// basis_etc.h // Copyright (C) 2019 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "transcoder/basisu.h" #include "basisu_enc.h" #include <set> namespace basisu { enum etc_constants { cETC1BytesPerBlock = 8U, cETC1SelectorBits = 2U, cETC1SelectorValues = 1U << cETC1SelectorBits, cETC1SelectorMask = cETC1SelectorValues - 1U, cETC1BlockShift = 2U, cETC1BlockSize = 1U << cETC1BlockShift, cETC1LSBSelectorIndicesBitOffset = 0, cETC1MSBSelectorIndicesBitOffset = 16, cETC1FlipBitOffset = 32, cETC1DiffBitOffset = 33, cETC1IntenModifierNumBits = 3, cETC1IntenModifierValues = 1 << cETC1IntenModifierNumBits, cETC1RightIntenModifierTableBitOffset = 34, cETC1LeftIntenModifierTableBitOffset = 37, // Base+Delta encoding (5 bit bases, 3 bit delta) cETC1BaseColorCompNumBits = 5, cETC1BaseColorCompMax = 1 << cETC1BaseColorCompNumBits, cETC1DeltaColorCompNumBits = 3, cETC1DeltaColorComp = 1 << cETC1DeltaColorCompNumBits, cETC1DeltaColorCompMax = 1 << cETC1DeltaColorCompNumBits, cETC1BaseColor5RBitOffset = 59, cETC1BaseColor5GBitOffset = 51, cETC1BaseColor5BBitOffset = 43, cETC1DeltaColor3RBitOffset = 56, cETC1DeltaColor3GBitOffset = 48, cETC1DeltaColor3BBitOffset = 40, // Absolute (non-delta) encoding (two 4-bit per component bases) cETC1AbsColorCompNumBits = 4, cETC1AbsColorCompMax = 1 << cETC1AbsColorCompNumBits, cETC1AbsColor4R1BitOffset = 60, cETC1AbsColor4G1BitOffset = 52, cETC1AbsColor4B1BitOffset = 44, cETC1AbsColor4R2BitOffset = 56, cETC1AbsColor4G2BitOffset = 48, cETC1AbsColor4B2BitOffset = 40, cETC1ColorDeltaMin = -4, cETC1ColorDeltaMax = 3, // Delta3: // 0 1 2 3 4 5 6 7 // 000 001 010 011 100 101 110 111 // 0 1 2 3 -4 -3 -2 -1 }; extern const int g_etc1_inten_tables[cETC1IntenModifierValues][cETC1SelectorValues]; extern const uint8_t g_etc1_to_selector_index[cETC1SelectorValues]; extern const uint8_t g_selector_index_to_etc1[cETC1SelectorValues]; struct etc_coord2 { uint8_t m_x, m_y; }; extern const etc_coord2 g_etc1_pixel_coords[2][2][8]; // [flipped][subblock][subblock_pixel] extern const uint32_t g_etc1_pixel_indices[2][2][8]; // [flipped][subblock][subblock_pixel] struct etc_block { // big endian uint64: // bit ofs: 56 48 40 32 24 16 8 0 // byte ofs: b0, b1, b2, b3, b4, b5, b6, b7 union { uint64_t m_uint64; uint8_t m_bytes[8]; }; inline void clear() { assert(sizeof(*this) == 8); clear_obj(*this); } inline uint64_t get_all_bits() const { return read_be64(&m_uint64); } inline uint32_t get_general_bits(uint32_t ofs, uint32_t num) const { assert((ofs + num) <= 64U); assert(num && (num < 32U)); return (read_be64(&m_uint64) >> ofs) & ((1UL << num) - 1UL); } inline void set_general_bits(uint32_t ofs, uint32_t num, uint32_t bits) { assert((ofs + num) <= 64U); assert(num && (num < 32U)); uint64_t x = read_be64(&m_uint64); uint64_t msk = ((1ULL << static_cast<uint64_t>(num)) - 1ULL) << static_cast<uint64_t>(ofs); x &= ~msk; x |= (static_cast<uint64_t>(bits) << static_cast<uint64_t>(ofs)); write_be64(&m_uint64, x); } inline uint32_t get_byte_bits(uint32_t ofs, uint32_t num) const { assert((ofs + num) <= 64U); assert(num && (num <= 8U)); assert((ofs >> 3) == ((ofs + num - 1) >> 3)); const uint32_t byte_ofs = 7 - (ofs >> 3); const uint32_t byte_bit_ofs = ofs & 7; return (m_bytes[byte_ofs] >> byte_bit_ofs) & ((1 << num) - 1); } inline void set_byte_bits(uint32_t