/*************************************************************************/ /* test_vector4.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef TEST_VECTOR4_H #define TEST_VECTOR4_H #include "core/math/vector4.h" #include "tests/test_macros.h" #define Math_SQRT3 1.7320508075688772935274463415059 namespace TestVector4 { TEST_CASE("[Vector4] Constructor methods") { const Vector4 vector_empty = Vector4(); const Vector4 vector_zero = Vector4(0.0, 0.0, 0.0, 0.0); CHECK_MESSAGE( vector_empty == vector_zero, "Vector4 Constructor with no inputs should return a zero Vector4."); } TEST_CASE("[Vector4] Axis methods") { Vector4 vector = Vector4(1.2, 3.4, 5.6, -0.9); CHECK_MESSAGE( vector.max_axis_index() == Vector4::Axis::AXIS_Z, "Vector4 max_axis_index should work as expected."); CHECK_MESSAGE( vector.min_axis_index() == Vector4::Axis::AXIS_W, "Vector4 min_axis_index should work as expected."); CHECK_MESSAGE( vector[vector.max_axis_index()] == (real_t)5.6, "Vector4 array operator should work as expected."); CHECK_MESSAGE( vector[vector.min_axis_index()] == (real_t)-0.9, "Vector4 array operator should work as expected."); vector[Vector4::Axis::AXIS_Y] = 3.7; CHECK_MESSAGE( vector[Vector4::Axis::AXIS_Y] == (real_t)3.7, "Vector4 array operator setter should work as expected."); } TEST_CASE("[Vector4] Interpolation methods") { const Vector4 vector1 = Vector4(1, 2, 3, 4); const Vector4 vector2 = Vector4(4, 5, 6, 7); CHECK_MESSAGE( vector1.lerp(vector2, 0.5) == Vector4(2.5, 3.5, 4.5, 5.5), "Vector4 lerp should work as expected."); CHECK_MESSAGE( vector1.lerp(vector2, 1.0 / 3.0).is_equal_approx(Vector4(2, 3, 4, 5)), "Vector4 lerp should work as expected."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 0.5) == Vector4(2.375, 3.5, 4.625, 5.75), "Vector4 cubic_interpolate should work as expected."); CHECK_MESSAGE( vector1.cubic_interpolate(vector2, Vector4(), Vector4(7, 7, 7, 7), 1.0 / 3.0).is_equal_approx(Vector4(1.851851940155029297, 2.962963104248046875, 4.074074268341064453, 5.185185185185)), "Vector4 cubic_interpolate should work as expected."); } TEST_CASE("[Vector4] Length methods") { const Vector4 vector1 = Vector4(10, 10, 10, 10); const Vector4 vector2 = Vector4(20, 30, 40, 50); CHECK_MESSAGE( vector1.length_squared() == 400, "Vector4 length_squared should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector1.length(), 20), "Vector4 length should work as expected."); CHECK_MESSAGE( vector2.length_squared() == 5400, "Vector4 length_squared should work as expected and return exact result."); CHECK_MESSAGE( Math::is_equal_approx(vector2.length(), (real_t)73.484692283495), "Vector4 length should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector1.distance_to(vector2), (real_t)54.772255750517), "Vector4 distance_to should work as expected."); CHECK_MESSAGE( Math::is_equal_approx(vector1.distance_squared_to(vector2), 3000), "Vector4 distance_squared_to should work as expected."); } TEST_CASE("[Vector4] Limiting methods") { const Vector4 vector = Vector4(10, 10, 10, 10); CHECK_MESSAGE( Vector4(-5, 5, 15, -15).clamp(Vector4(), vector) == Vector4(0, 5, 10, 0), "Vector4 clamp should work as expected."); CHECK_MESSAGE( vector.clamp(Vector4(0, 10, 15, 18), Vector4(5, 10, 20, 25)) == Vector4(5, 10, 15, 18), "Vector4 clamp should work as expected."); } TEST_CASE("[Vector4] Normalization methods") { CHECK_MESSAGE( Vector4(1, 0, 0, 0).is_normalized() == true, "Vector4 is_normalized should return true for a normalized vector."); CHECK_MESSAGE( Vector4(1, 1, 1, 1).is_normalized() == false, "Vector4 is_normalized should return false for a non-normalized vector."); CHECK_MESSAGE( Vector4(1, 0, 0, 0).normalized() == Vector4(1, 0, 0, 