::OP_ASSIGN_MOD: case SL::OP_ASSIGN_BIT_AND: case SL::OP_ASSIGN_BIT_OR: case SL::OP_ASSIGN_BIT_XOR: code = _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, true) + _opstr(onode->op) + _dump_node_code(onode->arguments[1], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); break; case SL::OP_BIT_INVERT: case SL::OP_NEGATE: case SL::OP_NOT: case SL::OP_DECREMENT: case SL::OP_INCREMENT: code = _opstr(onode->op) + _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); break; case SL::OP_POST_DECREMENT: case SL::OP_POST_INCREMENT: code = _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + _opstr(onode->op); break; case SL::OP_CALL: case SL::OP_STRUCT: case SL::OP_CONSTRUCT: { ERR_FAIL_COND_V(onode->arguments[0]->type != SL::Node::NODE_TYPE_VARIABLE, String()); const SL::VariableNode *vnode = static_cast(onode->arguments[0]); const SL::FunctionNode *func = nullptr; const bool is_internal_func = internal_functions.has(vnode->name); if (!is_internal_func) { for (int i = 0; i < shader->functions.size(); i++) { if (shader->functions[i].name == vnode->name) { func = shader->functions[i].function; break; } } } bool is_texture_func = false; bool is_screen_texture = false; bool texture_func_no_uv = false; bool texture_func_returns_data = false; if (onode->op == SL::OP_STRUCT) { code += _mkid(vnode->name); } else if (onode->op == SL::OP_CONSTRUCT) { code += String(vnode->name); } else { if (p_actions.usage_flag_pointers.has(vnode->name) && !used_flag_pointers.has(vnode->name)) { *p_actions.usage_flag_pointers[vnode->name] = true; used_flag_pointers.insert(vnode->name); } if (is_internal_func) { code += vnode->name; is_texture_func = texture_functions.has(vnode->name); texture_func_no_uv = (vnode->name == "textureSize" || vnode->name == "textureQueryLevels"); texture_func_returns_data = texture_func_no_uv || vnode->name == "textureQueryLod"; } else if (p_default_actions.renames.has(vnode->name)) { code += p_default_actions.renames[vnode->name]; } else { code += _mkid(vnode->name); } } code += "("; // if color backbuffer, depth backbuffer or normal roughness texture is used, // we will add logic to automatically switch between // sampler2D and sampler2D array and vec2 UV and vec3 UV. bool multiview_uv_needed = false; for (int i = 1; i < onode->arguments.size(); i++) { if (i > 1) { code += ", "; } bool is_out_qualifier = false; if (is_internal_func) { is_out_qualifier = SL::is_builtin_func_out_parameter(vnode->name, i - 1); } else if (func != nullptr) { const SL::ArgumentQualifier qualifier = func->arguments[i - 1].qualifier; is_out_qualifier = qualifier == SL::ARGUMENT_QUALIFIER_OUT || qualifier == SL::ARGUMENT_QUALIFIER_INOUT; } if (is_out_qualifier) { StringName name; bool found = false; { const SL::Node *node = onode->arguments[i]; bool done = false; do { switch (node->type) { case SL::Node::NODE_TYPE_VARIABLE: { name = static_cast(node)->name; done = true; found = true; } break; case SL::Node::NODE_TYPE_MEMBER: { node = static_cast(node)->owner; } break; default: { done = true; } break; } } while (!done); } if (found && p_actions.write_flag_pointers.has(name)) { *p_actions.write_flag_pointers[name] = true; } } String node_code = _dump_node_code(onode->arguments[i], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); if (is_texture_func && i == 1) { // If we're doing a texture lookup we need to check our texture argument StringName texture_uniform; bool correct_texture_uniform = false; switch (onode->arguments[i]->type) { case SL::Node::NODE_TYPE_VARIABLE: { const SL::VariableNode *varnode = static_cast(onode->arguments[i]); texture_uniform = varnode->name; correct_texture_uniform = true; } break; case SL::Node::NODE_TYPE_ARRAY: { const SL::ArrayNode *anode = static_cast(onode->arguments[i]); texture_uniform = anode->name; correct_texture_uniform = true; } break; default: break; } if (correct_texture_uniform && !RS::get_singleton()->is_low_end()) { // Need to map from texture to