#[compute] #version 450 #VERSION_DEFINES /* Do not use subgroups here, seems there is not much advantage and causes glitches #if defined(has_GL_KHR_shader_subgroup_ballot) && defined(has_GL_KHR_shader_subgroup_arithmetic) #extension GL_KHR_shader_subgroup_ballot: enable #extension GL_KHR_shader_subgroup_arithmetic: enable #define USE_SUBGROUPS #endif */ #ifdef MODE_DENSITY layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in; #else layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; #endif #include "../cluster_data_inc.glsl" #include "../light_data_inc.glsl" #define M_PI 3.14159265359 #define DENSITY_SCALE 1024.0 layout(set = 0, binding = 1) uniform texture2D shadow_atlas; layout(set = 0, binding = 2) uniform texture2D directional_shadow_atlas; layout(set = 0, binding = 3, std430) restrict readonly buffer OmniLights { LightData data[]; } omni_lights; layout(set = 0, binding = 4, std430) restrict readonly buffer SpotLights { LightData data[]; } spot_lights; layout(set = 0, binding = 5, std140) uniform DirectionalLights { DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; } directional_lights; layout(set = 0, binding = 6, std430) buffer restrict readonly ClusterBuffer { uint data[]; } cluster_buffer; layout(set = 0, binding = 7) uniform sampler linear_sampler; #ifdef MODE_DENSITY layout(rgba16f, set = 0, binding = 8) uniform restrict writeonly image3D density_map; #endif #ifdef MODE_FOG layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D density_map; layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D fog_map; #endif #ifdef MODE_COPY layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map; layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map; #endif #ifdef MODE_FILTER layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map; layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map; #endif layout(set = 0, binding = 10) uniform sampler shadow_sampler; #define MAX_VOXEL_GI_INSTANCES 8 struct VoxelGIData { mat4 xform; // 64 - 64 vec3 bounds; // 12 - 76 float dynamic_range; // 4 - 80 float bias; // 4 - 84 float normal_bias; // 4 - 88 bool blend_ambient; // 4 - 92 uint mipmaps; // 4 - 96 vec3 pad; // 12 - 108 float exposure_normalization; // 4 - 112 }; layout(set = 0, binding = 11, std140) uniform VoxelGIs { VoxelGIData data[MAX_VOXEL_GI_INSTANCES]; } voxel_gi_instances; layout(set = 0, binding = 12) uniform texture3D voxel_gi_textures[MAX_VOXEL_GI_INSTANCES]; layout(set = 0, binding = 13) uniform sampler linear_sampler_with_mipmaps; #ifdef ENABLE_SDFGI // SDFGI Integration on set 1 #define SDFGI_MAX_CASCADES 8 struct SDFVoxelGICascadeData { vec3 position; float to_probe; ivec3 probe_world_offset; float to_cell; // 1/bounds * grid_size vec3 pad; float exposure_normalization; }; layout(set = 1, binding = 0, std140) uniform SDFGI { vec3 grid_size; uint max_cascades; bool use_occlusion; int probe_axis_size; float probe_to_uvw; float normal_bias; vec3 lightprobe_tex_pixel_size; float energy; vec3 lightprobe_uv_offset; float y_mult; vec3 occlusion_clamp; uint pad3; vec3 occlusion_renormalize; uint pad4; vec3 cascade_probe_size; uint pad5; SDFVoxelGICascadeData cascades[SDFGI_MAX_CASCADES]; } sdfgi; layout(set = 1, binding = 1) uniform texture2DArray sdfgi_ambient_texture; layout(set = 1, binding = 2) uniform texture3D sdfgi_occlusion_texture; #endif //SDFGI layout(set = 0, binding = 14, std140) uniform Params { vec2 fog_frustum_size_begin; vec2 fog_frustum_size_end; float fog_frustum_end; float ambient_inject; float z_far; int filter_axis; vec3 ambient_color; float sky_contribution; ivec3 fog_volume_size; uint directional_light_count; vec3 base_emission; float base_density; vec3 base_scattering; float phase_g; float detail_spread; float gi_inject; uint max_voxel_gi_instances; uint cluster_type_size; vec2 