/*************************************************************************/ /* lightmapper_cpu.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "lightmapper_cpu.h" #include "core/math/geometry.h" #include "core/os/os.h" #include "core/os/threaded_array_processor.h" #include "core/project_settings.h" #include "modules/raycast/lightmap_raycaster.h" Error LightmapperCPU::_layout_atlas(int p_max_size, Vector2i *r_atlas_size, int *r_atlas_slices) { Vector2i atlas_size; for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (mesh_instances[i].generate_lightmap) { Vector2i size = mesh_instances[i].size; atlas_size.width = MAX(atlas_size.width, size.width + 2); atlas_size.height = MAX(atlas_size.height, size.height + 2); } } int max = nearest_power_of_2_templated(atlas_size.width); max = MAX(max, nearest_power_of_2_templated(atlas_size.height)); if (max > p_max_size) { return ERR_INVALID_DATA; } Vector2i best_atlas_size; int best_atlas_slices = 0; int best_atlas_memory = 0x7FFFFFFF; float best_atlas_mem_utilization = 0; Vector best_atlas_offsets; Vector best_scaled_sizes; int first_try_mem_occupied = 0; int first_try_mem_used = 0; for (int recovery_percent = 0; recovery_percent <= 100; recovery_percent += 10) { // These only make sense from the second round of the loop float recovery_scale = 1; int target_mem_occupied = 0; if (recovery_percent != 0) { target_mem_occupied = first_try_mem_occupied + (first_try_mem_used - first_try_mem_occupied) * recovery_percent * 0.01f; float new_squared_recovery_scale = static_cast(target_mem_occupied) / first_try_mem_occupied; if (new_squared_recovery_scale > 1.0f) { recovery_scale = Math::sqrt(new_squared_recovery_scale); } } atlas_size = Vector2i(max, max); while (atlas_size.x <= p_max_size && atlas_size.y <= p_max_size) { if (recovery_percent != 0) { // Find out how much memory is not recoverable (because of lightmaps that can't grow), // to compute a greater recovery scale for those that can. int mem_unrecoverable = 0; for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (mesh_instances[i].generate_lightmap) { Vector2i scaled_size = Vector2i( static_cast(recovery_scale * mesh_instances[i].size.x), static_cast(recovery_scale * mesh_instances[i].size.y)); if (scaled_size.x + 2 > atlas_size.x || scaled_size.y + 2 > atlas_size.y) { mem_unrecoverable += scaled_size.x * scaled_size.y - mesh_instances[i].size.x * mesh_instances[i].size.y; } } } float new_squared_recovery_scale = static_cast(target_mem_occupied - mem_unrecoverable) / (first_try_mem_occupied - mem_unrecoverable); if (new_squared_recovery_scale > 1.0f) { recovery_scale = Math::sqrt(new_squared_recovery_scale); } } Vector scaled_sizes; scaled_sizes.resize(mesh_instances.size()); { for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (mesh_instances[i].generate_lightmap) { if (recovery_percent == 0) { scaled_sizes.write[i] = mesh_instances[i].size; } else { Vector2i scaled_size = Vector2i( static_cast(recovery_scale * mesh_instances[i].size.x), static_cast(recovery_scale * mesh_instances[i].size.y)); if (scaled_size.x + 2 <= atlas_size.x && scaled_size.y + 2 <= atlas_size.y) { scaled_sizes.write[i] = scaled_size; } else { scaled_sizes.write[i] = mesh_instances[i].size; } } } else { // Don't consider meshes with no generated lightmap here; will compensate later scaled_sizes.write[i] = Vector2i(); } } } Vector source_sizes; source_sizes.resize(scaled_sizes.size()); Vector source_indices; source_indices.resize(scaled_sizes.size()); for (int i = 0; i < source_sizes.size(); i++) { source_sizes.write[i] = scaled_sizes[i] + Vector2i(2, 2); // Add padding between lightmaps source_indices.write[i] = i; } Vector curr_atlas_offsets; curr_atlas_offsets.resize(source_sizes.size()); int slices = 0; while (source_sizes.size() > 0) { Vector offsets = Geometry::partial_pack_rects(source_sizes, atlas_size); Vector new_indices; Vector new_sources; for (int i = 0; i < offsets.size(); i++) { Geometry::PackRectsResult ofs = offsets[i]; int sidx = source_indices[i]; if (ofs.packed) { curr_atlas_offsets.write[sidx] = { slices, ofs.x + 1, ofs.y + 1 }; } else { new_indices.push_back(sidx); new_sources.push_back(source_sizes[i]); } } source_sizes = new_sources; source_indices = new_indices; slices++; } int mem_used = atlas_size.x * atlas_size.y * slices; int mem_occupied = 0; for (int i = 0; i < curr_atlas_offsets.size(); i++) { mem_occupied += scaled_sizes[i].x * scaled_sizes[i].y; } float mem_utilization = static_cast(mem_occupied) / mem_used; if (slices * atlas_size.y < 16384) { // Maximum Image size if (mem_used < best_atlas_memory || (mem_used == best_atlas_memory && mem_utilization > best_atlas_mem_utilization)) { best_atlas_size = atlas_size; best_atlas_offsets = curr_atlas_offsets; best_atlas_slices = slices; best_atlas_memory = mem_used; best_atlas_mem_utilization = mem_utilization; best_scaled_sizes = scaled_sizes; } } if (recovery_percent == 0) { first_try_mem_occupied = mem_occupied; first_try_mem_used = mem_used; } if (atlas_size.width == atlas_size.height) { atlas_size.width *= 2; } else { atlas_size.height *= 2; } } } if (best_atlas_size == Vector2i()) { return ERR_INVALID_DATA; } *r_atlas_size = best_atlas_size; *r_atlas_slices = best_atlas_slices; for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (best_scaled_sizes[i] != Vector2i()) { mesh_instances[i].size = best_scaled_sizes[i]; mesh_instances[i].offset = Vector2i(best_atlas_offsets[i].x, best_atlas_offsets[i].y); mesh_instances[i].slice = best_atlas_offsets[i].slice; } } return OK; } void LightmapperCPU::_thread_func_callback(void *p_thread_data) { ThreadData *thread_data = reinterpret_cast(p_thread_data); thread_process_array(thread_data->count, thread_data->instance, &LightmapperCPU::_thread_func_wrapper, thread_data); } void LightmapperCPU::_thread_func_wrapper(uint32_t p_idx, ThreadData *p_thread_data) { if (thread_cancelled) { return; } (p_thread_data->instance->*p_thread_data->thread_func)(p_idx, p_thread_data->userdata); thread_progress++; } bool LightmapperCPU::_parallel_run(int p_count, const String &p_description, BakeThreadFunc p_thread_func, void *p_userdata, BakeStepFunc p_substep_func) { bool cancelled = false; if (p_substep_func) { cancelled = p_substep_func(0.0f, vformat("%s (%d/%d)", p_description, 0, p_count), nullptr, false); } thread_progress = 0; thread_cancelled = false; #ifdef NO_THREAD for (int i = 0; !cancelled && i < p_count; i++) { (this->*p_thread_func)(i, p_userdata); float p = float(i) / p_count; if (p_substep_func) { cancelled = p_substep_func(p, vformat("%s (%d/%d)", p_description, i + 1, p_count), nullptr, false); } } #else if (p_count == 0) { return cancelled; } ThreadData td; td.instance = this; td.count = p_count; td.thread_func = p_thread_func; td.userdata = p_userdata; Thread runner_thread; runner_thread.start(_thread_func_callback, &td); int progress = thread_progress; while (!cancelled && progress < p_count) { float p = float(progress) / p_count; if (p_substep_func) { cancelled = p_substep_func(p, vformat("%s (%d/%d)", p_description, progress + 1, p_count), nullptr, false); } progress = thread_progress; } thread_cancelled = cancelled; runner_thread.wait_to_finish(); #endif thread_cancelled = false; return cancelled; } void LightmapperCPU::_generate_buffer(uint32_t p_idx, void *p_unused) { const Size2i &size = mesh_instances[p_idx].size; int buffer_size = size.x * size.y; LocalVector &lightmap = scene_lightmaps[p_idx]; LocalVector &lightmap_indices = scene_lightmap_indices[p_idx]; lightmap_indices.resize(buffer_size); for (unsigned int i = 0; i < lightmap_indices.size(); i++) { lightmap_indices[i] = -1; } MeshData &md = mesh_instances[p_idx].data; LocalVector> albedo_images; LocalVector> emission_images; for (int surface_id = 0; surface_id < md.albedo.size(); surface_id++) { albedo_images.push_back(_init_bake_texture(md.albedo[surface_id], albedo_textures, Image::FORMAT_RGBA8)); emission_images.push_back(_init_bake_texture(md.emission[surface_id], emission_textures, Image::FORMAT_RGBH)); } int surface_id = 0; int surface_facecount = 0; const Vector3 *points_ptr = md.points.ptr(); const Vector3 *normals_ptr = md.normal.ptr(); const Vector2 *uvs_ptr = md.uv.empty() ? nullptr : md.uv.ptr(); const Vector2 *uv2s_ptr = md.uv2.ptr(); for (int i = 0; i < md.points.size() / 3; i++) { Ref albedo = albedo_images[surface_id]; Ref emission = emission_images[surface_id]; albedo->lock(); emission->lock(); _plot_triangle(&(uv2s_ptr[i * 3]), &(points_ptr[i * 3]), &(normals_ptr[i * 3]), uvs_ptr ? &(uvs_ptr[i * 3]) : nullptr, albedo, emission, size, lightmap, lightmap_indices); albedo->unlock(); emission->unlock(); surface_facecount++; if (surface_facecount == md.surface_facecounts[surface_id]) { surface_id++; surface_facecount = 0; } } } Ref LightmapperCPU::_init_bake_texture(const MeshData::TextureDef &p_texture_def, const Map> &p_tex_cache, Image::Format p_default_format) { Ref ret; if (p_texture_def.tex_rid.is_valid()) { ret = p_tex_cache[p_texture_def.tex_rid]->duplicate(); ret->lock(); for (int j = 0; j < ret->get_height(); j++) { for (int i = 0; i < ret->get_width(); i++) { ret->set_pixel(i, j, ret->get_pixel(i, j) * p_texture_def.mul + p_texture_def.add); } } ret->unlock(); } else { ret.instance(); ret->create(8, 8, false, p_default_format); ret->fill(p_texture_def.add * p_texture_def.mul); } return ret; } Color LightmapperCPU::_bilinear_sample(const Ref &p_img, const Vector2 &p_uv, bool p_clamp_x, bool p_clamp_y) { int width = p_img->get_width(); int height = p_img->get_height(); Vector2 uv; uv.x = p_clamp_x ? p_uv.x : Math::fposmod(p_uv.x, 1.0f); uv.y = p_clamp_y ? p_uv.y : Math::fposmod(p_uv.y, 1.0f); float xf = uv.x * width; float yf = uv.y * height; int xi = (int)xf; int yi = (int)yf; Color texels[4]; for (int i = 0; i < 4; i++) { int sample_x = xi + i % 2; int sample_y = yi + i / 2; sample_x = CLAMP(sample_x, 0, width - 1); sample_y = CLAMP(sample_y, 0, height - 1); texels[i] = p_img->get_pixel(sample_x, sample_y); } float tx = xf - xi; float ty = yf - yi; Color c = Color(0, 0, 0, 0); for (int i = 0; i < 4; i++) { c[i] = Math::lerp(Math::lerp(texels[0][i], texels[1][i], tx), Math::lerp(texels[2][i], texels[3][i], tx), ty); } return c; } Vector3 LightmapperCPU::_fix_sample_position(const Vector3 &p_position, const Vector3 &p_texel_center, const Vector3 &p_normal, const Vector3 &p_tangent, const Vector3 &p_bitangent, const Vector2 &p_texel_size) { Basis tangent_basis(p_tangent, p_bitangent, p_normal); tangent_basis.orthonormalize(); Vector2 half_size = p_texel_size / 2.0f; Vector3 corrected = p_position; for (int i = -1; i <= 1; i += 1) { for (int j = -1; j <= 1; j += 1) { if (i == 0 && j == 0) { continue; } Vector3 offset = Vector3(half_size.x * i, half_size.y * j, 0.0); Vector3 rotated_offset = tangent_basis.xform_inv(offset); Vector3 target = p_texel_center + rotated_offset; Vector3 ray_vector = target - corrected; Vector3 ray_back_offset = -ray_vector.normalized() * parameters.bias / 2.0; Vector3 ray_origin = corrected + ray_back_offset; ray_vector = target - ray_origin; float ray_length = ray_vector.length(); LightmapRaycaster::Ray ray(ray_origin + p_normal * parameters.bias, ray_vector.normalized(), 0.0f, ray_length + parameters.bias / 2.0); bool hit = raycaster->intersect(ray); if (hit) { ray.normal.normalize(); if (ray.normal.dot(ray_vector.normalized()) > 0.0f) { corrected = ray_origin + ray.dir * ray.tfar + ray.normal * (parameters.bias * 2.0f); } } } } return corrected; } void LightmapperCPU::_plot_triangle(const Vector2 *p_vertices, const Vector3 *p_positions, const Vector3 *p_normals, const Vector2 *p_uvs, const Ref &p_albedo, const Ref &p_emission, Vector2i p_size, LocalVector &r_lightmap, LocalVector &r_lightmap_indices) { Vector2 pv0 = p_vertices[0]; Vector2 pv1 = p_vertices[1]; Vector2 pv2 = p_vertices[2]; Vector2 v0 = pv0 * p_size; Vector2 v1 = pv1 * p_size; Vector2 v2 = pv2 * p_size; Vector3 p0 = p_positions[0]; Vector3 p1 = p_positions[1]; Vector3 p2 = p_positions[2]; Vector3 n0 = p_normals[0]; Vector3 n1 = p_normals[1]; Vector3 n2 = p_normals[2]; Vector2 uv0 = p_uvs == nullptr ? Vector2(0.5f, 0.5f) : p_uvs[0]; Vector2 uv1 = p_uvs == nullptr ? Vector2(0.5f, 0.5f) : p_uvs[1]; Vector2 uv2 = p_uvs == nullptr ? Vector2(0.5f, 0.5f) : p_uvs[2]; #define edgeFunction(a, b, c) ((c)[0] - (a)[0]) * ((b)[1] - (a)[1]) - ((c)[1] - (a)[1]) * ((b)[0] - (a)[0]) if (edgeFunction(v0, v1, v2) < 0.0) { SWAP(pv1, pv2); SWAP(v1, v2); SWAP(p1, p2); SWAP(n1, n2); SWAP(uv1, uv2); } Vector3 edge1 = p1 - p0; Vector3 edge2 = p2 - p0; Vector2 uv_edge1 = pv1 - pv0; Vector2 uv_edge2 = pv2 - pv0; float r = 1.0f / (uv_edge1.x * uv_edge2.y - uv_edge1.y * uv_edge2.x); Vector3 tangent = (edge1 * uv_edge2.y - edge2 * uv_edge1.y) * r; Vector3 bitangent = (edge2 * uv_edge1.x - edge1 * uv_edge2.x) * r; tangent.normalize(); bitangent.normalize(); // Compute triangle bounding box Vector2 bbox_min = Vector2(MIN(v0.x, MIN(v1.x, v2.x)), MIN(v0.y, MIN(v1.y, v2.y))); Vector2 bbox_max = Vector2(MAX(v0.x, MAX(v1.x, v2.x)), MAX(v0.y, MAX(v1.y, v2.y))); bbox_min = bbox_min.floor(); bbox_max = bbox_max.ceil(); uint32_t min_x = MAX(bbox_min.x - 2, 0); uint32_t min_y = MAX(bbox_min.y - 2, 0); uint32_t max_x = MIN(bbox_max.x, p_size.x - 1); uint32_t max_y = MIN(bbox_max.y, p_size.y - 1); Vector2 texel_size; Vector2 centroid = (v0 + v1 + v2) / 3.0f; Vector3 centroid_pos = (p0 + p1 + p2) / 3.0f; for (int i = 0; i < 2; i++) { Vector2 p = centroid; p[i] += 1; Vector3 bary = Geometry::barycentric_coordinates_2d(p, v0, v1, v2); if (bary.length() <= 1.0) { Vector3 pos = p0 * bary[0] + p1 * bary[1] + p2 * bary[2]; texel_size[i] = centroid_pos.distance_to(pos); } } Vector pixel_polygon; pixel_polygon.resize(4); static const Vector2 corners[4] = { Vector2(0, 0), Vector2(0, 1), Vector2(1, 1), Vector2(1, 0) }; Vector triangle_polygon; triangle_polygon.push_back(v0); triangle_polygon.push_back(v1); triangle_polygon.push_back(v2); for (uint32_t j = min_y; j <= max_y; ++j) { for (uint32_t i = min_x; i <= max_x; i++) { int ofs = j * p_size.x + i; int texel_idx = r_lightmap_indices[ofs]; if (texel_idx >= 0 && r_lightmap[texel_idx].area_coverage >= 0.5f) { continue; } Vector3 barycentric_coords; float area_coverage = 0.0f; bool intersected = false; for (int k = 0; k < 4; k++) { pixel_polygon.write[k] = Vector2(i, j) + corners[k]; } const float max_dist = 0.05; bool v0eqv1 = v0.distance_squared_to(v1) < max_dist; bool v1eqv2 = v1.distance_squared_to(v2) < max_dist; bool v2eqv0 = v2.distance_squared_to(v0) < max_dist; if (v0eqv1 && v1eqv2 && v2eqv0) { intersected = true; barycentric_coords = Vector3(1, 0, 0); } else if (v0eqv1 || v1eqv2 || v2eqv0) { Vector segment; segment.resize(2); if (v0eqv1) { segment.write[0] = v0; segment.write[1] = v2; } else if (v1eqv2) { segment.write[0] = v1; segment.write[1] = v0; } else { segment.write[0] = v0; segment.write[1] = v1; } Vector> intersected_segments = Geometry::intersect_polyline_with_polygon_2d(segment, pixel_polygon); ERR_FAIL_COND_MSG(intersected_segments.size() > 1, "[Lightmapper] Itersecting a segment and a convex polygon should give at most one segment."); if (!intersected_segments.empty()) { const Vector &intersected_segment = intersected_segments[0]; ERR_FAIL_COND_MSG(intersected_segment.size() != 2, "[Lightmapper] Itersecting a segment and a convex polygon should give at most one segment."); Vector2 sample_pos = (intersected_segment[0] + intersected_segment[1]) / 2.0f; float u = (segment[0].distance_to(sample_pos)) / (segment[0].distance_to(segment[1])); float v = (1.0f - u) / 2.0f; intersected = true; if (v0eqv1) { barycentric_coords = Vector3(v, v, u); } else if (v1eqv2) { barycentric_coords = Vector3(u, v, v); } else { barycentric_coords = Vector3(v, u, v); } } } else if (edgeFunction(v0, v1, v2) < 0.005) { Vector2 direction = v0 - v1; Vector2 perpendicular = Vector2(direction.y, -direction.x); Vector line; int middle_vertex; if (SGN(edgeFunction(v0, v0 + perpendicular, v1)) != SGN(edgeFunction(v0, v0 + perpendicular, v2))) { line.push_back(v1); line.push_back(v2); middle_vertex = 0; } else if (SGN(edgeFunction(v1, v1 + perpendicular, v0)) != SGN(edgeFunction(v1, v1 + perpendicular, v2))) { line.push_back(v0); line.push_back(v2); middle_vertex = 1; } else { line.push_back(v0); line.push_back(v1); middle_vertex = 2; } Vector> intersected_lines = Geometry::intersect_polyline_with_polygon_2d(line, pixel_polygon); ERR_FAIL_COND_MSG(intersected_lines.size() > 1, "[Lightmapper] Itersecting a line and a convex polygon should give at most one line."); if (!intersected_lines.empty()) { intersected = true; const Vector &intersected_line = intersected_lines[0]; Vector2 sample_pos = (intersected_line[0] + intersected_line[1]) / 2.0f; float line_length = line[0].distance_to(line[1]); float norm = line[0].distance_to(sample_pos) / line_length; if (middle_vertex == 0) { barycentric_coords = Vector3(0.0f, 1.0f - norm, norm); } else if (middle_vertex == 1) { barycentric_coords = Vector3(1.0f - norm, 0.0f, norm); } else { barycentric_coords = Vector3(1.0f - norm, norm, 0.0f); } } } else { Vector> intersected_polygons = Geometry::intersect_polygons_2d(pixel_polygon, triangle_polygon); ERR_FAIL_COND_MSG(intersected_polygons.size() > 1, "[Lightmapper] Itersecting two convex polygons should give at most one polygon."); if (!intersected_polygons.empty()) { const Vector &intersected_polygon = intersected_polygons[0]; // do centroid sampling Vector2 sample_pos = intersected_polygon[0]; Vector2 area_center = Vector2(i, j) + Vector2(0.5f, 0.5f); float