0), "Vector4 normalized should return the same vector for a normalized vector."); CHECK_MESSAGE( Vector4(1, 1, 0, 0).normalized().is_equal_approx(Vector4(Math_SQRT12, Math_SQRT12, 0, 0)), "Vector4 normalized should work as expected."); CHECK_MESSAGE( Vector4(1, 1, 1, 1).normalized().is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)), "Vector4 normalized should work as expected."); } TEST_CASE("[Vector4] Operators") { const Vector4 decimal1 = Vector4(2.3, 4.9, 7.8, 3.2); const Vector4 decimal2 = Vector4(1.2, 3.4, 5.6, 1.7); const Vector4 power1 = Vector4(0.75, 1.5, 0.625, 0.125); const Vector4 power2 = Vector4(0.5, 0.125, 0.25, 0.75); const Vector4 int1 = Vector4(4, 5, 9, 2); const Vector4 int2 = Vector4(1, 2, 3, 1); CHECK_MESSAGE( -decimal1 == Vector4(-2.3, -4.9, -7.8, -3.2), "Vector4 change of sign should work as expected."); CHECK_MESSAGE( (decimal1 + decimal2).is_equal_approx(Vector4(3.5, 8.3, 13.4, 4.9)), "Vector4 addition should behave as expected."); CHECK_MESSAGE( (power1 + power2) == Vector4(1.25, 1.625, 0.875, 0.875), "Vector4 addition with powers of two should give exact results."); CHECK_MESSAGE( (int1 + int2) == Vector4(5, 7, 12, 3), "Vector4 addition with integers should give exact results."); CHECK_MESSAGE( (decimal1 - decimal2).is_equal_approx(Vector4(1.1, 1.5, 2.2, 1.5)), "Vector4 subtraction should behave as expected."); CHECK_MESSAGE( (power1 - power2) == Vector4(0.25, 1.375, 0.375, -0.625), "Vector4 subtraction with powers of two should give exact results."); CHECK_MESSAGE( (int1 - int2) == Vector4(3, 3, 6, 1), "Vector4 subtraction with integers should give exact results."); CHECK_MESSAGE( (decimal1 * decimal2).is_equal_approx(Vector4(2.76, 16.66, 43.68, 5.44)), "Vector4 multiplication should behave as expected."); CHECK_MESSAGE( (power1 * power2) == Vector4(0.375, 0.1875, 0.15625, 0.09375), "Vector4 multiplication with powers of two should give exact results."); CHECK_MESSAGE( (int1 * int2) == Vector4(4, 10, 27, 2), "Vector4 multiplication with integers should give exact results."); CHECK_MESSAGE( (decimal1 / decimal2).is_equal_approx(Vector4(1.91666666666666666, 1.44117647058823529, 1.39285714285714286, 1.88235294118)), "Vector4 division should behave as expected."); CHECK_MESSAGE( (power1 / power2) == Vector4(1.5, 12.0, 2.5, 1.0 / 6.0), "Vector4 division with powers of two should give exact results."); CHECK_MESSAGE( (int1 / int2) == Vector4(4, 2.5, 3, 2), "Vector4 division with integers should give exact results."); CHECK_MESSAGE( (decimal1 * 2).is_equal_approx(Vector4(4.6, 9.8, 15.6, 6.4)), "Vector4 multiplication should behave as expected."); CHECK_MESSAGE( (power1 * 2) == Vector4(1.5, 3, 1.25, 0.25), "Vector4 multiplication with powers of two should give exact results."); CHECK_MESSAGE( (int1 * 2) == Vector4(8, 10, 18, 4), "Vector4 multiplication with integers should give exact results."); CHECK_MESSAGE( (decimal1 / 2).is_equal_approx(Vector4(1.15, 2.45, 3.9, 1.6)), "Vector4 division should behave as expected."); CHECK_MESSAGE( (power1 / 2) == Vector4(0.375, 0.75, 0.3125, 0.0625), "Vector4 division with powers of two should give exact results."); CHECK_MESSAGE( (int1 / 2) == Vector4(2, 2.5, 4.5, 1), "Vector4 division with integers should give exact results."); CHECK_MESSAGE( ((String)decimal1) == "(2.3, 4.9, 7.8, 3.2)", "Vector4 cast to String should work as expected."); CHECK_MESSAGE( ((String)decimal2) == "(1.2, 3.4, 5.6, 1.7)", "Vector4 cast to String should work as expected."); CHECK_MESSAGE( ((String)Vector4(9.7, 9.8, 9.9, -1.8)) == "(9.7, 9.8, 9.9, -1.8)", "Vector4 cast to String should work as expected."); #ifdef REAL_T_IS_DOUBLE CHECK_MESSAGE( ((String)Vector4(Math_E, Math_SQRT2, Math_SQRT3, Math_SQRT3)) == "(2.71828182845905, 