ofs, uint32_t num, uint32_t bits) { assert((ofs + num) <= 64U); assert(num && (num < 32U)); assert((ofs >> 3) == ((ofs + num - 1) >> 3)); assert(bits < (1U << num)); const uint32_t byte_ofs = 7 - (ofs >> 3); const uint32_t byte_bit_ofs = ofs & 7; const uint32_t mask = (1 << num) - 1; m_bytes[byte_ofs] &= ~(mask << byte_bit_ofs); m_bytes[byte_ofs] |= (bits << byte_bit_ofs); } // false = left/right subblocks // true = upper/lower subblocks inline bool get_flip_bit() const { return (m_bytes[3] & 1) != 0; } inline void set_flip_bit(bool flip) { m_bytes[3] &= ~1; m_bytes[3] |= static_cast<uint8_t>(flip); } inline bool get_diff_bit() const { return (m_bytes[3] & 2) != 0; } inline void set_diff_bit(bool diff) { m_bytes[3] &= ~2; m_bytes[3] |= (static_cast<uint32_t>(diff) << 1); } // Returns intensity modifier table (0-7) used by subblock subblock_id. // subblock_id=0 left/top (CW 1), 1=right/bottom (CW 2) inline uint32_t get_inten_table(uint32_t subblock_id) const { assert(subblock_id < 2); const uint32_t ofs = subblock_id ? 2 : 5; return (m_bytes[3] >> ofs) & 7; } // Sets intensity modifier table (0-7) used by subblock subblock_id (0 or 1) inline void set_inten_table(uint32_t subblock_id, uint32_t t) { assert(subblock_id < 2); assert(t < 8); const uint32_t ofs = subblock_id ? 2 : 5; m_bytes[3] &= ~(7 << ofs); m_bytes[3] |= (t << ofs); } inline void set_inten_tables_etc1s(uint32_t t) { set_inten_table(0, t); set_inten_table(1, t); } inline bool is_etc1s() const { if (get_inten_table(0) != get_inten_table(1)) return false; if (get_diff_bit()) { if (get_delta3_color() != 0) return false; } else { if (get_base4_color(0) != get_base4_color(1)) return false; } return true; } // Returned encoded selector value ranges from 0-3 (this is NOT a direct index into g_etc1_inten_tables, see get_selector()) inline uint32_t get_raw_selector(uint32_t x, uint32_t y) const { assert((x | y) < 4); const uint32_t bit_index = x * 4 + y; const uint32_t byte_bit_ofs = bit_index & 7; const uint8_t *p = &m_bytes[7 - (bit_index >> 3)]; const uint32_t lsb = (p[0] >> byte_bit_ofs) & 1; const uint32_t msb = (p[-2] >> byte_bit_ofs) & 1; const uint32_t val = lsb | (msb << 1); return val; } // Returned selector value ranges from 0-3 and is a direct index into g_etc1_inten_tables. inline uint32_t get_selector(uint32_t x, uint32_t y) const { return g_etc1_to_selector_index[get_raw_selector(x, y)]; } // Selector "val" ranges from 0-3 and is a direct index into g_etc1_inten_tables. inline void set_selector(uint32_t x, uint32_t y, uint32_t val) { assert((x | y | val) < 4); const uint32_t bit_index = x * 4 + y; uint8_t *p = &m_bytes[7 - (bit_index >> 3)]; const uint32_t byte_bit_ofs = bit_index & 7; const uint32_t mask = 1 << byte_bit_ofs; const uint32_t etc1_val = g_selector_index_to_etc1[val]; const uint32_t lsb = etc1_val & 1; const uint32_t msb = etc1_val >> 1; p[0] &= ~mask; p[0] |= (lsb << byte_bit_ofs); p[-2] &= ~mask; p[-2] |= (msb << byte_bit_ofs); } inline uint32_t get_raw_selector_bits() const { return m_bytes[4] | (m_bytes[5] << 8) | (m_bytes[6] << 16) | (m_bytes[7] << 24); } inline void set_raw_selector_bits(uint32_t bits) { m_bytes[4] = static_cast<uint8_t>(bits); m_bytes[5] = static_cast<uint8_t>(bits >> 8); m_bytes[6] = static_cast<uint8_t>(bits >> 