intersected_area = (intersected_polygon[0] - area_center).cross(intersected_polygon[intersected_polygon.size() - 1] - area_center); for (int k = 1; k < intersected_polygon.size(); k++) { sample_pos += intersected_polygon[k]; intersected_area += (intersected_polygon[k] - area_center).cross(intersected_polygon[k - 1] - area_center); } if (intersected_area != 0.0f) { sample_pos /= intersected_polygon.size(); barycentric_coords = Geometry::barycentric_coordinates_2d(sample_pos, v0, v1, v2); intersected = true; area_coverage = ABS(intersected_area) / 2.0f; } } if (!intersected) { for (int k = 0; k < 4; ++k) { for (int l = 0; l < 3; ++l) { Vector2 intersection_point; if (Geometry::segment_intersects_segment_2d(pixel_polygon[k], pixel_polygon[(k + 1) % 4], triangle_polygon[l], triangle_polygon[(l + 1) % 3], &intersection_point)) { intersected = true; barycentric_coords = Geometry::barycentric_coordinates_2d(intersection_point, v0, v1, v2); break; } } if (intersected) { break; } } } } if (texel_idx >= 0 && area_coverage < r_lightmap[texel_idx].area_coverage) { continue; // A previous triangle gives better pixel coverage } Vector2 pixel = Vector2(i, j); if (!intersected && v0.floor() == pixel) { intersected = true; barycentric_coords = Vector3(1, 0, 0); } if (!intersected && v1.floor() == pixel) { intersected = true; barycentric_coords = Vector3(0, 1, 0); } if (!intersected && v2.floor() == pixel) { intersected = true; barycentric_coords = Vector3(0, 0, 1); } if (!intersected) { continue; } if (Math::is_nan(barycentric_coords.x) || Math::is_nan(barycentric_coords.y) || Math::is_nan(barycentric_coords.z)) { continue; } if (Math::is_inf(barycentric_coords.x) || Math::is_inf(barycentric_coords.y) || Math::is_inf(barycentric_coords.z)) { continue; } r_lightmap_indices[ofs] = r_lightmap.size(); Vector3 pos = p0 * barycentric_coords[0] + p1 * barycentric_coords[1] + p2 * barycentric_coords[2]; Vector3 normal = n0 * barycentric_coords[0] + n1 * barycentric_coords[1] + n2 * barycentric_coords[2]; Vector2 uv = uv0 * barycentric_coords[0] + uv1 * barycentric_coords[1] + uv2 * barycentric_coords[2]; Color c = _bilinear_sample(p_albedo, uv); Color e = _bilinear_sample(p_emission, uv); Vector2 texel_center = Vector2(i, j) + Vector2(0.5f, 0.5f); Vector3 texel_center_bary = Geometry::barycentric_coordinates_2d(texel_center, v0, v1, v2); if (texel_center_bary.length_squared() <= 1.3 && !Math::is_nan(texel_center_bary.x) && !Math::is_nan(texel_center_bary.y) && !Math::is_nan(texel_center_bary.z) && !Math::is_inf(texel_center_bary.x) && !Math::is_inf(texel_center_bary.y) && !Math::is_inf(texel_center_bary.z)) { Vector3 texel_center_pos = p0 * texel_center_bary[0] + p1 * texel_center_bary[1] + p2 * texel_center_bary[2]; pos = _fix_sample_position(pos, texel_center_pos, normal, tangent, bitangent, texel_size); } LightmapTexel texel; texel.normal = normal.normalized(); texel.pos = pos; texel.albedo = Vector3(c.r, c.g, c.b); texel.alpha = c.a; texel.emission = Vector3(e.r, e.g, e.b); texel.area_coverage = area_coverage; r_lightmap.push_back(texel); } } } void LightmapperCPU::_compute_direct_light(uint32_t p_idx, void *r_lightmap) { LightmapTexel *lightmap = (LightmapTexel *)r_lightmap; for (unsigned int i = 0; i < lights.size(); ++i) { const Light &light = lights[i]; Vector3 normal = lightmap[p_idx].normal; Vector3 position = lightmap[p_idx].pos; Vector3 final_energy; Color c = light.color; Vector3 light_energy = Vector3(c.r, c.g, c.b) * light.energy; if (light.type == LIGHT_TYPE_OMNI) { Vector3 light_direction = (position - light.position).normalized(); if (normal.dot(light_direction) >= 0.0) { continue; } float dist = position.distance_to(light.position); if (dist <= light.range) { LightmapRaycaster::Ray ray = LightmapRaycaster::Ray(position, -light_direction, parameters.bias, dist - parameters.bias); if (raycaster->intersect(ray)) { continue; } float att = powf(1.0 - dist / light.range, light.attenuation); final_energy = light_energy * att * MAX(0, normal.dot(-light_direction)); } } if (light.type == LIGHT_TYPE_SPOT) { Vector3 light_direction = (position - light.position).normalized(); if (normal.dot(light_direction) >= 0.0) { continue; } float angle = Math::acos(light.direction.dot(light_direction)); if (angle > light.spot_angle) { continue; } float dist = position.distance_to(light.position); if (dist > light.range) { continue; } LightmapRaycaster::Ray ray = LightmapRaycaster::Ray(position, -light_direction, parameters.bias, dist); if (raycaster->intersect(ray)) { continue; } float normalized_dist = dist * (1.0f / MAX(0.001f, light.range)); float norm_light_attenuation = Math::pow(MAX(1.0f - normalized_dist, 0.001f), light.attenuation); float spot_cutoff = Math::cos(light.spot_angle); float scos = MAX(light_direction.dot(light.direction), spot_cutoff); float spot_rim = (1.0f - scos) / (1.0f - spot_cutoff); norm_light_attenuation *= 1.0f - pow(MAX(spot_rim, 0.001f), light.spot_attenuation); final_energy = light_energy * norm_light_attenuation * MAX(0, normal.dot(-light_direction)); } if (light.type == LIGHT_TYPE_DIRECTIONAL) { if (normal.dot(light.direction) >= 0.0) { continue; } LightmapRaycaster::Ray ray = LightmapRaycaster::Ray(position + normal * parameters.bias, -light.direction, parameters.bias); if (raycaster->intersect(ray)) { continue; } final_energy = light_energy * MAX(0, normal.dot(-light.direction)); } lightmap[p_idx].direct_light += final_energy * light.indirect_multiplier; if (light.bake_direct) { lightmap[p_idx].output_light += final_energy; } } } _ALWAYS_INLINE_ float uniform_rand() { /* Algorithm "xor" from p. 4 of Marsaglia, "Xorshift RNGs" */ static thread_local uint32_t state = Math::rand(); state ^= state << 13; state ^= state >> 17; state ^= state << 5; /* implicit conversion from 'unsigned int' to 'float' changes value from 4294967295 to 