/*************************************************************************/ /* shape_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "shape_sw.h" #include "geometry.h" #include "quick_hull.h" #include "sort.h" #define _POINT_SNAP 0.001953125 #define _EDGE_IS_VALID_SUPPORT_THRESHOLD 0.0002 #define _FACE_IS_VALID_SUPPORT_THRESHOLD 0.9998 void ShapeSW::configure(const Rect3 &p_aabb) { aabb = p_aabb; configured = true; for (Map::Element *E = owners.front(); E; E = E->next()) { ShapeOwnerSW *co = (ShapeOwnerSW *)E->key(); co->_shape_changed(); } } Vector3 ShapeSW::get_support(const Vector3 &p_normal) const { Vector3 res; int amnt; get_supports(p_normal, 1, &res, amnt); return res; } void ShapeSW::add_owner(ShapeOwnerSW *p_owner) { Map::Element *E = owners.find(p_owner); if (E) { E->get()++; } else { owners[p_owner] = 1; } } void ShapeSW::remove_owner(ShapeOwnerSW *p_owner) { Map::Element *E = owners.find(p_owner); ERR_FAIL_COND(!E); E->get()--; if (E->get() == 0) { owners.erase(E); } } bool ShapeSW::is_owner(ShapeOwnerSW *p_owner) const { return owners.has(p_owner); } const Map &ShapeSW::get_owners() const { return owners; } ShapeSW::ShapeSW() { custom_bias = 0; configured = false; } ShapeSW::~ShapeSW() { ERR_FAIL_COND(owners.size()); } Plane PlaneShapeSW::get_plane() const { return plane; } void PlaneShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { // gibberish, a plane is infinity r_min = -1e7; r_max = 1e7; } Vector3 PlaneShapeSW::get_support(const Vector3 &p_normal) const { return p_normal * 1e15; } bool PlaneShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { bool inters = plane.intersects_segment(p_begin, p_end, &r_result); if (inters) r_normal = plane.normal; return inters; } bool PlaneShapeSW::intersect_point(const Vector3 &p_point) const { return plane.distance_to(p_point) < 0; } Vector3 PlaneShapeSW::get_closest_point_to(const Vector3 &p_point) const { if (plane.is_point_over(p_point)) { return plane.project(p_point); } else { return p_point; } } Vector3 PlaneShapeSW::get_moment_of_inertia(real_t p_mass) const { return Vector3(); //wtf } void PlaneShapeSW::_setup(const Plane &p_plane) { plane = p_plane; configure(Rect3(Vector3(-1e4, -1e4, -1e4), Vector3(1e4 * 2, 1e4 * 2, 1e4 * 2))); } void PlaneShapeSW::set_data(const Variant &p_data) { _setup(p_data); } Variant PlaneShapeSW::get_data() const { return plane; } PlaneShapeSW::PlaneShapeSW() { } // real_t RayShapeSW::get_length() const { return length; } void RayShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { // don't think this will be even used r_min = 0; r_max = 1; } Vector3 RayShapeSW::get_support(const Vector3 &p_normal) const { if (p_normal.z > 0) return Vector3(0, 0, length); else return Vector3(0, 0, 0); } void RayShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const { if (Math::abs(p_normal.z) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) { r_amount = 2; r_supports[0] = Vector3(0, 0, 0); r_supports[1] = Vector3(0, 0, length); } else if (p_normal.z > 0) { r_amount = 1; *r_supports = Vector3(0, 0, length); } else { r_amount = 1; *r_supports = Vector3(0, 0, 0); } } bool RayShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { return false; //simply not possible } bool RayShapeSW::intersect_point(const Vector3 &p_point) const { return false; //simply not possible } Vector3 RayShapeSW::get_closest_point_to(const Vector3 &p_point) const { Vector3 s[2] = { Vector3(0, 0, 0), Vector3(0, 0, length) }; return Geometry::get_closest_point_to_segment(p_point, s); } Vector3 RayShapeSW::get_moment_of_inertia(real_t p_mass) const { return Vector3(); } void RayShapeSW::_setup(real_t p_length) { length = p_length; configure(Rect3(Vector3(0, 0, 0), Vector3(0.1, 0.1, length))); } void RayShapeSW::set_data(const Variant &p_data) { _setup(p_data); } Variant RayShapeSW::get_data() const { return length; } RayShapeSW::RayShapeSW() { length = 1; } /********** SPHERE *************/ real_t SphereShapeSW::get_radius() const { return radius; } void SphereShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { real_t d = p_normal.dot(p_transform.origin); // figure out scale at point Vector3 local_normal = p_transform.basis.xform_inv(p_normal); real_t scale = local_normal.length(); r_min = d - (radius)*scale; r_max = d + (radius)*scale; } Vector3 SphereShapeSW::get_support(const Vector3 &p_normal) const { return p_normal * radius; } void SphereShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const { *r_supports = p_normal * radius; r_amount = 1; } bool SphereShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { return Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(), radius, &r_result, &r_normal); } bool SphereShapeSW::intersect_point(const Vector3 &p_point) const { return p_point.length() < radius; } Vector3 SphereShapeSW::get_closest_point_to(const Vector3 &p_point) const { Vector3 p = p_point; float l = p.length(); if (l < radius) return p_point; return (p / l) * radius; } Vector3 SphereShapeSW::get_moment_of_inertia(real_t p_mass) const { real_t s = 0.4 * p_mass * radius * radius; return Vector3(s, s, s); } void SphereShapeSW::_setup(real_t p_radius) { radius = p_radius; configure(Rect3(Vector3(-radius, -radius, -radius), Vector3(radius * 2.0, radius * 2.0, radius * 2.0))); } void SphereShapeSW::set_data(const Variant &p_data) { _setup(p_data); } Variant SphereShapeSW::get_data() const { return radius; } SphereShapeSW::SphereShapeSW() { radius = 0; } /********** BOX *************/ void BoxShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { // no matter the angle, the box is mirrored anyway Vector3 local_normal = p_transform.basis.xform_inv(p_normal); real_t length = local_normal.abs().dot(half_extents); real_t distance = p_normal.dot(p_transform.origin); r_min = distance - length; r_max = distance + length; } Vector3 BoxShapeSW::get_support(const Vector3 &p_normal) const { Vector3 point( (p_normal.x < 0) ? -half_extents.x : half_extents.x, (p_normal.y < 0) ? -half_extents.y : half_extents.y, (p_normal.z < 0) ? -half_extents.z : half_extents.z); return point; } void BoxShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const { static const int next[3] = { 1, 2, 0 }; static const int next2[3] = { 2, 0, 1 }; for (int i = 0; i < 3; i++) { Vector3 axis; axis[i] = 1.0; real_t dot = p_normal.dot(axis); if (Math::abs(dot) > _FACE_IS_VALID_SUPPORT_THRESHOLD) { //Vector3 axis_b; bool neg = dot < 0; r_amount = 4; Vector3 point; point[i] = half_extents[i]; int i_n = next[i]; int i_n2 = next2[i]; static const real_t sign[4][2] = { { -1.0, 1.0 }, { 1.0, 1.0 }, { 1.0, -1.0 }, { -1.0, -1.0 }, }; for (int j = 0; j < 4; j++) { point[i_n] = sign[j][0] * half_extents[i_n]; point[i_n2] = sign[j][1] * half_extents[i_n2]; r_supports[j] = neg ? -point : point; } if (neg) { SWAP(r_supports[1], r_supports[2]); SWAP(r_supports[0], r_supports[3]); } return; } r_amount = 0; } for (int i = 0; i < 3; i++) { Vector3 axis; axis[i] = 1.0; if (Math::abs(p_normal.dot(axis)) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) { r_amount = 2; int i_n = next[i]; int i_n2 = next2[i]; Vector3 point = half_extents; if (p_normal[i_n] < 0) { point[i_n] = -point[i_n]; } if (p_normal[i_n2] < 0) { point[i_n2] = -point[i_n2]; } r_supports[0] = point; point[i] = -point[i]; r_supports[1] = point; return; } } /* USE POINT */ Vector3 point( (p_normal.x < 0) ? -half_extents.x : half_extents.x, (p_normal.y < 0) ? -half_extents.y : half_extents.y, (p_normal.z < 0) ? -half_extents.z : half_extents.z); r_amount = 1; r_supports[0] = point; } bool BoxShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { Rect3 aabb(-half_extents, half_extents * 2.0); return aabb.intersects_segment(p_begin, p_end, &r_result, &r_normal); } bool BoxShapeSW::intersect_point(const Vector3 &p_point) const { return (Math::abs(p_point.x) < half_extents.x && Math::abs(p_point.y) < half_extents.y && Math::abs(p_point.z) < half_extents.z); } Vector3 BoxShapeSW::get_closest_point_to(const Vector3 &p_point) const { int outside = 0; Vector3 min_point; for (int i = 0; i < 3; i++) { if (Math::abs(p_point[i]) > half_extents[i]) { outside++; if (outside == 1) { //use plane if only one side matches Vector3 n; n[i] = SGN(p_point[i]); Plane p(n, half_extents[i]); min_point = p.project(p_point); } } } if (!outside) return p_point; //it's inside, don't do anything else if (outside == 1) //if only above one plane, this plane clearly wins return min_point; //check segments float min_distance = 1e20; Vector3 closest_vertex = half_extents * p_point.sign(); Vector3 s[2] = { closest_vertex, closest_vertex }; for (int i = 0; i < 3; i++) { s[1] = closest_vertex; s[1][i] = -s[1][i]; //edge Vector3 closest_edge = Geometry::get_closest_point_to_segment(p_point, s); float d = p_point.distance_to(closest_edge); if (d < min_distance) { min_point = closest_edge; min_distance = d; } } return min_point; } Vector3 BoxShapeSW::get_moment_of_inertia(real_t p_mass) const { real_t lx = half_extents.x; real_t ly = half_extents.y; real_t lz = half_extents.z; return Vector3((p_mass / 3.0) * (ly * ly + lz * lz), (p_mass / 3.0) * (lx * lx + lz * lz), (p_mass / 3.0) * (lx * lx + ly * ly)); } void BoxShapeSW::_setup(const Vector3 &p_half_extents) { half_extents = p_half_extents.abs(); configure(Rect3(-half_extents, half_extents * 2)); } void BoxShapeSW::set_data(const Variant &p_data) { _setup(p_data); } Variant BoxShapeSW::get_data() const { return half_extents; } BoxShapeSW::BoxShapeSW() { } /********** CAPSULE *************/ void CapsuleShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { Vector3 n = p_transform.basis.xform_inv(p_normal).normalized(); real_t h = (n.z > 0) ? height : -height; n *= radius; n.z += h * 0.5; r_max = p_normal.dot(p_transform.xform(n)); r_min = p_normal.dot(p_transform.xform(-n)); return; n = p_transform.basis.xform(n); real_t distance = p_normal.dot(p_transform.origin); real_t length = Math::abs(p_normal.dot(n)); r_min = distance - length; r_max = distance + length; ERR_FAIL_COND(r_max < r_min); } Vector3 CapsuleShapeSW::get_support(const Vector3 &p_normal) const { Vector3 n = p_normal; real_t h = (n.z > 0) ? height : -height; n *= radius; n.z += h * 0.5; return n; } void CapsuleShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const { Vector3 n = p_normal; real_t d = n.z; if (Math::abs(d) < _EDGE_IS_VALID_SUPPORT_THRESHOLD) { // make it flat n.z = 0.0; n.normalize(); n *= radius; r_amount = 2; r_supports[0] = n; r_supports[0].z += height * 0.5; r_supports[1] = n; r_supports[1].z -= height * 0.5; } else { real_t h = (d > 0) ? height : -height; n *= radius; n.z += h * 0.5; r_amount = 1; *r_supports = n; } } bool CapsuleShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { Vector3 norm = (p_end - p_begin).normalized(); real_t min_d = 1e20; Vector3 res, n; bool collision = false; Vector3 auxres, auxn; bool collided; // test against cylinder and spheres :-| collided = Geometry::segment_intersects_cylinder(p_begin, p_end, height, radius, &auxres, &auxn); if (collided) { real_t d = norm.dot(auxres); if (d < min_d) { min_d = d; res = auxres; n = auxn; collision = true; } } collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * 0.5), radius, &auxres, &auxn); if (collided) { real_t d = norm.dot(auxres); if (d < min_d) { min_d = d; res = auxres; n = auxn; collision = true; } } collided = Geometry::segment_intersects_sphere(p_begin, p_end, Vector3(0, 0, height * -0.5), radius, &auxres, &auxn); if (collided) { real_t d = norm.dot(auxres); if (d < min_d) { min_d = d; res = auxres; n = auxn; collision = true; } } if (collision) { r_result = res; r_normal = n; } return collision; } bool CapsuleShapeSW::intersect_point(const Vector3 &p_point) const { if (Math::abs(p_point.z) < height * 0.5) { return Vector3(p_point.x, p_point.y, 0).length() < radius; } else { Vector3 p = p_point; p.z = Math::abs(p.z) - height * 0.5; return p.length() < radius; } } Vector3 CapsuleShapeSW::get_closest_point_to(const Vector3 &p_point) const { Vector3 s[2] = { Vector3(0, 0, -height * 0.5), Vector3(0, 0, height * 0.5), }; Vector3 p = Geometry::get_closest_point_to_segment(p_point, s); if (p.distance_to(p_point) < radius) return p_point; return p + (p_point - p).normalized() * radius; } Vector3 CapsuleShapeSW::get_moment_of_inertia(real_t p_mass) const { // use crappy AABB approximation Vector3 extents = get_aabb().size * 0.5; return Vector3( (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y)); } void CapsuleShapeSW::_setup(real_t p_height, real_t p_radius) { height = p_height; radius = p_radius; configure(Rect3(Vector3(-radius, -radius, -height * 0.5 - radius), Vector3(radius * 2, radius * 2, height + radius * 2.0))); } void CapsuleShapeSW::set_data(const Variant &p_data) { Dictionary d = p_data; ERR_FAIL_COND(!d.has("radius")); ERR_FAIL_COND(!d.has("height")); _setup(d["height"], d["radius"]); } Variant CapsuleShapeSW::get_data() const { Dictionary d; d["radius"] = radius; d["height"] = height; return d; } CapsuleShapeSW::CapsuleShapeSW() { height = radius = 0; } /********** CONVEX POLYGON *************/ void ConvexPolygonShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { int vertex_count = mesh.vertices.size(); if (vertex_count == 0) return; const Vector3 *vrts = &mesh.vertices[0]; for (int i = 0; i < vertex_count; i++) { real_t d = p_normal.dot(p_transform.xform(vrts[i])); if (i == 0 || d > r_max) r_max = d; if (i == 0 || d < r_min) r_min = d; } } Vector3 ConvexPolygonShapeSW::get_support(const Vector3 &p_normal) const { Vector3 n = p_normal; int vert_support_idx = -1; real_t support_max; int vertex_count = mesh.vertices.size(); if (vertex_count == 0) return Vector3(); const Vector3 *vrts = &mesh.vertices[0]; for (int i = 0; i < vertex_count; i++) { real_t d = n.dot(vrts[i]); if (i == 0 || d > support_max) { support_max = d; vert_support_idx = i; } } return vrts[vert_support_idx]; } void ConvexPolygonShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const { const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int fc = mesh.faces.size(); const Geometry::MeshData::Edge *edges = mesh.edges.ptr(); int ec = mesh.edges.size(); const Vector3 *vertices = mesh.vertices.ptr(); int vc = mesh.vertices.size(); //find vertex first real_t max; int vtx; for (int i = 0; i < vc; i++) { real_t d = p_normal.dot(vertices[i]); if (i == 0 || d > max) { max = d; vtx = i; } } for (int i = 0; i < fc; i++) { if (faces[i].plane.normal.dot(p_normal) > _FACE_IS_VALID_SUPPORT_THRESHOLD) { int ic = faces[i].indices.size(); const int *ind = faces[i].indices.ptr(); bool valid = false; for (int j = 0; j < ic; j++) { if (ind[j] == vtx) { valid = true; break; } } if (!valid) continue; int m = MIN(p_max, ic); for (int j = 0; j < m; j++) { r_supports[j] = vertices[ind[j]]; } r_amount = m; return; } } for (int i = 0; i < ec; i++) { real_t dot = (vertices[edges[i].a] - vertices[edges[i].b]).normalized().dot(p_normal); dot = ABS(dot); if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD && (edges[i].a == vtx || edges[i].b == vtx)) { r_amount = 2; r_supports[0] = vertices[edges[i].a]; r_supports[1] = vertices[edges[i].b]; return; } } r_supports[0] = vertices[vtx]; r_amount = 1; } bool ConvexPolygonShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int fc = mesh.faces.size(); const Vector3 *vertices = mesh.vertices.ptr(); Vector3 n = p_end - p_begin; real_t min = 1e20; bool col = false; for (int i = 0; i < fc; i++) { if (faces[i].plane.normal.dot(n) > 0) continue; //opposing face int ic = faces[i].indices.size(); const int *ind = faces[i].indices.ptr(); for (int j = 1; j < ic - 1; j++) { Face3 f(vertices[ind[0]], vertices[ind[j]], vertices[ind[j + 1]]); Vector3 result; if (f.intersects_segment(p_begin, p_end, &result)) { real_t d = n.dot(result); if (d < min) { min = d; r_result = result; r_normal = faces[i].plane.normal; col = true; } break; } } } return col; } bool ConvexPolygonShapeSW::intersect_point(const Vector3 &p_point) const { const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int fc = mesh.faces.size(); for (int i = 0; i < fc; i++) { if (faces[i].plane.distance_to(p_point) >= 0) return false; } return true; } Vector3 ConvexPolygonShapeSW::get_closest_point_to(const Vector3 &p_point) const { const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int fc = mesh.faces.size(); const Vector3 *vertices = mesh.vertices.ptr(); bool all_inside = true; for (int i = 0; i < fc; i++) { if (!faces[i].plane.is_point_over(p_point)) continue; all_inside = false; bool is_inside = true; int ic = faces[i].indices.size(); const int *indices = faces[i].indices.ptr(); for (int j = 0; j < ic; j++) { Vector3 a = vertices[indices[j]]; Vector3 b = vertices[indices[(j + 1) % ic]]; Vector3 n = (a - b).cross(faces[i].plane.normal).normalized(); if (Plane(a, n).is_point_over(p_point)) { is_inside = false; break; } } if (is_inside) { return faces[i].plane.project(p_point); } } if (all_inside) { return p_point; } float min_distance = 1e20; Vector3 min_point; //check edges const Geometry::MeshData::Edge *edges = mesh.edges.ptr(); int ec = mesh.edges.size(); for (int i = 0; i < ec; i++) { Vector3 s[2] = { vertices[edges[i].a], vertices[edges[i].b] }; Vector3 closest = Geometry::get_closest_point_to_segment(p_point, s); float d = closest.distance_to(p_point); if (d < min_distance) { min_distance = d; min_point = closest; } } return min_point; } Vector3 ConvexPolygonShapeSW::get_moment_of_inertia(real_t p_mass) const { // use crappy AABB approximation Vector3 extents = get_aabb().size * 0.5; return Vector3( (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y)); } void ConvexPolygonShapeSW::_setup(const Vector &p_vertices) { Error err = QuickHull::build(p_vertices, mesh); Rect3 _aabb; for (int i = 0; i < mesh.vertices.size(); i++) { if (i == 0) _aabb.position = mesh.vertices[i]; else _aabb.expand_to(mesh.vertices[i]); } configure(_aabb); } void ConvexPolygonShapeSW::set_data(const Variant &p_data) { _setup(p_data); } Variant ConvexPolygonShapeSW::get_data() const { return mesh.vertices; } ConvexPolygonShapeSW::ConvexPolygonShapeSW() { } /********** FACE POLYGON *************/ void FaceShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { for (int i = 0; i < 3; i++) { Vector3 v = p_transform.xform(vertex[i]); real_t d = p_normal.dot(v); if (i == 0 || d > r_max) r_max = d; if (i == 0 || d < r_min) r_min = d; } } Vector3 FaceShapeSW::get_support(const Vector3 &p_normal) const { int vert_support_idx = -1; real_t support_max; for (int i = 0; i < 3; i++) { real_t d = p_normal.dot(vertex[i]); if (i == 0 || d > support_max) { support_max = d; vert_support_idx = i; } } return vertex[vert_support_idx]; } void FaceShapeSW::get_supports(const Vector3 &p_normal, int p_max, Vector3 *r_supports, int &r_amount) const { Vector3 n = p_normal; /** TEST FACE AS SUPPORT **/ if (normal.dot(n) > _FACE_IS_VALID_SUPPORT_THRESHOLD) { r_amount = 3; for (int i = 0; i < 3; i++) { r_supports[i] = vertex[i]; } return; } /** FIND SUPPORT VERTEX **/ int vert_support_idx = -1; real_t support_max; for (int i = 0; i < 3; i++) { real_t d = n.dot(vertex[i]); if (i == 0 || d > support_max) { support_max = d; vert_support_idx = i; } } /** TEST EDGES AS SUPPORT **/ for (int i = 0; i < 3; i++) { int nx = (i + 1) % 3; if (i != vert_support_idx && nx != vert_support_idx) continue; // check if edge is valid as a support real_t dot = (vertex[i] - vertex[nx]).normalized().dot(n); dot = ABS(dot); if (dot < _EDGE_IS_VALID_SUPPORT_THRESHOLD) { r_amount = 2; r_supports[0] = vertex[i]; r_supports[1] = vertex[nx]; return; } } r_amount = 1; r_supports[0] = vertex[vert_support_idx]; } bool FaceShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { bool c = Geometry::segment_intersects_triangle(p_begin, p_end, vertex[0], vertex[1], vertex[2], &r_result); if (c) { r_normal = Plane(vertex[0], vertex[1], vertex[2]).normal; if (r_normal.dot(p_end - p_begin) > 0) { r_normal = -r_normal; } } return c; } bool FaceShapeSW::intersect_point(const Vector3 &p_point) const { return false; //face is flat } Vector3 FaceShapeSW::get_closest_point_to(const Vector3 &p_point) const { return Face3(vertex[0], vertex[1], vertex[2]).get_closest_point_to(p_point); } Vector3 FaceShapeSW::get_moment_of_inertia(real_t p_mass) const { return Vector3(); // Sorry, but i don't think anyone cares, FaceShape! } FaceShapeSW::FaceShapeSW() { configure(Rect3()); } PoolVector ConcavePolygonShapeSW::get_faces() const { PoolVector rfaces; rfaces.resize(faces.size() * 3); for (int i = 0; i < faces.size(); i++) { Face f = faces.get(i); for (int j = 0; j < 3; j++) { rfaces.set(i * 3 + j, vertices.get(f.indices[j])); } } return rfaces; } void ConcavePolygonShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { int count = vertices.size(); if (count == 0) { r_min = 0; r_max = 0; return; } PoolVector::Read r = vertices.read(); const Vector3 *vptr = r.ptr(); for (int i = 0; i < count; i++) { real_t d = p_normal.dot(p_transform.xform(vptr[i])); if (i == 0 || d > r_max) r_max = d; if (i == 0 || d < r_min) r_min = d; } } Vector3 ConcavePolygonShapeSW::get_support(const Vector3 &p_normal) const { int count = vertices.size(); if (count == 0) return Vector3(); PoolVector::Read r = vertices.read(); const Vector3 *vptr = r.ptr(); Vector3 n = p_normal; int vert_support_idx = -1; real_t support_max; for (int i = 0; i < count; i++) { real_t d = n.dot(vptr[i]); if (i == 0 || d > support_max) { support_max = d; vert_support_idx = i; } } return vptr[vert_support_idx]; } void ConcavePolygonShapeSW::_cull_segment(int p_idx, _SegmentCullParams *p_params) const { const BVH *bvh = &p_params->bvh[p_idx]; /* if (p_params->dir.dot(bvh->aabb.get_support(-p_params->dir))>p_params->min_d) return; //test against whole AABB, which isn't very costly */ //printf("addr: %p\n",bvh); if (!bvh->aabb.intersects_segment(p_params->from, p_params->to)) { return; } if (bvh->face_index >= 0) { Vector3 res; Vector3 vertices[3] = { p_params->vertices[p_params->faces[bvh->face_index].indices[0]], p_params->vertices[p_params->faces[bvh->face_index].indices[1]], p_params->vertices[p_params->faces[bvh->face_index].indices[2]] }; if (Geometry::segment_intersects_triangle( p_params->from, p_params->to, vertices[0], vertices[1], vertices[2], &res)) { real_t d = p_params->dir.dot(res) - p_params->dir.dot(p_params->from); //TODO, seems segmen/triangle intersection is broken :( if (d > 0 && d < p_params->min_d) { p_params->min_d = d; p_params->result = res; p_params->normal = Plane(vertices[0], vertices[1], vertices[2]).normal; if (p_params->normal.dot(p_params->dir) > 0) p_params->normal = -p_params->normal; p_params->collisions++; } } } else { if (bvh->left >= 0) _cull_segment(bvh->left, p_params); if (bvh->right >= 0) _cull_segment(bvh->right, p_params); } } bool ConcavePolygonShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_result, Vector3 &r_normal) const { if (faces.size() == 0) return false; // unlock data PoolVector::Read fr = faces.read(); PoolVector::Read vr = vertices.read(); PoolVector::Read br = bvh.read(); _SegmentCullParams params; params.from = p_begin; params.to = p_end; params.collisions = 0; params.dir = (p_end - p_begin).normalized(); params.faces = fr.ptr(); params.vertices = vr.ptr(); params.bvh = br.ptr(); params.min_d = 1e20; // cull _cull_segment(0, ¶ms); if (params.collisions > 0) { r_result = params.result; r_normal = params.normal; return true; } else { return false; } } bool ConcavePolygonShapeSW::intersect_point(const Vector3 &p_point) const { return false; //face is flat } Vector3 ConcavePolygonShapeSW::get_closest_point_to(const Vector3 &p_point) const { return Vector3(); } void ConcavePolygonShapeSW::_cull(int p_idx, _CullParams *p_params) const { const BVH *bvh = &p_params->bvh[p_idx]; if (!p_params->aabb.intersects(bvh->aabb)) return; if (bvh->face_index >= 0) { const Face *f = &p_params->faces[bvh->face_index]; FaceShapeSW *face = p_params->face; face->normal = f->normal; face->vertex[0] = p_params->vertices[f->indices[0]]; face->vertex[1] = p_params->vertices[f->indices[1]]; face->vertex[2] = p_params->vertices[f->indices[2]]; p_params->callback(p_params->userdata, face); } else { if (bvh->left >= 0) { _cull(bvh->left, p_params); } if (bvh->right >= 0) { _cull(bvh->right, p_params); } } } void ConcavePolygonShapeSW::cull(const Rect3 &p_local_aabb, Callback p_callback, void *p_userdata) const { // make matrix local to concave if (faces.size() == 0) return; Rect3 local_aabb = p_local_aabb; // unlock data PoolVector::Read fr = faces.read(); PoolVector::Read vr = vertices.read(); PoolVector::Read br = bvh.read(); FaceShapeSW face; // use this to send in the callback _CullParams params; params.aabb = local_aabb; params.face = &face; params.faces = fr.ptr(); params.vertices = vr.ptr(); params.bvh = br.ptr(); params.callback = p_callback; params.userdata = p_userdata; // cull _cull(0, ¶ms); } Vector3 ConcavePolygonShapeSW::get_moment_of_inertia(real_t p_mass) const { // use crappy AABB approximation Vector3 extents = get_aabb().size * 0.5; return Vector3( (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y)); } struct _VolumeSW_BVH_Element { Rect3 aabb; Vector3 center; int face_index; }; struct _VolumeSW_BVH_CompareX { _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const { return a.center.x < b.center.x; } }; struct _VolumeSW_BVH_CompareY { _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const { return a.center.y < b.center.y; } }; struct _VolumeSW_BVH_CompareZ { _FORCE_INLINE_ bool operator()(const _VolumeSW_BVH_Element &a, const _VolumeSW_BVH_Element &b) const { return a.center.z < b.center.z; } }; struct _VolumeSW_BVH { Rect3 aabb; _VolumeSW_BVH *left; _VolumeSW_BVH *right; int face_index; }; _VolumeSW_BVH *_volume_sw_build_bvh(_VolumeSW_BVH_Element *p_elements, int p_size, int &count) { _VolumeSW_BVH *bvh = memnew(_VolumeSW_BVH); if (p_size == 1) { //leaf bvh->aabb = p_elements[0].aabb; bvh->left = NULL; bvh->right = NULL; bvh->face_index = p_elements->face_index; count++; return bvh; } else { bvh->face_index = -1; } Rect3 aabb; for (int i = 0; i < p_size; i++) { if (i == 0) aabb = p_elements[i].aabb; else aabb.merge_with(p_elements[i].aabb); } bvh->aabb = aabb; switch (aabb.get_longest_axis_index()) { case 0: { SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareX> sort_x; sort_x.sort(p_elements, p_size); } break; case 1: { SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareY> sort_y; sort_y.sort(p_elements, p_size); } break; case 2: { SortArray<_VolumeSW_BVH_Element, _VolumeSW_BVH_CompareZ> sort_z; sort_z.sort(p_elements, p_size); } break; } int split = p_size / 2; bvh->left = _volume_sw_build_bvh(p_elements, split, count); bvh->right = _volume_sw_build_bvh(&p_elements[split], p_size - split, count); //printf("branch at %p - %i: %i\n",bvh,count,bvh->face_index); count++; return bvh; } void ConcavePolygonShapeSW::_fill_bvh(_VolumeSW_BVH *p_bvh_tree, BVH *p_bvh_array, int &p_idx) { int idx = p_idx; p_bvh_array[idx].aabb = p_bvh_tree->aabb; p_bvh_array[idx].face_index = p_bvh_tree->face_index; //printf("%p - %i: %i(%p) -- %p:%p\n",%p_bvh_array[idx],p_idx,p_bvh_array[i]->face_index,&p_bvh_tree->face_index,p_bvh_tree->left,p_bvh_tree->right); if (p_bvh_tree->left) { p_bvh_array[idx].left = ++p_idx; _fill_bvh(p_bvh_tree->left, p_bvh_array, p_idx); } else { p_bvh_array[p_idx].left = -1; } if (p_bvh_tree->right) { p_bvh_array[idx].right = ++p_idx; _fill_bvh(p_bvh_tree->right, p_bvh_array, p_idx); } else { p_bvh_array[p_idx].right = -1; } memdelete(p_bvh_tree); } void ConcavePolygonShapeSW::_setup(PoolVector p_faces) { int src_face_count = p_faces.size(); if (src_face_count == 0) { configure(Rect3()); return; } ERR_FAIL_COND(src_face_count % 3); src_face_count /= 3; PoolVector::Read r = p_faces.read(); const Vector3 *facesr = r.ptr(); #if 0 Map point_map; List face_list; for(int i=0;i::Element *E=point_map.find(faceaux.vertex[j]); if (E) { face.indices[j]=E->value(); } else { face.indices[j]=point_map.size(); point_map.insert(faceaux.vertex[j],point_map.size()); } } face_list.push_back(face); } vertices.resize( point_map.size() ); PoolVector::Write vw = vertices.write(); Vector3 *verticesw=vw.ptr(); AABB _aabb; for( Map::Element *E=point_map.front();E;E=E->next()) { if (E==point_map.front()) { _aabb.pos=E->key(); } else { _aabb.expand_to(E->key()); } verticesw[E->value()]=E->key(); } point_map.clear(); // not needed anymore faces.resize(face_list.size()); PoolVector::Write w = faces.write(); Face *facesw=w.ptr(); int fc=0; for( List::Element *E=face_list.front();E;E=E->next()) { facesw[fc++]=E->get(); } face_list.clear(); PoolVector<_VolumeSW_BVH_Element> bvh_array; bvh_array.resize( fc ); PoolVector<_VolumeSW_BVH_Element>::Write bvhw = bvh_array.write(); _VolumeSW_BVH_Element *bvh_arrayw=bvhw.ptr(); for(int i=0;i::Write(); vw=PoolVector::Write(); int count=0; _VolumeSW_BVH *bvh_tree=_volume_sw_build_bvh(bvh_arrayw,fc,count); ERR_FAIL_COND(count==0); bvhw=PoolVector<_VolumeSW_BVH_Element>::Write(); bvh.resize( count+1 ); PoolVector::Write bvhw2 = bvh.write(); BVH*bvh_arrayw2=bvhw2.ptr(); int idx=0; _fill_bvh(bvh_tree,bvh_arrayw2,idx); set_aabb(_aabb); #else PoolVector<_VolumeSW_BVH_Element> bvh_array; bvh_array.resize(src_face_count); PoolVector<_VolumeSW_BVH_Element>::Write