16); m_bytes[7] = static_cast<uint8_t>(bits >> 24); } inline void set_raw_selector_bits(uint8_t byte0, uint8_t byte1, uint8_t byte2, uint8_t byte3) { m_bytes[4] = byte0; m_bytes[5] = byte1; m_bytes[6] = byte2; m_bytes[7] = byte3; } inline void set_base4_color(uint32_t idx, uint16_t c) { if (idx) { set_byte_bits(cETC1AbsColor4R2BitOffset, 4, (c >> 8) & 15); set_byte_bits(cETC1AbsColor4G2BitOffset, 4, (c >> 4) & 15); set_byte_bits(cETC1AbsColor4B2BitOffset, 4, c & 15); } else { set_byte_bits(cETC1AbsColor4R1BitOffset, 4, (c >> 8) & 15); set_byte_bits(cETC1AbsColor4G1BitOffset, 4, (c >> 4) & 15); set_byte_bits(cETC1AbsColor4B1BitOffset, 4, c & 15); } } inline uint16_t get_base4_color(uint32_t idx) const { uint32_t r, g, b; if (idx) { r = get_byte_bits(cETC1AbsColor4R2BitOffset, 4); g = get_byte_bits(cETC1AbsColor4G2BitOffset, 4); b = get_byte_bits(cETC1AbsColor4B2BitOffset, 4); } else { r = get_byte_bits(cETC1AbsColor4R1BitOffset, 4); g = get_byte_bits(cETC1AbsColor4G1BitOffset, 4); b = get_byte_bits(cETC1AbsColor4B1BitOffset, 4); } return static_cast<uint16_t>(b | (g << 4U) | (r << 8U)); } inline void set_base5_color(uint16_t c) { set_byte_bits(cETC1BaseColor5RBitOffset, 5, (c >> 10) & 31); set_byte_bits(cETC1BaseColor5GBitOffset, 5, (c >> 5) & 31); set_byte_bits(cETC1BaseColor5BBitOffset, 5, c & 31); } inline uint16_t get_base5_color() const { const uint32_t r = get_byte_bits(cETC1BaseColor5RBitOffset, 5); const uint32_t g = get_byte_bits(cETC1BaseColor5GBitOffset, 5); const uint32_t b = get_byte_bits(cETC1BaseColor5BBitOffset, 5); return static_cast<uint16_t>(b | (g << 5U) | (r << 10U)); } void set_delta3_color(uint16_t c) { set_byte_bits(cETC1DeltaColor3RBitOffset, 3, (c >> 6) & 7); set_byte_bits(cETC1DeltaColor3GBitOffset, 3, (c >> 3) & 7); set_byte_bits(cETC1DeltaColor3BBitOffset, 3, c & 7); } inline uint16_t get_delta3_color() const { const uint32_t r = get_byte_bits(cETC1DeltaColor3RBitOffset, 3); const uint32_t g = get_byte_bits(cETC1DeltaColor3GBitOffset, 3); const uint32_t b = get_byte_bits(cETC1DeltaColor3BBitOffset, 3); return static_cast<uint16_t>(b | (g << 3U) | (r << 6U)); } uint64_t determine_selectors(const color_rgba* pSource_pixels, bool perceptual, uint32_t begin_subblock = 0, uint32_t end_subblock = 2) { uint64_t total_error = 0; for (uint32_t subblock = begin_subblock; subblock < end_subblock; subblock++) { color_rgba block_colors[4]; get_block_colors(block_colors, subblock); if (get_flip_bit()) { for (uint32_t y = 0; y < 2; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t best_selector = 0; uint64_t best_error = UINT64_MAX; for (uint32_t s = 0; s < 4; s++) { uint64_t err = color_distance(perceptual, block_colors[s], pSource_pixels[x + (subblock * 2 + y) * 4], false); if (err < best_error) { best_error = err; best_selector = s; } } set_selector(x, subblock * 2 + y, best_selector); total_error += best_error; } } } else { for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 2; x++) { uint32_t best_selector = 0; uint64_t best_error = UINT64_MAX; for (uint32_t s = 0; s < 4; s++) { uint64_t err = color_distance(perceptual, block_colors[s], pSource_pixels[(subblock * 2) + x + y * 4], false); if (err < best_error) { best_error = err; best_selector = s; } } set_selector(subblock * 2 + x, y, best_selector); total_error += best_error; } } } } return