4294967296 */ return float(state) / float(UINT32_MAX); } void LightmapperCPU::_compute_indirect_light(uint32_t p_idx, void *r_lightmap) { LightmapTexel *lightmap = (LightmapTexel *)r_lightmap; LightmapTexel &texel = lightmap[p_idx]; Vector3 accum; const Vector3 const_forward = Vector3(0, 0, 1); const Vector3 const_up = Vector3(0, 1, 0); for (int i = 0; i < parameters.samples; i++) { Vector3 color; Vector3 throughput = Vector3(1.0f, 1.0f, 1.0f); Vector3 position = texel.pos; Vector3 normal = texel.normal; Vector3 direction; for (int depth = 0; depth < parameters.bounces; depth++) { Vector3 tangent = const_forward.cross(normal); if (unlikely(tangent.length_squared() < 0.005f)) { tangent = const_up.cross(normal); } tangent.normalize(); Vector3 bitangent = tangent.cross(normal); bitangent.normalize(); Basis normal_xform = Basis(tangent, bitangent, normal); normal_xform.transpose(); float u1 = uniform_rand(); float u2 = uniform_rand(); float radius = Math::sqrt(u1); float theta = Math_TAU * u2; Vector3 axis = Vector3(radius * Math::cos(theta), radius * Math::sin(theta), Math::sqrt(MAX(0.0f, 1.0f - u1))); direction = normal_xform.xform(axis); // We can skip multiplying throughput by cos(theta) because de sampling PDF is also cos(theta) and they cancel each other //float pdf = normal.dot(direction); //throughput *= normal.dot(direction)/pdf; LightmapRaycaster::Ray ray(position, direction, parameters.bias); bool hit = raycaster->intersect(ray); if (!hit) { if (parameters.environment_panorama.is_valid()) { direction = parameters.environment_transform.xform_inv(direction); Vector2 st = Vector2(Math::atan2(direction.z, direction.x), Math::acos(direction.y)); if (Math::is_nan(st.y)) { st.y = direction.y > 0.0 ? 0.0 : Math_PI; } st.x += Math_PI; st /= Vector2(Math_TAU, Math_PI); st.x = Math::fmod(st.x + 0.75, 1.0); Color c = _bilinear_sample(parameters.environment_panorama, st, false, true); color += throughput * Vector3(c.r, c.g, c.b) * c.a; } break; } unsigned int hit_mesh_id = ray.geomID; const Vector2i &size = mesh_instances[hit_mesh_id].size; int x = CLAMP(ray.u * size.x, 0, size.x - 1); int y = CLAMP(ray.v * size.y, 0, size.y - 1); const int idx = scene_lightmap_indices[hit_mesh_id][y * size.x + x]; if (idx < 0) { break; } const LightmapTexel &sample = scene_lightmaps[hit_mesh_id][idx]; if (sample.normal.dot(ray.dir) > 0.0 && !no_shadow_meshes.has(hit_mesh_id)) { // We hit a back-face break; } color += throughput * sample.emission; throughput *= sample.albedo; color += throughput * sample.direct_light; // Russian Roulette // https://computergraphics.stackexchange.com/questions/2316/is-russian-roulette-really-the-answer const float p = throughput[throughput.max_axis()]; if (uniform_rand() > p) { break; } throughput *= 1.0f / p; position = sample.pos; normal = sample.normal; } accum += color; } texel.output_light += accum / parameters.samples; } void LightmapperCPU::_post_process(uint32_t p_idx, void *r_output) { const MeshInstance &mesh = mesh_instances[p_idx]; if (!mesh.generate_lightmap) { return; } LocalVector &indices = scene_lightmap_indices[p_idx]; LocalVector &lightmap = scene_lightmaps[p_idx]; Vector3 *output = ((LocalVector *)r_output)[p_idx].ptr(); Vector2i size = mesh.size; // Blit texels to buffer const int margin = 4; for (int i = 0; i < size.y; i++) { for (int j = 0; j < size.x; j++) { int idx = indices[i * size.x + j]; if (idx >= 0) { output[i * size.x + j] = lightmap[idx].output_light; continue; // filled, skip } int closest_idx = -1; float closest_dist = 1e20; for (int y = i - margin; y <= i + margin; y++) { for (int x = j - margin; x <= j + margin; x++) { if (x == j && y == i) { continue; } if (x < 0 || x >= size.x) { continue; } if (y < 0 || y >= size.y) { continue; } int cell_idx = indices[y * size.x + x]; if (cell_idx < 0) { continue; //also ensures that blitted stuff is not reused } float dist = Vector2(i - y, j - x).length_squared(); if (dist < closest_dist) { closest_dist = dist; closest_idx = cell_idx; } } } if (closest_idx != -1) { output[i * size.x + j] = lightmap[closest_idx].output_light; } } } lightmap.clear(); LocalVector seams; _compute_seams(mesh, seams); _fix_seams(seams, output, size); _dilate_lightmap(output, indices, size, margin); if (parameters.use_denoiser) { Ref denoiser = LightmapDenoiser::create(); if (denoiser.is_valid()) { int data_size = size.x * size.y * sizeof(Vector3); Ref current_image; current_image.instance(); { PoolByteArray data; data.resize(data_size); PoolByteArray::Write w = data.write(); memcpy(w.ptr(), output, data_size); current_image->create(size.x, size.y, false, Image::FORMAT_RGBF, data); } Ref denoised_image = denoiser->denoise_image(current_image); PoolByteArray denoised_data = denoised_image->get_data(); denoised_image.unref(); PoolByteArray::Read r = denoised_data.read(); memcpy(output, r.ptr(), data_size); } } _dilate_lightmap(output, indices, size, margin); _fix_seams(seams, output, size); _dilate_lightmap(output, indices, size, margin); indices.clear(); } void LightmapperCPU::_compute_seams(const MeshInstance &p_mesh, LocalVector &r_seams) { float max_uv_distance = 1.0f / MAX(p_mesh.size.x, p_mesh.size.y); max_uv_distance *= max_uv_distance; // We use distance_to_squared(), so wee need to square the max distance as well float max_pos_distance = 0.00025f; float max_normal_distance = 0.05f; const Vector &points = p_mesh.data.points; const Vector &uv2s = p_mesh.data.uv2; const Vector &normals = p_mesh.data.normal; LocalVector edges; edges.resize(points.size()); // One edge per vertex for (int i = 0; i < points.size(); i += 3) { Vector3 triangle_vtxs[3] = { points[i + 0], points[i + 1], points[i + 2] }; Vector2 triangle_uvs[3] = { uv2s[i + 0], uv2s[i + 1], uv2s[i + 2] }; Vector3 triangle_normals[3] = { normals[i + 0], normals[i + 1], normals[i + 2] }; for (int k = 0; k < 3; k++) { int