bvhw = bvh_array.write(); _VolumeSW_BVH_Element *bvh_arrayw = bvhw.ptr(); faces.resize(src_face_count); PoolVector::Write w = faces.write(); Face *facesw = w.ptr(); vertices.resize(src_face_count * 3); PoolVector::Write vw = vertices.write(); Vector3 *verticesw = vw.ptr(); Rect3 _aabb; for (int i = 0; i < src_face_count; i++) { Face3 face(facesr[i * 3 + 0], facesr[i * 3 + 1], facesr[i * 3 + 2]); bvh_arrayw[i].aabb = face.get_aabb(); bvh_arrayw[i].center = bvh_arrayw[i].aabb.position + bvh_arrayw[i].aabb.size * 0.5; bvh_arrayw[i].face_index = i; facesw[i].indices[0] = i * 3 + 0; facesw[i].indices[1] = i * 3 + 1; facesw[i].indices[2] = i * 3 + 2; facesw[i].normal = face.get_plane().normal; verticesw[i * 3 + 0] = face.vertex[0]; verticesw[i * 3 + 1] = face.vertex[1]; verticesw[i * 3 + 2] = face.vertex[2]; if (i == 0) _aabb = bvh_arrayw[i].aabb; else _aabb.merge_with(bvh_arrayw[i].aabb); } w = PoolVector::Write(); vw = PoolVector::Write(); int count = 0; _VolumeSW_BVH *bvh_tree = _volume_sw_build_bvh(bvh_arrayw, src_face_count, count); bvh.resize(count + 1); PoolVector::Write bvhw2 = bvh.write(); BVH *bvh_arrayw2 = bvhw2.ptr(); int idx = 0; _fill_bvh(bvh_tree, bvh_arrayw2, idx); configure(_aabb); // this type of shape has no margin #endif } void ConcavePolygonShapeSW::set_data(const Variant &p_data) { _setup(p_data); } Variant ConcavePolygonShapeSW::get_data() const { return get_faces(); } ConcavePolygonShapeSW::ConcavePolygonShapeSW() { } /* HEIGHT MAP SHAPE */ PoolVector HeightMapShapeSW::get_heights() const { return heights; } int HeightMapShapeSW::get_width() const { return width; } int HeightMapShapeSW::get_depth() const { return depth; } real_t HeightMapShapeSW::get_cell_size() const { return cell_size; } void HeightMapShapeSW::project_range(const Vector3 &p_normal, const Transform &p_transform, real_t &r_min, real_t &r_max) const { //not very useful, but not very used either p_transform.xform(get_aabb()).project_range_in_plane(Plane(p_normal, 0), r_min, r_max); } Vector3 HeightMapShapeSW::get_support(const Vector3 &p_normal) const { //not very useful, but not very used either return get_aabb().get_support(p_normal); } bool HeightMapShapeSW::intersect_segment(const Vector3 &p_begin, const Vector3 &p_end, Vector3 &r_point, Vector3 &r_normal) const { return false; } bool HeightMapShapeSW::intersect_point(const Vector3 &p_point) const { return false; } Vector3 HeightMapShapeSW::get_closest_point_to(const Vector3 &p_point) const { return Vector3(); } void HeightMapShapeSW::cull(const Rect3 &p_local_aabb, Callback p_callback, void *p_userdata) const { } Vector3 HeightMapShapeSW::get_moment_of_inertia(real_t p_mass) const { // use crappy AABB approximation Vector3 extents = get_aabb().size * 0.5; return Vector3( (p_mass / 3.0) * (extents.y * extents.y + extents.z * extents.z), (p_mass / 3.0) * (extents.x * extents.x + extents.z * extents.z), (p_mass / 3.0) * (extents.y * extents.y + extents.y * extents.y)); } void HeightMapShapeSW::_setup(PoolVector p_heights, int p_width, int p_depth, real_t p_cell_size) { heights = p_heights; width = p_width; depth = p_depth; cell_size = p_cell_size; PoolVector::Read r = heights.read(); Rect3 aabb; for (int i = 0; i < depth; i++) { for (int j = 0; j < width; j++) { real_t h = r[i * width + j]; Vector3 pos(j * cell_size, h, i * cell_size); if (i == 0 || j == 0) aabb.position = pos; else aabb.expand_to(pos); } } configure(aabb); } void HeightMapShapeSW::set_data(const Variant &p_data) { ERR_FAIL_COND(p_data.get_type() != Variant::DICTIONARY); Dictionary d = p_data; ERR_FAIL_COND(!d.has("width")); ERR_FAIL_COND(!d.has("depth")); ERR_FAIL_COND(!d.has("cell_size")); ERR_FAIL_COND(!d.has("heights")); int width = d["width"]; int depth = d["depth"]; real_t cell_size = d["cell_size"]; PoolVector heights = d["heights"]; ERR_FAIL_COND(width <= 0); ERR_FAIL_COND(depth <= 0); ERR_FAIL_COND(cell_size <= CMP_EPSILON); ERR_FAIL_COND(heights.size() != (width * depth)); _setup(heights, width, depth, cell_size); } Variant HeightMapShapeSW::get_data() const { ERR_FAIL_V(Variant()); } HeightMapShapeSW::HeightMapShapeSW() { width = 0; depth = 0; cell_size = 0; }