sampler in order to sample when using Vulkan GLSL. String sampler_name; bool is_depth_texture = false; bool is_normal_roughness_texture = false; if (actions.custom_samplers.has(texture_uniform)) { sampler_name = actions.custom_samplers[texture_uniform]; } else { if (shader->uniforms.has(texture_uniform)) { const ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[texture_uniform]; if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_SCREEN_TEXTURE) { is_screen_texture = true; } else if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) { is_depth_texture = true; } else if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE) { is_normal_roughness_texture = true; } sampler_name = _get_sampler_name(u.filter, u.repeat); } else { bool found = false; for (int j = 0; j < function->arguments.size(); j++) { if (function->arguments[j].name == texture_uniform) { if (function->arguments[j].tex_builtin_check) { ERR_CONTINUE(!actions.custom_samplers.has(function->arguments[j].tex_builtin)); sampler_name = actions.custom_samplers[function->arguments[j].tex_builtin]; found = true; break; } if (function->arguments[j].tex_argument_check) { sampler_name = _get_sampler_name(function->arguments[j].tex_argument_filter, function->arguments[j].tex_argument_repeat); found = true; break; } } } if (!found) { //function was most likely unused, so use anything (compiler will remove it anyway) sampler_name = _get_sampler_name(ShaderLanguage::FILTER_DEFAULT, ShaderLanguage::REPEAT_DEFAULT); } } } String data_type_name = ""; if (actions.check_multiview_samplers && (is_screen_texture || is_depth_texture || is_normal_roughness_texture)) { data_type_name = "multiviewSampler"; multiview_uv_needed = true; } else { data_type_name = ShaderLanguage::get_datatype_name(onode->arguments[i]->get_datatype()); } code += data_type_name + "(" + node_code + ", " + sampler_name + ")"; } else if (actions.check_multiview_samplers && correct_texture_uniform && RS::get_singleton()->is_low_end()) { // Texture function on low end hardware (i.e. OpenGL). // We just need to know if the texture supports multiview. if (shader->uniforms.has(texture_uniform)) { const ShaderLanguage::ShaderNode::Uniform &u = shader->uniforms[texture_uniform]; if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_SCREEN_TEXTURE) { multiview_uv_needed = true; } else if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_DEPTH_TEXTURE) { multiview_uv_needed = true; } else if (u.hint == ShaderLanguage::ShaderNode::Uniform::HINT_NORMAL_ROUGHNESS_TEXTURE) { multiview_uv_needed = true; } } code += node_code; } else { code += node_code; } } else if (multiview_uv_needed && !texture_func_no_uv && i == 2) { // UV coordinate after using color, depth or normal roughness texture. node_code = "multiview_uv(" + node_code + ".xy)"; code += node_code; } else { code += node_code; } } code += ")"; if (is_screen_texture && !texture_func_returns_data && actions.apply_luminance_multiplier) { code = "(" + code + " * vec4(vec3(sc_luminance_multiplier), 1.0))"; } } break; case SL::OP_INDEX: { code += _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += "["; code += _dump_node_code(onode->arguments[1], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += "]"; } break; case SL::OP_SELECT_IF: { code += "("; code += _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += "?"; code += _dump_node_code(onode->arguments[1], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += ":"; code += _dump_node_code(onode->arguments[2], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += ")"; } break; case SL::OP_EMPTY: { // Semicolon (or empty statement) - ignored. } break; default: { if (p_use_scope) { code += "("; } code += _dump_node_code(onode->arguments[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + " " + _opstr(onode->op) + " " + _dump_node_code(onode->arguments[1], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); if (p_use_scope) { code += ")"; } break; } } } break; case