idx[2]; idx[0] = k; idx[1] = (k + 1) % 3; if (triangle_vtxs[idx[1]] < triangle_vtxs[idx[0]]) { SWAP(idx[0], idx[1]); } SeamEdge e; for (int l = 0; l < 2; ++l) { e.pos[l] = triangle_vtxs[idx[l]]; e.uv[l] = triangle_uvs[idx[l]]; e.normal[l] = triangle_normals[idx[l]]; } edges[i + k] = e; } } edges.sort(); for (unsigned int j = 0; j < edges.size(); j++) { const SeamEdge &edge0 = edges[j]; if (edge0.uv[0].distance_squared_to(edge0.uv[1]) < 0.001) { continue; } if (edge0.pos[0].distance_squared_to(edge0.pos[1]) < 0.001) { continue; } for (unsigned int k = j + 1; k < edges.size() && edges[k].pos[0].x < (edge0.pos[0].x + max_pos_distance * 1.1f); k++) { const SeamEdge &edge1 = edges[k]; if (edge1.uv[0].distance_squared_to(edge1.uv[1]) < 0.001) { continue; } if (edge1.pos[0].distance_squared_to(edge1.pos[1]) < 0.001) { continue; } if (edge0.uv[0].distance_squared_to(edge1.uv[0]) < max_uv_distance && edge0.uv[1].distance_squared_to(edge1.uv[1]) < max_uv_distance) { continue; } if (edge0.pos[0].distance_squared_to(edge1.pos[0]) > max_pos_distance || edge0.pos[1].distance_squared_to(edge1.pos[1]) > max_pos_distance) { continue; } if (edge0.normal[0].distance_squared_to(edge1.normal[0]) > max_normal_distance || edge0.normal[1].distance_squared_to(edge1.normal[1]) > max_normal_distance) { continue; } UVSeam s; s.edge0[0] = edge0.uv[0]; s.edge0[1] = edge0.uv[1]; s.edge1[0] = edge1.uv[0]; s.edge1[1] = edge1.uv[1]; r_seams.push_back(s); } } } void LightmapperCPU::_fix_seams(const LocalVector &p_seams, Vector3 *r_lightmap, Vector2i p_size) { LocalVector extra_buffer; extra_buffer.resize(p_size.x * p_size.y); memcpy(extra_buffer.ptr(), r_lightmap, p_size.x * p_size.y * sizeof(Vector3)); Vector3 *read_ptr = extra_buffer.ptr(); Vector3 *write_ptr = r_lightmap; for (int i = 0; i < 5; i++) { for (unsigned int j = 0; j < p_seams.size(); j++) { _fix_seam(p_seams[j].edge0[0], p_seams[j].edge0[1], p_seams[j].edge1[0], p_seams[j].edge1[1], read_ptr, write_ptr, p_size); _fix_seam(p_seams[j].edge1[0], p_seams[j].edge1[1], p_seams[j].edge0[0], p_seams[j].edge0[1], read_ptr, write_ptr, p_size); } memcpy(read_ptr, write_ptr, p_size.x * p_size.y * sizeof(Vector3)); } } void LightmapperCPU::_fix_seam(const Vector2 &p_pos0, const Vector2 &p_pos1, const Vector2 &p_uv0, const Vector2 &p_uv1, const Vector3 *p_read_buffer, Vector3 *r_write_buffer, const Vector2i &p_size) { Vector2 line[2]; line[0] = p_pos0 * p_size; line[1] = p_pos1 * p_size; const Vector2i start_pixel = line[0].floor(); const Vector2i end_pixel = line[1].floor(); Vector2 seam_dir = (line[1] - line[0]).normalized(); Vector2 t_delta = Vector2(1.0f / Math::abs(seam_dir.x), 1.0f / Math::abs(seam_dir.y)); Vector2i step = Vector2(seam_dir.x > 0 ? 1 : (seam_dir.x < 0 ? -1 : 0), seam_dir.y > 0 ? 1 : (seam_dir.y < 0 ? -1 : 0)); Vector2 t_next = Vector2(Math::fmod(line[0].x, 1.0f), Math::fmod(line[0].y, 1.0f)); if (step.x == 1) { t_next.x = 1.0f - t_next.x; } if (step.y == 1) { t_next.y = 1.0f - t_next.y; } t_next.x /= Math::abs(seam_dir.x); t_next.y /= Math::abs(seam_dir.y); if (Math::is_nan(t_next.x)) { t_next.x = 1e20f; } if (Math::is_nan(t_next.y)) { t_next.y = 1e20f; } Vector2i pixel = start_pixel; Vector2 start_p = start_pixel; float line_length = line[0].distance_to(line[1]); if (line_length == 0.0f) { return; } while (start_p.distance_to(pixel) < line_length + 1.0f) { Vector2 current_point = Vector2(pixel) + Vector2(0.5f, 0.5f); current_point = Geometry::get_closest_point_to_segment_2d(current_point, line); float t = line[0].distance_to(current_point) / line_length; Vector2 current_uv = p_uv0 * (1.0 - t) + p_uv1 * t; Vector2i sampled_point = (current_uv * p_size).floor(); Vector3 current_color = r_write_buffer[pixel.y * p_size.x + pixel.x]; Vector3 sampled_color = p_read_buffer[sampled_point.y * p_size.x + sampled_point.x]; r_write_buffer[pixel.y * p_size.x + pixel.x] = current_color * 0.6f + sampled_color * 0.4f; if (pixel == end_pixel) { break; } if (t_next.x < t_next.y) { pixel.x += step.x; t_next.x += t_delta.x; } else { pixel.y += step.y; t_next.y += t_delta.y; } } } void LightmapperCPU::_dilate_lightmap(Vector3 *r_lightmap, const LocalVector p_indices, Vector2i p_size, int margin) { for (int i = 0; i < p_size.y; i++) { for (int j = 0; j < p_size.x; j++) { int idx = p_indices[i * p_size.x + j]; if (idx >= 0) { continue; //filled, skip } Vector2i closest; float closest_dist = 1e20; for (int y = i - margin; y <= i + margin; y++) { for (int x = j - margin; x <= j + margin; x++) { if (x == j && y == i) { continue; } if (x < 0 || x >= p_size.x) { continue; } if (y < 0 || y >= p_size.y) { continue; } int cell_idx = p_indices[y * p_size.x + x]; if (cell_idx < 0) { continue; //also ensures that blitted stuff is not reused } float dist = Vector2(i - y, j - x).length_squared(); if (dist < closest_dist) { closest_dist = dist; closest = Vector2(x, y); } } } if (closest_dist < 1e20) { r_lightmap[i * p_size.x + j] = r_lightmap[closest.y * p_size.x + closest.x]; } } } } void LightmapperCPU::_blit_lightmap(const Vector &p_src, const Vector2i &p_size, Ref &p_dst, int p_x, int p_y, bool p_with_padding) { int padding = p_with_padding ? 