screen_size; uint cluster_shift; uint cluster_width; uint max_cluster_element_count_div_32; bool use_temporal_reprojection; uint temporal_frame; float temporal_blend; mat3x4 cam_rotation; mat4 to_prev_view; mat3 radiance_inverse_xform; } params; #ifndef MODE_COPY layout(set = 0, binding = 15) uniform texture3D prev_density_texture; #ifdef MOLTENVK_USED layout(set = 0, binding = 16) buffer density_only_map_buffer { uint density_only_map[]; }; layout(set = 0, binding = 17) buffer light_only_map_buffer { uint light_only_map[]; }; layout(set = 0, binding = 18) buffer emissive_only_map_buffer { uint emissive_only_map[]; }; #else layout(r32ui, set = 0, binding = 16) uniform uimage3D density_only_map; layout(r32ui, set = 0, binding = 17) uniform uimage3D light_only_map; layout(r32ui, set = 0, binding = 18) uniform uimage3D emissive_only_map; #endif #ifdef USE_RADIANCE_CUBEMAP_ARRAY layout(set = 0, binding = 19) uniform textureCubeArray sky_texture; #else layout(set = 0, binding = 19) uniform textureCube sky_texture; #endif #endif // MODE_COPY float get_depth_at_pos(float cell_depth_size, int z) { float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels d = pow(d, params.detail_spread); return params.fog_frustum_end * d; } vec3 hash3f(uvec3 x) { x = ((x >> 16) ^ x) * 0x45d9f3b; x = ((x >> 16) ^ x) * 0x45d9f3b; x = (x >> 16) ^ x; return vec3(x & 0xFFFFF) / vec3(float(0xFFFFF)); } float get_omni_attenuation(float dist, float inv_range, float decay) { float nd = dist * inv_range; nd *= nd; nd *= nd; // nd^4 nd = max(1.0 - nd, 0.0); nd *= nd; // nd^2 return nd * pow(max(dist, 0.0001), -decay); } void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) { uint item_min_max = cluster_buffer.data[p_offset]; item_min = item_min_max & 0xFFFF; item_max = item_min_max >> 16; item_from = item_min >> 5; item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements } uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) { int local_min = clamp(int(z_min) - int(i) * 32, 0, 31); int mask_width = min(int(z_max) - int(z_min), 32 - local_min); return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width); } float henyey_greenstein(float cos_theta, float g) { const float k = 0.0795774715459; // 1 / (4 * PI) return k * (1.0 - g * g) / (pow(1.0 + g * g - 2.0 * g * cos_theta, 1.5)); } #define TEMPORAL_FRAMES 16 const vec3 halton_map[TEMPORAL_FRAMES] = vec3[]( vec3(0.5, 0.33333333, 0.2), vec3(0.25, 0.66666667, 0.4), vec3(0.75, 0.11111111, 0.6), vec3(0.125, 0.44444444, 0.8), vec3(0.625, 0.77777778, 0.04), vec3(0.375, 0.22222222, 0.24), vec3(0.875, 0.55555556, 0.44), vec3(0.0625, 0.88888889, 0.64), vec3(0.5625, 0.03703704, 0.84), vec3(0.3125, 0.37037037, 0.08), vec3(0.8125, 0.7037037, 0.28), vec3(0.1875, 0.14814815, 0.48), vec3(0.6875, 0.48148148, 0.68), vec3(0.4375, 0.81481481, 0.88), vec3(0.9375, 0.25925926, 0.12), vec3(0.03125, 0.59259259, 0.32)); // Higher values will make light in volumetric fog fade out sooner when it's occluded by shadow. const float INV_FOG_FADE = 10.0; void main() { vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size); #ifdef MODE_DENSITY ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); if (any(greaterThanEqual(pos, params.fog_volume_size))) { return; //do not compute } #ifdef MOLTENVK_USED uint lpos = pos.z * params.fog_volume_size.x * params.fog_volume_size.y + pos.y * params.fog_volume_size.x + pos.x; #endif vec3 posf = vec3(pos); //posf += mix(vec3(0.0),vec3(1.0),0.3) * hash3f(uvec3(pos)) * 2.0 - 1.0; vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels uvec2 screen_pos = uvec2(fog_unit_pos.xy * params.screen_size); uvec2 cluster_pos = screen_pos >> params.cluster_shift; uint cluster_offset = (params.cluster_width * cluster_pos.y + cluster_pos.x) * (params.max_cluster_element_count_div_32 + 32); //positions in screen are too spread apart, no hopes for optimizing with subgroups fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread); vec3 view_pos; view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z)); view_pos.z = -params.fog_frustum_end * fog_unit_pos.z; view_pos.y = -view_pos.y; vec4 reprojected_density = vec4(0.0); float reproject_amount = 0.0; if (params.use_temporal_reprojection) { vec3 prev_view = (params.to_prev_view * vec4(view_pos, 1.0)).xyz; //undo transform into prev view prev_view.y = -prev_view.y; //z back to unit size prev_view.z /= -params.fog_frustum_end; //xy back to unit size prev_view.xy /= mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(prev_view.z)); prev_view.xy = prev_view.xy * 0.5 + 0.5; //z back to unspread value prev_view.z = pow(prev_view.z, 1.0 / params.detail_spread); if (all(greaterThan(prev_view, vec3(0.0))) && all(lessThan(prev_view, vec3(1.0)))) { //reprojectinon fits reprojected_density = textureLod(sampler3D(prev_density_texture, linear_sampler), prev_view, 0.0); reproject_amount = params.temporal_blend; // Since we can reproject, now we must jitter the current view pos. // This is done here because cells that can't reproject should not jitter. fog_unit_pos = posf * fog_cell_size + fog_cell_size * halton_map[params.temporal_frame]; //center of voxels, offset by halton table screen_pos = uvec2(fog_unit_pos.xy * params.screen_size); cluster_pos = screen_pos >> params.cluster_shift; cluster_offset = (params.cluster_width * cluster_pos.y + cluster_pos.x) * (params.max_cluster_element_count_div_32 + 32); //positions in screen are too spread apart, no hopes for optimizing with subgroups fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread); view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z)); view_pos.z = -params.fog_frustum_end * fog_unit_pos.z; view_pos.y = -view_pos.y; } } uint cluster_z = uint(clamp((abs(view_pos.z) / params.z_far) * 32.0, 0.0, 31.0)); vec3 total_light = vec3(0.0); float total_density = params.base_density; #ifdef MOLTENVK_USED uint local_density = density_only_map[lpos]; #else uint local_density = imageLoad(density_only_map, pos).x; #endif total_density += float(int(local_density)) / DENSITY_SCALE; total_density = max(0.0, total_density); #ifdef MOLTENVK_USED uint scattering_u = light_only_map[lpos]; #else uint scattering_u = imageLoad(light_only_map, pos).x; #endif vec3 scattering = vec3(scattering_u >> 21, (scattering_u << 11) >> 21, scattering_u % 1024) / vec3(2047.0, 2047.0, 1023.0); scattering += params.base_scattering * params.base_density; #ifdef MOLTENVK_USED uint emission_u = emissive_only_map[lpos]; #else uint emission_u = imageLoad(emissive_only_map, pos).x; #endif vec3 emission = vec3(emission_u >> 21, (emission_u << 11) >> 21, emission_u % 1024) / vec3(511.0, 511.0, 255.0); emission += params.base_emission * params.base_density; float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1)); //compute directional lights if (total_density > 0.00005) { for (uint i = 0; i < params.directional_light_count; i++) { if (directional_lights.data[i].volumetric_fog_energy > 0.001) { vec3 shadow_attenuation = vec3(1.0); if (directional_lights.data[i].shadow_opacity > 0.001) { float depth_z = -view_pos.z; vec4 pssm_coord; vec3 light_dir = directional_lights.data[i].direction; vec4 v = vec4(view_pos, 1.0); float z_range; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { pssm_coord = (directional_lights.data[i].shadow_matrix1 * v); pssm_coord /= pssm_coord.w; z_range = directional_lights.data[i].shadow_z_range.x; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { pssm_coord = (directional_lights.data[i].shadow_matrix2 * v); pssm_coord /= pssm_coord.w; z_range = directional_lights.data[i].shadow_z_range.y; } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { pssm_coord = (directional_lights.data[i].shadow_matrix3 * v); pssm_coord /= pssm_coord.w; z_range = directional_lights.data[i].shadow_z_range.z; } else { pssm_coord = (directional_lights.data[i].shadow_matrix4 * v); pssm_coord /= pssm_coord.w; z_range = directional_lights.data[i].shadow_z_range.w; } float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r; float shadow = exp(min(0.0, (pssm_coord.z - depth)) * z_range * INV_FOG_FADE); shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance shadow_attenuation = mix(vec3(1.0 - directional_lights.data[i].shadow_opacity), vec3(1.0), shadow); } total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy * henyey_greenstein(dot(normalize(view_pos), normalize(directional_lights.data[i].direction)), params.phase_g) * directional_lights.data[i].volumetric_fog_energy; } } // Compute light from sky if (params.ambient_inject > 0.0) { vec3 isotropic = vec3(0.0); vec3 anisotropic = vec3(0.0); if (params.sky_contribution > 0.0) { float mip_bias = 2.0 + total_density * (MAX_SKY_LOD - 2.0); // Not physically based, but looks nice vec3 scatter_direction = (params.radiance_inverse_xform * normalize(view_pos)) * sign(params.phase_g); #ifdef USE_RADIANCE_CUBEMAP_ARRAY isotropic = texture(samplerCubeArray(sky_texture, linear_sampler_with_mipmaps), vec4(0.0, 1.0, 0.0, mip_bias)).rgb; anisotropic = texture(samplerCubeArray(sky_texture, linear_sampler_with_mipmaps), vec4(scatter_direction, mip_bias)).rgb; #else isotropic = textureLod(samplerCube(sky_texture, linear_sampler_with_mipmaps), vec3(0.0, 1.0, 0.0), mip_bias).rgb; anisotropic = textureLod(samplerCube(sky_texture, linear_sampler_with_mipmaps), vec3(scatter_direction), mip_bias).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY } total_light += mix(params.ambient_color, mix(isotropic, anisotropic, abs(params.phase_g)), params.sky_contribution) * params.ambient_inject; } //compute lights from cluster { //omni lights uint cluster_omni_offset = cluster_offset; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_omni_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_omni_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif uint light_index = 32 * i + bit; //if (!bool(omni_omni_lights.data[light_index].mask & draw_call.layer_mask)) { // continue; //not masked //} vec3 light_pos = omni_lights.data[light_index].position; float d = distance(omni_lights.data[light_index].position, view_pos); float shadow_attenuation = 1.0; if (omni_lights.data[light_index].volumetric_fog_energy > 0.001 && d * omni_lights.data[light_index].inv_radius < 1.0) { float attenuation = get_omni_attenuation(d, omni_lights.data[light_index].inv_radius, omni_lights.data[light_index].attenuation); vec3 light = omni_lights.data[light_index].color; if (omni_lights.data[light_index].shadow_opacity > 0.001) { //has shadow vec4 uv_rect = omni_lights.data[light_index].atlas_rect; vec2 flip_offset = omni_lights.data[light_index].direction.xy; vec3 local_vert = (omni_lights.data[light_index].shadow_matrix * vec4(view_pos, 1.0)).xyz; float shadow_len = length(local_vert); //need to remember shadow len from here vec3 shadow_sample = normalize(local_vert); if (shadow_sample.z >= 0.0) { uv_rect.xy += flip_offset; } shadow_sample.z = 1.0 + abs(shadow_sample.z); vec3 pos = vec3(shadow_sample.xy / shadow_sample.z, shadow_len - omni_lights.data[light_index].shadow_bias); pos.z *= omni_lights.data[light_index].inv_radius; pos.xy = pos.xy * 0.5 + 0.5; pos.xy = uv_rect.xy + pos.xy * uv_rect.zw; float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r; shadow_attenuation = mix(1.0 - omni_lights.data[light_index].shadow_opacity, 1.0, exp(min(0.0, (pos.z - depth)) / omni_lights.data[light_index].inv_radius * INV_FOG_FADE)); } total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_pos - view_pos), normalize(view_pos)), params.phase_g) * omni_lights.data[light_index].volumetric_fog_energy; } } } } { //spot lights uint cluster_spot_offset = cluster_offset + params.cluster_type_size; uint item_min; uint item_max; uint item_from; uint item_to; cluster_get_item_range(cluster_spot_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to); #ifdef USE_SUBGROUPS item_from = subgroupBroadcastFirst(subgroupMin(item_from)); item_to = subgroupBroadcastFirst(subgroupMax(item_to)); #endif for (uint i = item_from; i < item_to; i++) { uint mask = cluster_buffer.data[cluster_spot_offset + i]; mask &= cluster_get_range_clip_mask(i, item_min, item_max); #ifdef USE_SUBGROUPS uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask)); #else uint merged_mask = mask; #endif while (merged_mask != 0) { uint bit = findMSB(merged_mask); merged_mask &= ~(1 << bit); #ifdef USE_SUBGROUPS if (((1 << bit) & mask) == 0) { //do not process if not originally here continue; } #endif //if (!bool(omni_lights.data[light_index].mask & draw_call.layer_mask)) { // continue; //not masked //} uint light_index = 32 * i + bit; vec3 light_pos = spot_lights.data[light_index].position; vec3 light_rel_vec = spot_lights.data[light_index].position - view_pos; float d = length(light_rel_vec); float shadow_attenuation = 1.0; if (spot_lights.data[light_index].volumetric_fog_energy > 0.001 && d * spot_lights.data[light_index].inv_radius < 1.0) { float attenuation = get_omni_attenuation(d, spot_lights.data[light_index].inv_radius, spot_lights.data[light_index].attenuation); vec3 spot_dir = spot_lights.data[light_index].direction; highp float cone_angle = spot_lights.data[light_index].cone_angle; float scos = max(dot(-normalize(light_rel_vec), spot_dir), cone_angle); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cone_angle)); attenuation *= 1.0 - pow(spot_rim, spot_lights.data[light_index].cone_attenuation); vec3 light = spot_lights.data[light_index].color; if (spot_lights.data[light_index].shadow_opacity > 0.001) { //has shadow vec4 uv_rect = spot_lights.data[light_index].atlas_rect; vec4 v = vec4(view_pos, 1.0); vec4 splane = (spot_lights.data[light_index].shadow_matrix * v); splane.z -= spot_lights.data[light_index].shadow_bias / (d * spot_lights.data[light_index].inv_radius); splane /= splane.w; vec3 pos = vec3(splane.xy * spot_lights.data[light_index].atlas_rect.zw + spot_lights.data[light_index].atlas_rect.xy, splane.z); float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r; shadow_attenuation = mix(1.0 - spot_lights.data[light_index].shadow_opacity, 1.0, exp(min(0.0, (pos.z - depth)) / spot_lights.data[light_index].inv_radius * INV_FOG_FADE)); } total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_rel_vec), normalize(view_pos)), params.phase_g) * spot_lights.data[light_index].volumetric_fog_energy; } } } } vec3 world_pos = mat3(params.cam_rotation) * view_pos; for (uint i = 0; i < params.max_voxel_gi_instances; i++) { vec3 position = (voxel_gi_instances.data[i].xform * vec4(world_pos, 1.0)).xyz; //this causes corrupted pixels, i have no idea why.. if (all(bvec2(all(greaterThanEqual(position, vec3(0.0))), all(lessThan(position, voxel_gi_instances.data[i].bounds))))) { position /= voxel_gi_instances.data[i].bounds; vec4 light = vec4(0.0); for (uint j = 0; j < voxel_gi_instances.data[i].mipmaps; j++) { vec4 slight = textureLod(sampler3D(voxel_gi_textures[i], linear_sampler_with_mipmaps), position, float(j)); float a = (1.0 - light.a); light += a * slight; } light.rgb *= voxel_gi_instances.data[i].dynamic_range * params.gi_inject * voxel_gi_instances.data[i].exposure_normalization; total_light += light.rgb; } } //sdfgi #ifdef ENABLE_SDFGI { float blend = -1.0; vec3 ambient_total = vec3(0.0); for (uint i = 0; i < sdfgi.max_cascades; i++) { vec3 cascade_pos = (world_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe; if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) { continue; //skip cascade } vec3 base_pos = floor(cascade_pos); ivec3 probe_base_pos = ivec3(base_pos); vec4 ambient_accum = vec4(0.0); ivec3 tex_pos = ivec3(probe_base_pos.xy, int(i)); tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size; for (uint j = 0; j < 8; j++) { ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1); ivec3 probe_posi = probe_base_pos; probe_posi += offset; // Compute weight vec3 probe_pos = vec3(probe_posi); vec3 probe_to_pos = cascade_pos - probe_pos; vec3 trilinear = vec3(1.0) - abs(probe_to_pos); float weight = trilinear.x * trilinear.y * trilinear.z; // Compute lightprobe occlusion if (sdfgi.use_occlusion) { ivec3 occ_indexv = abs((sdfgi.cascades[i].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4); vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3))); vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw; occ_pos.z += float(i); if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures occ_pos.x += 1.0; } occ_pos *= sdfgi.occlusion_renormalize; float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask); weight *= max(occlusion, 0.01); } // Compute ambient texture position ivec3 uvw = tex_pos; uvw.xy += offset.xy; uvw.x += offset.z * sdfgi.probe_axis_size; vec3 ambient = texelFetch(sampler2DArray(sdfgi_ambient_texture, linear_sampler), uvw, 0).rgb; ambient_accum.rgb += ambient * weight * sdfgi.cascades[i].exposure_normalization; ambient_accum.a += weight; } if (ambient_accum.a > 0) { ambient_accum.rgb /= ambient_accum.a; } ambient_total = ambient_accum.rgb; break; } total_light += ambient_total * params.gi_inject; } #endif } vec4 final_density = vec4(total_light * scattering + emission, total_density); final_density = mix(final_density, reprojected_density, reproject_amount); imageStore(density_map, pos, final_density); #ifdef MOLTENVK_USED density_only_map[lpos] = 0; light_only_map[lpos] = 0; emissive_only_map[lpos] = 0; #else imageStore(density_only_map, pos, uvec4(0)); imageStore(light_only_map, pos, uvec4(0)); imageStore(emissive_only_map, pos, uvec4(0)); #endif #endif #ifdef MODE_FOG ivec3 pos = ivec3(gl_GlobalInvocationID.xy, 0); if (any(greaterThanEqual(pos, params.fog_volume_size))) { return; //do not compute } vec4 fog_accum = vec4(0.0, 0.0, 0.0, 1.0); float prev_z = 0.0; for (int i = 0; i < params.fog_volume_size.z; i++) { //compute fog position ivec3 fog_pos = pos + ivec3(0, 0, i); //get fog value vec4 fog = imageLoad(density_map, fog_pos); //get depth at cell pos float z = get_depth_at_pos(fog_cell_size.z, i); //get distance from previous pos float d = abs(prev_z - z); //compute transmittance using beer's law float transmittance = exp(-d * fog.a); fog_accum.rgb += ((fog.rgb - fog.rgb * transmittance) / max(fog.a, 0.00001)) * fog_accum.a; fog_accum.a *= transmittance; prev_z = z; imageStore(fog_map, fog_pos, vec4(fog_accum.rgb, 1.0 - fog_accum.a)); } #endif #ifdef MODE_FILTER ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); const float gauss[7] = float[](0.071303, 0.131514, 0.189879, 0.214607, 0.189879, 0.131514, 0.071303); const ivec3 filter_dir[3] = ivec3[](ivec3(1, 0, 0), ivec3(0, 1, 0), ivec3(0, 0, 1)); ivec3 offset = filter_dir[params.filter_axis]; vec4 accum = vec4(0.0); for (int i = -3; i <= 3; i++) { accum += imageLoad(source_map, clamp(pos + offset * i, ivec3(0), params.fog_volume_size - ivec3(1))) * gauss[i + 3]; } imageStore(dest_map, pos, accum); #endif #ifdef MODE_COPY ivec3 pos = ivec3(gl_GlobalInvocationID.xyz); if (any(greaterThanEqual(pos, params.fog_volume_size))) { return; //do not compute } imageStore(dest_map, pos, imageLoad(source_map, pos)); #endif }