1.4142135623731, 1.73205080756888, 1.73205080756888)", "Vector4 cast to String should print the correct amount of digits for real_t = double."); #else CHECK_MESSAGE( ((String)Vector4(Math_E, Math_SQRT2, Math_SQRT3, Math_SQRT3)) == "(2.718282, 1.414214, 1.732051, 1.732051)", "Vector4 cast to String should print the correct amount of digits for real_t = float."); #endif // REAL_T_IS_DOUBLE } TEST_CASE("[Vector4] Other methods") { const Vector4 vector = Vector4(1.2, 3.4, 5.6, 1.6); CHECK_MESSAGE( vector.direction_to(Vector4()).is_equal_approx(-vector.normalized()), "Vector4 direction_to should work as expected."); CHECK_MESSAGE( Vector4(1, 1, 1, 1).direction_to(Vector4(2, 2, 2, 2)).is_equal_approx(Vector4(0.5, 0.5, 0.5, 0.5)), "Vector4 direction_to should work as expected."); CHECK_MESSAGE( vector.inverse().is_equal_approx(Vector4(1 / 1.2, 1 / 3.4, 1 / 5.6, 1 / 1.6)), "Vector4 inverse should work as expected."); CHECK_MESSAGE( vector.posmod(2).is_equal_approx(Vector4(1.2, 1.4, 1.6, 1.6)), "Vector4 posmod should work as expected."); CHECK_MESSAGE( (-vector).posmod(2).is_equal_approx(Vector4(0.8, 0.6, 0.4, 0.4)), "Vector4 posmod should work as expected."); CHECK_MESSAGE( vector.posmodv(Vector4(1, 2, 3, 4)).is_equal_approx(Vector4(0.2, 1.4, 2.6, 1.6)), "Vector4 posmodv should work as expected."); CHECK_MESSAGE( (-vector).posmodv(Vector4(2, 3, 4, 5)).is_equal_approx(Vector4(0.8, 2.6, 2.4, 3.4)), "Vector4 posmodv should work as expected."); CHECK_MESSAGE( vector.snapped(Vector4(1, 1, 1, 1)) == Vector4(1, 3, 6, 2), "Vector4 snapped to integers should be the same as rounding."); CHECK_MESSAGE( vector.snapped(Vector4(0.25, 0.25, 0.25, 0.25)) == Vector4(1.25, 3.5, 5.5, 1.5), "Vector4 snapped to 0.25 should give exact results."); } TEST_CASE("[Vector4] Rounding methods") { const Vector4 vector1 = Vector4(1.2, 3.4, 5.6, 1.6); const Vector4 vector2 = Vector4(1.2, -3.4, -5.6, -1.6); CHECK_MESSAGE( vector1.abs() == vector1, "Vector4 abs should work as expected."); CHECK_MESSAGE( vector2.abs() == vector1, "Vector4 abs should work as expected."); CHECK_MESSAGE( vector1.ceil() == Vector4(2, 4, 6, 2), "Vector4 ceil should work as expected."); CHECK_MESSAGE( vector2.ceil() == Vector4(2, -3, -5, -1), "Vector4 ceil should work as expected."); CHECK_MESSAGE( vector1.floor() == Vector4(1, 3, 5, 1), "Vector4 floor should work as expected."); CHECK_MESSAGE( vector2.floor() == Vector4(1, -4, -6, -2), "Vector4 floor should work as expected."); CHECK_MESSAGE( vector1.round() == Vector4(1, 3, 6, 2), "Vector4 round should work as expected."); CHECK_MESSAGE( vector2.round() == Vector4(1, -3, -6, -2), "Vector4 round should work as expected."); CHECK_MESSAGE( vector1.sign() == Vector4(1, 1, 1, 1), "Vector4 sign should work as expected."); CHECK_MESSAGE( vector2.sign() == Vector4(1, -1, -1, -1), "Vector4 sign should work as expected."); } TEST_CASE("[Vector4] Linear algebra methods") { const Vector4 vector_x = Vector4(1, 0, 0, 0); const Vector4 vector_y = Vector4(0, 1, 0, 0); const Vector4 vector1 = Vector4(1.7, 2.3, 1, 9.1); const Vector4 vector2 = Vector4(-8.2, -16, 3, 2.4); CHECK_MESSAGE( vector_x.dot(vector_y) == 0.0, "Vector4 dot product of perpendicular vectors should be zero."); CHECK_MESSAGE( vector_x.dot(vector_x) == 1.0, "Vector4 dot product of identical unit vectors should be one."); CHECK_MESSAGE( (vector_x * 10).dot(vector_x * 10) == 100.0, "Vector4 dot product of same direction vectors should behave as expected."); CHECK_MESSAGE( Math::is_equal_approx((vector1 * 2).dot(vector2 * 4), (real_t)-25.9 * 8), "Vector4 dot product should work as expected."); } } // namespace TestVector4 #endif // TEST_VECTOR4_H