total_error; } color_rgba get_block_color(uint32_t subblock_index, bool scaled) const { color_rgba b; if (get_diff_bit()) { if (subblock_index) unpack_color5(b, get_base5_color(), get_delta3_color(), scaled); else unpack_color5(b, get_base5_color(), scaled); } else { b = unpack_color4(get_base4_color(subblock_index), scaled); } return b; } uint32_t get_subblock_index(uint32_t x, uint32_t y) const { if (get_flip_bit()) return y >= 2; else return x >= 2; } bool get_block_colors(color_rgba* pBlock_colors, uint32_t subblock_index) const { color_rgba b; if (get_diff_bit()) { if (subblock_index) unpack_color5(b, get_base5_color(), get_delta3_color(), true); else unpack_color5(b, get_base5_color(), true); } else { b = unpack_color4(get_base4_color(subblock_index), true); } const int* pInten_table = g_etc1_inten_tables[get_inten_table(subblock_index)]; bool dc = false; pBlock_colors[0].set(clamp255(b.r + pInten_table[0], dc), clamp255(b.g + pInten_table[0], dc), clamp255(b.b + pInten_table[0], dc), 255); pBlock_colors[1].set(clamp255(b.r + pInten_table[1], dc), clamp255(b.g + pInten_table[1], dc), clamp255(b.b + pInten_table[1], dc), 255); pBlock_colors[2].set(clamp255(b.r + pInten_table[2], dc), clamp255(b.g + pInten_table[2], dc), clamp255(b.b + pInten_table[2], dc), 255); pBlock_colors[3].set(clamp255(b.r + pInten_table[3], dc), clamp255(b.g + pInten_table[3], dc), clamp255(b.b + pInten_table[3], dc), 255); return dc; } void get_block_color(color_rgba& color, uint32_t subblock_index, uint32_t selector_index) const { color_rgba b; if (get_diff_bit()) { if (subblock_index) unpack_color5(b, get_base5_color(), get_delta3_color(), true); else unpack_color5(b, get_base5_color(), true); } else { b = unpack_color4(get_base4_color(subblock_index), true); } const int* pInten_table = g_etc1_inten_tables[get_inten_table(subblock_index)]; color.set(clamp255(b.r + pInten_table[selector_index]), clamp255(b.g + pInten_table[selector_index]), clamp255(b.b + pInten_table[selector_index]), 255); } bool get_block_low_high_colors(color_rgba* pBlock_colors, uint32_t subblock_index) const { color_rgba b; if (get_diff_bit()) { if (subblock_index) unpack_color5(b, get_base5_color(), get_delta3_color(), true); else unpack_color5(b, get_base5_color(), true); } else { b = unpack_color4(get_base4_color(subblock_index), true); } const int* pInten_table = g_etc1_inten_tables[get_inten_table(subblock_index)]; bool dc = false; pBlock_colors[0].set(clamp255(b.r + pInten_table[0], dc), clamp255(b.g + pInten_table[0], dc), clamp255(b.b + pInten_table[0], dc), 255); pBlock_colors[1].set(clamp255(b.r + pInten_table[3], dc), clamp255(b.g + pInten_table[3], dc), clamp255(b.b + pInten_table[3], dc), 255); return dc; } static void get_block_colors5(color_rgba *pBlock_colors, const color_rgba &base_color5, uint32_t inten_table, bool scaled = false) { color_rgba b(base_color5); if (!scaled) { b.r = (b.r << 3) | (b.r >> 2); b.g = (b.g << 3) | (b.g >> 2); b.b = (b.b << 3) | (b.b >> 2); } const int* pInten_table = g_etc1_inten_tables[inten_table]; pBlock_colors[0].set(clamp255(b.r + pInten_table[0]), clamp255(b.g + pInten_table[0]), clamp255(b.b + pInten_table[0]), 255); pBlock_colors[1].set(clamp255(b.r + pInten_table[1]), clamp255(b.g + pInten_table[1]), clamp255(b.b + pInten_table[1]), 