1 : 0; ERR_FAIL_COND(p_x < padding || p_y < padding); ERR_FAIL_COND(p_x + p_size.x > p_dst->get_width() - padding); ERR_FAIL_COND(p_y + p_size.y > p_dst->get_height() - padding); p_dst->lock(); for (int y = 0; y < p_size.y; y++) { const Vector3 *__restrict src = p_src.ptr() + y * p_size.x; for (int x = 0; x < p_size.x; x++) { p_dst->set_pixel(p_x + x, p_y + y, Color(src->x, src->y, src->z)); src++; } } if (p_with_padding) { for (int y = -1; y < p_size.y + 1; y++) { int yy = CLAMP(y, 0, p_size.y - 1); int idx_left = yy * p_size.x; int idx_right = idx_left + p_size.x - 1; p_dst->set_pixel(p_x - 1, p_y + y, Color(p_src[idx_left].x, p_src[idx_left].y, p_src[idx_left].z)); p_dst->set_pixel(p_x + p_size.x, p_y + y, Color(p_src[idx_right].x, p_src[idx_right].y, p_src[idx_right].z)); } for (int x = -1; x < p_size.x + 1; x++) { int xx = CLAMP(x, 0, p_size.x - 1); int idx_top = xx; int idx_bot = idx_top + (p_size.y - 1) * p_size.x; p_dst->set_pixel(p_x + x, p_y - 1, Color(p_src[idx_top].x, p_src[idx_top].y, p_src[idx_top].z)); p_dst->set_pixel(p_x + x, p_y + p_size.y, Color(p_src[idx_bot].x, p_src[idx_bot].y, p_src[idx_bot].z)); } } p_dst->unlock(); } LightmapperCPU::BakeError LightmapperCPU::bake(BakeQuality p_quality, bool p_use_denoiser, int p_bounces, float p_bias, bool p_generate_atlas, int p_max_texture_size, const Ref &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata, BakeStepFunc p_substep_function) { if (p_step_function) { bool cancelled = p_step_function(0.0, TTR("Begin Bake"), p_bake_userdata, true); if (cancelled) { return BAKE_ERROR_USER_ABORTED; } } raycaster = LightmapRaycaster::create(); ERR_FAIL_COND_V(raycaster.is_null(), BAKE_ERROR_NO_RAYCASTER); // Collect parameters parameters.use_denoiser = p_use_denoiser; parameters.bias = p_bias; parameters.bounces = p_bounces; parameters.environment_transform = p_environment_transform; parameters.environment_panorama = p_environment_panorama; switch (p_quality) { case BAKE_QUALITY_LOW: { parameters.samples = GLOBAL_GET("rendering/cpu_lightmapper/quality/low_quality_ray_count"); } break; case BAKE_QUALITY_MEDIUM: { parameters.samples = GLOBAL_GET("rendering/cpu_lightmapper/quality/medium_quality_ray_count"); } break; case BAKE_QUALITY_HIGH: { parameters.samples = GLOBAL_GET("rendering/cpu_lightmapper/quality/high_quality_ray_count"); } break; case BAKE_QUALITY_ULTRA: { parameters.samples = GLOBAL_GET("rendering/cpu_lightmapper/quality/ultra_quality_ray_count"); } break; } bake_textures.clear(); if (p_step_function) { bool cancelled = p_step_function(0.1, TTR("Preparing data structures"), p_bake_userdata, true); if (cancelled) { return BAKE_ERROR_USER_ABORTED; } } for (unsigned int i = 0; i < mesh_instances.size(); i++) { raycaster->add_mesh(mesh_instances[i].data.points, mesh_instances[i].data.normal, mesh_instances[i].data.uv2, i); } raycaster->commit(); scene_lightmaps.resize(mesh_instances.size()); scene_lightmap_indices.resize(mesh_instances.size()); for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (!mesh_instances[i].cast_shadows) { no_shadow_meshes.insert(i); } } raycaster->set_mesh_filter(no_shadow_meshes); Vector2i atlas_size = Vector2i(-1, -1); int atlas_slices = -1; if (p_generate_atlas) { Error err = _layout_atlas(p_max_texture_size, &atlas_size, &atlas_slices); if (err != OK) { return BAKE_ERROR_LIGHTMAP_TOO_SMALL; } } if (p_step_function) { bool cancelled = p_step_function(0.2, TTR("Generate buffers"), p_bake_userdata, true); if (cancelled) { return BAKE_ERROR_USER_ABORTED; } } if (_parallel_run(mesh_instances.size(), "Rasterizing meshes", &LightmapperCPU::_generate_buffer, nullptr, p_substep_function)) { return BAKE_ERROR_USER_ABORTED; } for (unsigned int i = 0; i < mesh_instances.size(); i++) { const Size2i &size = mesh_instances[i].size; bool has_alpha = false; PoolVector alpha_data; alpha_data.resize(size.x * size.y); { PoolVector::Write w = alpha_data.write(); for (unsigned int j = 0; j < scene_lightmap_indices[i].size(); ++j) { int idx = scene_lightmap_indices[i][j]; uint8_t alpha = 0; if (idx >= 0) { alpha = CLAMP(scene_lightmaps[i][idx].alpha * 255, 0, 255); if (alpha < 255) { has_alpha = true; } } w[j] = alpha; } } if (has_alpha) { Ref alpha_texture; alpha_texture.instance(); alpha_texture->create(size.x, size.y, false, Image::FORMAT_L8, alpha_data); raycaster->set_mesh_alpha_texture(alpha_texture, i); } } albedo_textures.clear(); emission_textures.clear(); for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (p_step_function) { float p = float(i) / mesh_instances.size(); bool cancelled = p_step_function(0.2 + p * 0.2, vformat("%s (%d/%d)", TTR("Direct lighting"), i, mesh_instances.size()), p_bake_userdata, false); if (cancelled) { return BAKE_ERROR_USER_ABORTED; } } if (_parallel_run(scene_lightmaps[i].size(), "Computing direct light", &LightmapperCPU::_compute_direct_light, scene_lightmaps[i].ptr(), p_substep_function)) { return BAKE_ERROR_USER_ABORTED; } } raycaster->clear_mesh_filter(); int n_lit_meshes = 0; for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (mesh_instances[i].generate_lightmap) { n_lit_meshes++; } } if (parameters.environment_panorama.is_valid()) { parameters.environment_panorama->lock(); } for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (!mesh_instances[i].generate_lightmap) { continue; } if (p_step_function) { float p = float(i) / n_lit_meshes; bool cancelled = p_step_function(0.4 + p * 0.4, vformat("%s (%d/%d)", TTR("Indirect lighting"), i, mesh_instances.size()), p_bake_userdata, false); if (cancelled) { return BAKE_ERROR_USER_ABORTED; } } if (!scene_lightmaps[i].empty()) { if (_parallel_run(scene_lightmaps[i].size(), "Computing indirect light", &LightmapperCPU::_compute_indirect_light, scene_lightmaps[i].ptr(), p_substep_function)) { return BAKE_ERROR_USER_ABORTED; } } } if (parameters.environment_panorama.is_valid()) { parameters.environment_panorama->unlock(); } raycaster.unref(); // Not needed anymore, free some memory. LocalVector> lightmaps_data; lightmaps_data.resize(mesh_instances.size()); for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (mesh_instances[i].generate_lightmap) { const Vector2i size = mesh_instances[i].size; lightmaps_data[i].resize(size.x * size.y); } } if (p_step_function) { bool cancelled = p_step_function(0.8, TTR("Post processing"), p_bake_userdata, true); if (cancelled) { return BAKE_ERROR_USER_ABORTED; } } if (_parallel_run(mesh_instances.size(), "Denoise & fix seams", &LightmapperCPU::_post_process, lightmaps_data.ptr(), p_substep_function)) { return