SL::Node::NODE_TYPE_CONTROL_FLOW: { SL::ControlFlowNode *cfnode = (SL::ControlFlowNode *)p_node; if (cfnode->flow_op == SL::FLOW_OP_IF) { code += _mktab(p_level) + "if (" + _dump_node_code(cfnode->expressions[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + ")\n"; code += _dump_node_code(cfnode->blocks[0], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); if (cfnode->blocks.size() == 2) { code += _mktab(p_level) + "else\n"; code += _dump_node_code(cfnode->blocks[1], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); } } else if (cfnode->flow_op == SL::FLOW_OP_SWITCH) { code += _mktab(p_level) + "switch (" + _dump_node_code(cfnode->expressions[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + ")\n"; code += _dump_node_code(cfnode->blocks[0], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); } else if (cfnode->flow_op == SL::FLOW_OP_CASE) { code += _mktab(p_level) + "case " + _dump_node_code(cfnode->expressions[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + ":\n"; code += _dump_node_code(cfnode->blocks[0], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); } else if (cfnode->flow_op == SL::FLOW_OP_DEFAULT) { code += _mktab(p_level) + "default:\n"; code += _dump_node_code(cfnode->blocks[0], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); } else if (cfnode->flow_op == SL::FLOW_OP_DO) { code += _mktab(p_level) + "do"; code += _dump_node_code(cfnode->blocks[0], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); code += _mktab(p_level) + "while (" + _dump_node_code(cfnode->expressions[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + ");"; } else if (cfnode->flow_op == SL::FLOW_OP_WHILE) { code += _mktab(p_level) + "while (" + _dump_node_code(cfnode->expressions[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + ")\n"; code += _dump_node_code(cfnode->blocks[0], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); } else if (cfnode->flow_op == SL::FLOW_OP_FOR) { String left = _dump_node_code(cfnode->blocks[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); String middle = _dump_node_code(cfnode->blocks[1], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); String right = _dump_node_code(cfnode->blocks[2], p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += _mktab(p_level) + "for (" + left + ";" + middle + ";" + right + ")\n"; code += _dump_node_code(cfnode->blocks[3], p_level + 1, r_gen_code, p_actions, p_default_actions, p_assigning); } else if (cfnode->flow_op == SL::FLOW_OP_RETURN) { if (cfnode->expressions.size()) { code = "return " + _dump_node_code(cfnode->expressions[0], p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + ";"; } else { code = "return;"; } } else if (cfnode->flow_op == SL::FLOW_OP_DISCARD) { if (p_actions.usage_flag_pointers.has("DISCARD") && !used_flag_pointers.has("DISCARD")) { *p_actions.usage_flag_pointers["DISCARD"] = true; used_flag_pointers.insert("DISCARD"); } code = "discard;"; } else if (cfnode->flow_op == SL::FLOW_OP_CONTINUE) { code = "continue;"; } else if (cfnode->flow_op == SL::FLOW_OP_BREAK) { code = "break;"; } } break; case SL::Node::NODE_TYPE_MEMBER: { SL::MemberNode *mnode = (SL::MemberNode *)p_node; code = _dump_node_code(mnode->owner, p_level, r_gen_code, p_actions, p_default_actions, p_assigning) + "." + mnode->name; if (mnode->index_expression != nullptr) { code += "["; code += _dump_node_code(mnode->index_expression, p_level, r_gen_code, p_actions, p_default_actions, p_assigning); code += "]"; } else if (mnode->assign_expression != nullptr) { code += "="; code += _dump_node_code(mnode->assign_expression, p_level, r_gen_code, p_actions, p_default_actions, true, false); } else if (mnode->call_expression != nullptr) { code += "."; code += _dump_node_code(mnode->call_expression, p_level, r_gen_code, p_actions, p_default_actions, p_assigning, false); } } break; } return code; } ShaderLanguage::DataType ShaderCompiler::_get_global_shader_uniform_type(const StringName &p_name) { RS::GlobalShaderParameterType gvt = RSG::material_storage->global_shader_parameter_get_type(p_name); return (ShaderLanguage::DataType)RS::global_shader_uniform_type_get_shader_datatype(gvt); } Error ShaderCompiler::compile(RS::ShaderMode p_mode, const String &p_code, IdentifierActions *p_actions, const String &p_path, GeneratedCode &r_gen_code) { SL::ShaderCompileInfo info; info.functions = ShaderTypes::get_singleton()->get_functions(p_mode); info.render_modes = ShaderTypes::get_singleton()->get_modes(p_mode); info.shader_types = ShaderTypes::get_singleton()->get_types(); info.global_shader_uniform_type_func = _get_global_shader_uniform_type; Error err = parser.compile(p_code, info); if (err != OK) { Vector include_positions = parser.get_include_positions(); String current; HashMap> includes; includes[""] = Vector(); Vector include_stack; Vector shader_lines = p_code.split("\n"); // Reconstruct the files. for (int i = 0; i < shader_lines.size(); i++) { String l = shader_lines[i]; if (l.begins_with("@@>")) { String inc_path = l.replace_first("@@>", ""); l = "#include \"" + inc_path + "\""; includes[current].append("#include \"" + inc_path + "\""); // Restore the include directive include_stack.push_back(current); current = inc_path; includes[inc_path] = Vector(); } else if (l.begins_with("@@<")) { if (include_stack.size()) { current = include_stack[include_stack.size() - 1]; include_stack.resize(include_stack.size() - 1); } } else { includes[current].push_back(l); } } // Print the files. for (const KeyValue> &E : includes) { if (E.key.is_empty()) { if (p_path == "") { print_line("--Main Shader--"); } else { print_line("--" + p_path + "--"); } } else { print_line("--" + E.key + "--"); } int err_line = -1; for (int i = 0; i < include_positions.size(); i++) { if (include_positions[i].file == E.key) { err_line = include_positions[i].line; } } const Vector &V = E.value; for (int i = 0; i < V.size(); i++) { if (i == err_line - 1) { // Mark the error line to be visible without having to look at // the trace at the end. print_line(vformat("E%4d-> %s", i + 1, V[i])); } else { print_line(vformat("%5d | %s", i + 1, V[i])); } } } String file; int line; if (include_positions.size() > 1) { file = include_positions[include_positions.size() - 1].file; line = include_positions[include_positions.size() - 1].line; } else { file = p_path; line = parser.get_error_line(); } _err_print_error(nullptr, file.utf8().get_data(), line, parser.get_error_text().utf8().get_data(), false, ERR_HANDLER_SHADER); return err; } r_gen_code.defines.clear(); r_gen_code.code.clear(); for (int i = 0; i < STAGE_MAX; i++) { r_gen_code.stage_globals[i] = String(); } r_gen_code.uses_fragment_time = false; r_gen_code.uses_vertex_time = false; r_gen_code.uses_global_textures = false; r_gen_code.uses_screen_texture_mipmaps = false; r_gen_code.uses_screen_texture = false; r_gen_code.uses_depth_texture = false; r_gen_code.uses_normal_roughness_texture = false; used_name_defines.clear(); used_rmode_defines.clear(); used_flag_pointers.clear(); fragment_varyings.clear(); shader = parser.get_shader(); function = nullptr; _dump_node_code(shader, 1, r_gen_code, *p_actions, actions, false); return OK; } void ShaderCompiler::initialize(DefaultIdentifierActions p_actions) { actions = p_actions; time_name = "TIME"; List func_list; ShaderLanguage::get_builtin_funcs(&func_list); for (const String &E : func_list) { internal_functions.insert(E); } texture_functions.insert("texture"); texture_functions.insert("textureProj"); texture_functions.insert("textureLod"); texture_functions.insert("textureProjLod"); texture_functions.insert("textureGrad"); texture_functions.insert("textureProjGrad"); texture_functions.insert("textureGather"); texture_functions.insert("textureSize"); texture_functions.insert("textureQueryLod"); texture_functions.insert("textureQueryLevels"); texture_functions.insert("texelFetch"); } ShaderCompiler::ShaderCompiler() { }