255); pBlock_colors[2].set(clamp255(b.r + pInten_table[2]), clamp255(b.g + pInten_table[2]), clamp255(b.b + pInten_table[2]), 255); pBlock_colors[3].set(clamp255(b.r + pInten_table[3]), clamp255(b.g + pInten_table[3]), clamp255(b.b + pInten_table[3]), 255); } static void get_block_colors4(color_rgba *pBlock_colors, const color_rgba &base_color4, uint32_t inten_table, bool scaled = false) { color_rgba b(base_color4); if (!scaled) { b.r = (b.r << 4) | b.r; b.g = (b.g << 4) | b.g; b.b = (b.b << 4) | b.b; } const int* pInten_table = g_etc1_inten_tables[inten_table]; pBlock_colors[0].set(clamp255(b.r + pInten_table[0]), clamp255(b.g + pInten_table[0]), clamp255(b.b + pInten_table[0]), 255); pBlock_colors[1].set(clamp255(b.r + pInten_table[1]), clamp255(b.g + pInten_table[1]), clamp255(b.b + pInten_table[1]), 255); pBlock_colors[2].set(clamp255(b.r + pInten_table[2]), clamp255(b.g + pInten_table[2]), clamp255(b.b + pInten_table[2]), 255); pBlock_colors[3].set(clamp255(b.r + pInten_table[3]), clamp255(b.g + pInten_table[3]), clamp255(b.b + pInten_table[3]), 255); } uint64_t evaluate_etc1_error(const color_rgba* pBlock_pixels, bool perceptual, int subblock_index = -1) const; void get_subblock_pixels(color_rgba* pPixels, int subblock_index = -1) const; void get_selector_range(uint32_t& low, uint32_t& high) const { low = 3; high = 0; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t s = get_selector(x, y); low = minimum(low, s); high = maximum(high, s); } } } void set_block_color4(const color_rgba &c0_unscaled, const color_rgba &c1_unscaled) { set_diff_bit(false); set_base4_color(0, pack_color4(c0_unscaled, false)); set_base4_color(1, pack_color4(c1_unscaled, false)); } void set_block_color5(const color_rgba &c0_unscaled, const color_rgba &c1_unscaled) { set_diff_bit(true); set_base5_color(pack_color5(c0_unscaled, false)); int dr = c1_unscaled.r - c0_unscaled.r; int dg = c1_unscaled.g - c0_unscaled.g; int db = c1_unscaled.b - c0_unscaled.b; set_delta3_color(pack_delta3(dr, dg, db)); } void set_block_color5_etc1s(const color_rgba &c_unscaled) { set_diff_bit(true); set_base5_color(pack_color5(c_unscaled, false)); set_delta3_color(pack_delta3(0, 0, 0)); } bool set_block_color5_check(const color_rgba &c0_unscaled, const color_rgba &c1_unscaled) { set_diff_bit(true); set_base5_color(pack_color5(c0_unscaled, false)); int dr = c1_unscaled.r - c0_unscaled.r; int dg = c1_unscaled.g - c0_unscaled.g; int db = c1_unscaled.b - c0_unscaled.b; if (((dr < cETC1ColorDeltaMin) || (dr > cETC1ColorDeltaMax)) || ((dg < cETC1ColorDeltaMin) || (dg > cETC1ColorDeltaMax)) || ((db < cETC1ColorDeltaMin) || (db > cETC1ColorDeltaMax))) return false; set_delta3_color(pack_delta3(dr, dg, db)); return true; } color_rgba get_selector_color(uint32_t x, uint32_t y, uint32_t s) const { color_rgba block_colors[4]; get_block_colors(block_colors, get_subblock_index(x, y)); return block_colors[s]; } // Base color 5 static uint16_t pack_color5(const color_rgba& color, bool scaled, uint32_t bias = 127U); static uint16_t pack_color5(uint32_t r, uint32_t g, uint32_t b, bool scaled, uint32_t bias = 127U); static color_rgba unpack_color5(uint16_t packed_color5, bool scaled, uint32_t alpha = 255U); static void unpack_color5(uint32_t& r, uint32_t& g, uint32_t& b, uint16_t packed_color, bool