BAKE_ERROR_USER_ABORTED; } if (p_generate_atlas) { bake_textures.resize(atlas_slices); for (int i = 0; i < atlas_slices; i++) { Ref image; image.instance(); image->create(atlas_size.x, atlas_size.y, false, Image::FORMAT_RGBH); bake_textures[i] = image; } } else { bake_textures.resize(mesh_instances.size()); Set used_mesh_names; for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (!mesh_instances[i].generate_lightmap) { continue; } String mesh_name = mesh_instances[i].node_name; if (mesh_name == "" || mesh_name.find(":") != -1 || mesh_name.find("/") != -1) { mesh_name = "LightMap"; } if (used_mesh_names.has(mesh_name)) { int idx = 2; String base = mesh_name; while (true) { mesh_name = base + itos(idx); if (!used_mesh_names.has(mesh_name)) { break; } idx++; } } used_mesh_names.insert(mesh_name); Ref image; image.instance(); image->create(mesh_instances[i].size.x, mesh_instances[i].size.y, false, Image::FORMAT_RGBH); image->set_name(mesh_name); bake_textures[i] = image; } } if (p_step_function) { bool cancelled = p_step_function(0.9, TTR("Plotting lightmaps"), p_bake_userdata, true); if (cancelled) { return BAKE_ERROR_USER_ABORTED; } } { int j = 0; for (unsigned int i = 0; i < mesh_instances.size(); i++) { if (!mesh_instances[i].generate_lightmap) { continue; } if (p_generate_atlas) { _blit_lightmap(lightmaps_data[i], mesh_instances[i].size, bake_textures[mesh_instances[i].slice], mesh_instances[i].offset.x, mesh_instances[i].offset.y, true); } else { _blit_lightmap(lightmaps_data[i], mesh_instances[i].size, bake_textures[j], 0, 0, false); } j++; } } return BAKE_OK; } int LightmapperCPU::get_bake_texture_count() const { return bake_textures.size(); } Ref LightmapperCPU::get_bake_texture(int p_index) const { ERR_FAIL_INDEX_V(p_index, (int)bake_textures.size(), Ref()); return bake_textures[p_index]; } int LightmapperCPU::get_bake_mesh_count() const { return mesh_instances.size(); } Variant LightmapperCPU::get_bake_mesh_userdata(int p_index) const { ERR_FAIL_INDEX_V(p_index, (int)mesh_instances.size(), Variant()); return mesh_instances[p_index].data.userdata; } Rect2 LightmapperCPU::get_bake_mesh_uv_scale(int p_index) const { ERR_FAIL_COND_V(bake_textures.size() == 0, Rect2()); Rect2 uv_ofs; Vector2 atlas_size = Vector2(bake_textures[0]->get_width(), bake_textures[0]->get_height()); uv_ofs.position = Vector2(mesh_instances[p_index].offset) / atlas_size; uv_ofs.size = Vector2(mesh_instances[p_index].size) / atlas_size; return uv_ofs; } int LightmapperCPU::get_bake_mesh_texture_slice(int p_index) const { ERR_FAIL_INDEX_V(p_index, (int)mesh_instances.size(), Variant()); return mesh_instances[p_index].slice; } void LightmapperCPU::add_albedo_texture(Ref p_texture) { if (p_texture.is_null()) { return; } RID texture_rid = p_texture->get_rid(); if (!texture_rid.is_valid() || albedo_textures.has(texture_rid)) { return; } Ref texture_data = p_texture->get_data(); if (texture_data.is_null()) { return; } if (texture_data->is_compressed()) { texture_data->decompress(); } texture_data->convert(Image::FORMAT_RGBA8); albedo_textures.insert(texture_rid, texture_data); } void LightmapperCPU::add_emission_texture(Ref p_texture) { if (p_texture.is_null()) { return; } RID texture_rid = p_texture->get_rid(); if (!texture_rid.is_valid() || emission_textures.has(texture_rid)) { return; } Ref texture_data = p_texture->get_data(); if (texture_data.is_null()) { return; } if (texture_data->is_compressed()) { texture_data->decompress(); } texture_data->convert(Image::FORMAT_RGBH); emission_textures.insert(texture_rid, texture_data); } void LightmapperCPU::add_mesh(const MeshData &p_mesh, Vector2i p_size) { ERR_FAIL_COND(p_mesh.points.size() == 0); ERR_FAIL_COND(p_mesh.points.size() != p_mesh.uv2.size()); ERR_FAIL_COND(p_mesh.points.size() != p_mesh.normal.size()); ERR_FAIL_COND(!p_mesh.uv.empty() && p_mesh.points.size() != p_mesh.uv.size()); ERR_FAIL_COND(p_mesh.surface_facecounts.size() != p_mesh.albedo.size()); ERR_FAIL_COND(p_mesh.surface_facecounts.size() != p_mesh.emission.size()); MeshInstance mi; mi.data = p_mesh; mi.size = p_size; mi.generate_lightmap = true; mi.cast_shadows = true; mi.node_name = ""; Dictionary userdata = p_mesh.userdata; if (userdata.has("cast_shadows")) { mi.cast_shadows = userdata["cast_shadows"]; } if (userdata.has("generate_lightmap")) { mi.generate_lightmap = userdata["generate_lightmap"]; } if (userdata.has("node_name")) { mi.node_name = userdata["node_name"]; } mesh_instances.push_back(mi); } void LightmapperCPU::add_directional_light(bool p_bake_direct, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_multiplier) { Light l; l.type = LIGHT_TYPE_DIRECTIONAL; l.direction = p_direction; l.color = p_color; l.energy = p_energy; l.indirect_multiplier = p_indirect_multiplier; l.bake_direct = p_bake_direct; lights.push_back(l); } void LightmapperCPU::add_omni_light(bool p_bake_direct, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_multiplier, float p_range, float p_attenuation) { Light l; l.type = LIGHT_TYPE_OMNI; l.position = p_position; l.range = p_range; l.attenuation = p_attenuation; l.color = p_color; l.energy = p_energy; l.indirect_multiplier = p_indirect_multiplier; l.bake_direct = p_bake_direct; lights.push_back(l); } void LightmapperCPU::add_spot_light(bool p_bake_direct, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_multiplier, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation) { Light l; l.type = LIGHT_TYPE_SPOT; l.position = p_position; l.direction = p_direction; l.range = p_range; l.attenuation = p_attenuation; l.spot_angle = Math::deg2rad(p_spot_angle); l.spot_attenuation = p_spot_attenuation; l.color = p_color; l.energy = p_energy; l.indirect_multiplier = p_indirect_multiplier; l.bake_direct = p_bake_direct; lights.push_back(l); } LightmapperCPU::LightmapperCPU() { thread_progress = 0; thread_cancelled = false; }