scaled); static void unpack_color5(color_rgba& result, uint16_t packed_color5, bool scaled); static bool unpack_color5(color_rgba& result, uint16_t packed_color5, uint16_t packed_delta3, bool scaled, uint32_t alpha = 255U); static bool unpack_color5(uint32_t& r, uint32_t& g, uint32_t& b, uint16_t packed_color5, uint16_t packed_delta3, bool scaled, uint32_t alpha = 255U); // Delta color 3 // Inputs range from -4 to 3 (cETC1ColorDeltaMin to cETC1ColorDeltaMax) static uint16_t pack_delta3(const color_rgba_i16& color); static uint16_t pack_delta3(int r, int g, int b); // Results range from -4 to 3 (cETC1ColorDeltaMin to cETC1ColorDeltaMax) static color_rgba_i16 unpack_delta3(uint16_t packed_delta3); static void unpack_delta3(int& r, int& g, int& b, uint16_t packed_delta3); static bool try_pack_color5_delta3(const color_rgba *pColor5_unscaled) { int dr = pColor5_unscaled[1].r - pColor5_unscaled[0].r; int dg = pColor5_unscaled[1].g - pColor5_unscaled[0].g; int db = pColor5_unscaled[1].b - pColor5_unscaled[0].b; if ((minimum(dr, dg, db) < cETC1ColorDeltaMin) || (maximum(dr, dg, db) > cETC1ColorDeltaMax)) return false; return true; } // Abs color 4 static uint16_t pack_color4(const color_rgba& color, bool scaled, uint32_t bias = 127U); static uint16_t pack_color4(uint32_t r, uint32_t g, uint32_t b, bool scaled, uint32_t bias = 127U); static color_rgba unpack_color4(uint16_t packed_color4, bool scaled, uint32_t alpha = 255U); static void unpack_color4(uint32_t& r, uint32_t& g, uint32_t& b, uint16_t packed_color4, bool scaled); // subblock colors static void get_diff_subblock_colors(color_rgba* pDst, uint16_t packed_color5, uint32_t table_idx); static bool get_diff_subblock_colors(color_rgba* pDst, uint16_t packed_color5, uint16_t packed_delta3, uint32_t table_idx); static void get_abs_subblock_colors(color_rgba* pDst, uint16_t packed_color4, uint32_t table_idx); static inline void unscaled_to_scaled_color(color_rgba& dst, const color_rgba& src, bool color4) { if (color4) { dst.r = src.r | (src.r << 4); dst.g = src.g | (src.g << 4); dst.b = src.b | (src.b << 4); } else { dst.r = (src.r >> 2) | (src.r << 3); dst.g = (src.g >> 2) | (src.g << 3); dst.b = (src.b >> 2) | (src.b << 3); } dst.a = src.a; } private: static uint8_t clamp255(int x, bool &did_clamp) { if (x < 0) { did_clamp = true; return 0; } else if (x > 255) { did_clamp = true; return 255; } return static_cast<uint8_t>(x); } static uint8_t clamp255(int x) { if (x < 0) return 0; else if (x > 255) return 255; return static_cast<uint8_t>(x); } }; typedef std::vector<etc_block> etc_block_vec; // Returns false if the unpack fails (could be bogus data or ETC2) bool unpack_etc1(const etc_block& block, color_rgba *pDst, bool preserve_alpha = false); enum basis_etc_quality { cETCQualityFast, cETCQualityMedium, cETCQualitySlow, cETCQualityUber, cETCQualityTotal, }; struct basis_etc1_pack_params { basis_etc_quality m_quality; bool m_perceptual; bool m_cluster_fit; bool m_force_etc1s; bool m_use_color4; float m_flip_bias; inline basis_etc1_pack_params() { clear(); } void clear() { m_quality = cETCQualitySlow; m_perceptual = true; m_cluster_fit = true; m_force_etc1s = false; m_use_color4 = true; m_flip_bias = 0.0f; } }; struct etc1_solution_coordinates { inline etc1_solution_coordinates() : m_unscaled_color(0, 0, 0, 0), m_inten_table(0), m_color4(false) { } inline etc1_solution_coordinates(uint32_t r, uint32_t g, uint32_t b, uint32_t inten_table, bool color4) : m_unscaled_color((uint8_t)r, (uint8_t)g, (uint8_t)b, 255), m_inten_table((uint8_t)inten_table), m_color4(color4) { } inline etc1_solution_coordinates(const color_rgba& c, uint32_t inten_table, bool color4) : m_unscaled_color(c), m_inten_table(inten_table), m_color4(color4) { } inline etc1_solution_coordinates(const etc1_solution_coordinates& other) { *this = other; } inline etc1_solution_coordinates& operator= (const etc1_solution_coordinates& rhs) { m_unscaled_color = rhs.m_unscaled_color; m_inten_table = rhs.m_inten_table; m_color4 = rhs.m_color4; return *this; } inline void clear() { m_unscaled_color.clear(); m_inten_table = 0; m_color4 = false; } inline void init(const color_rgba& c, uint32_t inten_table, bool color4) { m_unscaled_color = c; m_inten_table = inten_table; m_color4 = color4; } inline color_rgba get_scaled_color() const { int br, bg, bb; if (m_color4) { br = m_unscaled_color.r | (m_unscaled_color.r << 4); bg = m_unscaled_color.g | (m_unscaled_color.g << 4); bb = m_unscaled_color.b | (m_unscaled_color.b << 4); } else { br = (m_unscaled_color.r >> 2) | (m_unscaled_color.r << 3); bg = (m_unscaled_color.g >> 2) | (m_unscaled_color.g << 3); bb = (m_unscaled_color.b >> 2) | (m_unscaled_color.b << 3); } return color_rgba((uint8_t)br, (uint8_t)bg, (uint8_t)bb, 255); } // returns true if anything was clamped inline void get_block_colors(color_rgba* pBlock_colors) { int br, bg, bb; if (m_color4) { br = m_unscaled_color.r | (m_unscaled_color.r << 4); bg = m_unscaled_color.g | (m_unscaled_color.g << 4); bb = m_unscaled_color.b | (m_unscaled_color.b << 4); } else { br = (m_unscaled_color.r >> 2) | (m_unscaled_color.r << 3); bg = (m_unscaled_color.g >> 2) | (m_unscaled_color.g << 3); bb = (m_unscaled_color.b >> 2) | (m_unscaled_color.b << 3); } const int* pInten_table = g_etc1_inten_tables[m_inten_table]; pBlock_colors[0].set((uint8_t)(br + pInten_table[0]), (uint8_t)(bg + pInten_table[0]), (uint8_t)(bb + pInten_table[0]), 255); pBlock_colors[1].set((uint8_t)(br + pInten_table[1]), (uint8_t)(bg + pInten_table[1]), (uint8_t)(bb + pInten_table[1]), 255); pBlock_colors[2].set((uint8_t)(br + pInten_table[2]), (uint8_t)(bg + pInten_table[2]), (uint8_t)(bb + pInten_table[2]), 255); pBlock_colors[3].set((uint8_t)(br + pInten_table[3]), (uint8_t)(bg + pInten_table[3]), (uint8_t)(bb + pInten_table[3]), 255); } color_rgba m_unscaled_color; uint32_t m_inten_table; bool m_color4; }; class etc1_optimizer { BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(etc1_optimizer); public: etc1_optimizer() { clear(); } void clear() { m_pParams = nullptr; m_pResult = nullptr; m_pSorted_luma = nullptr; m_pSorted_luma_indices = nullptr; } struct params; typedef bool(*evaluate_solution_override_func)(uint64_t &error, const params &p, const color_rgba* pBlock_colors, const uint8_t* pSelectors, const etc1_solution_coordinates& coords); struct params : basis_etc1_pack_params { params() { clear(); } params(const basis_etc1_pack_params& base_params) { clear_optimizer_params(); *static_cast<basis_etc1_pack_params *>(this) = base_params; } void clear() { clear_optimizer_params(); } void clear_optimizer_params() { basis_etc1_pack_params::clear(); m_num_src_pixels = 0; m_pSrc_pixels = 0; m_use_color4 = false; static const int s_default_scan_delta[] = { 0 }; m_pScan_deltas = s_default_scan_delta; m_scan_delta_size = 1; m_base_color5.clear(); m_constrain_against_base_color5 = false; m_refinement = true; m_pForce_selectors = nullptr; m_pEval_solution_override = nullptr; m_pEval_solution_override_data = nullptr; } uint32_t m_num_src_pixels; const color_rgba* m_pSrc_pixels; bool m_use_color4; const int* m_pScan_deltas; uint32_t m_scan_delta_size; color_rgba m_base_color5; bool m_constrain_against_base_color5; bool m_refinement; const uint8_t* m_pForce_selectors; evaluate_solution_override_func m_pEval_solution_override; void *m_pEval_solution_override_data; }; struct results { uint64_t m_error; color_rgba m_block_color_unscaled; uint32_t m_block_inten_table; uint32_t m_n; uint8_t* m_pSelectors; bool m_block_color4; inline results& operator= (const results& rhs) { m_block_color_unscaled = rhs.m_block_color_unscaled; m_block_color4 = rhs.m_block_color4; m_block_inten_table = rhs.m_block_inten_table; m_error = rhs.m_error; memcpy(m_pSelectors, rhs.m_pSelectors, minimum(rhs.m_n, m_n)); return *this; } }; void init(const params& params, results& result); bool compute(); const params* get_params() const { return m_pParams; } private: struct potential_solution { potential_solution() : m_coords(), m_error(UINT64_MAX), m_valid(false) { } etc1_solution_coordinates m_coords; std::vector<uint8_t> m_selectors; uint64_t m_error; bool m_valid; void clear() { m_coords.clear(); m_selectors.resize(0); m_error = UINT64_MAX; m_valid = false; } bool are_selectors_all_equal() const { if (!m_selectors.size()) return false; const uint32_t s = m_selectors[0]; for (uint32_t i = 1; i < m_selectors.size(); i++) if (m_selectors[i] != s) return false; return true; } }; const params* m_pParams; results* m_pResult; int m_limit; vec3F m_avg_color; int m_br, m_bg, m_bb; std::vector<uint16_t> m_luma; std::vector<uint32_t> m_sorted_luma; std::vector<uint32_t> m_sorted_luma_indices; const uint32_t* m_pSorted_luma_indices; uint32_t* m_pSorted_luma; std::vector<uint8_t> m_selectors; std::vector<uint8_t> m_best_selectors; potential_solution m_best_solution; potential_solution m_trial_solution; std::vector<uint8_t> m_temp_selectors; std::set<uint32_t> m_solutions_tried; void get_nearby_inten_tables(uint32_t idx, int &first_inten_table, int &last_inten_table) { first_inten_table = maximum<int>(idx - 1, 0); last_inten_table = minimum<int>(cETC1IntenModifierValues, idx + 1); } bool evaluate_solution_slow(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution); bool evaluate_solution_fast(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution); inline bool evaluate_solution(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution) { if (m_pParams->m_quality >= cETCQualitySlow) return evaluate_solution_slow(coords, trial_solution, pBest_solution); else return evaluate_solution_fast(coords, trial_solution, pBest_solution); } void refine_solution(uint32_t max_refinement_trials); void compute_internal_neighborhood(int scan_r, int scan_g, int scan_b); void compute_internal_cluster_fit(uint32_t total_perms_to_try); }; struct pack_etc1_block_context { etc1_optimizer m_optimizer; }; } // namespace basisu