Vector used for 2D math using integer coordinates.
2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
It uses integer coordinates and is therefore preferable to [Vector2] when exact precision is required. Note that the values are limited to 32 bits, and unlike [Vector2] this cannot be configured with an engine build option. Use [int] or [PackedInt64Array] if 64-bit values are needed.
[b]Note:[/b] In a boolean context, a Vector2i will evaluate to [code]false[/code] if it's equal to [code]Vector2i(0, 0)[/code]. Otherwise, a Vector2i will always evaluate to [code]true[/code].
$DOCS_URL/tutorials/math/index.html
$DOCS_URL/tutorials/math/vector_math.html
https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
Constructs a default-initialized [Vector2i] with all components set to [code]0[/code].
Constructs a [Vector2i] as a copy of the given [Vector2i].
Constructs a new [Vector2i] from [Vector2]. The floating point coordinates will be truncated.
Constructs a new [Vector2i] from the given [param x] and [param y].
Returns a new vector with all components in absolute values (i.e. positive).
Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
Returns a new vector with all components clamped between the components of [param min] and [param max], by running [method @GlobalScope.clamp] on each component.
Returns the length (magnitude) of this vector.
Returns the squared length (squared magnitude) of this vector.
This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
Returns the axis of the vector's highest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_X].
Returns the axis of the vector's lowest value. See [code]AXIS_*[/code] constants. If all components are equal, this method returns [constant AXIS_Y].
Returns a new vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
The vector's X component. Also accessible by using the index position [code][0][/code].
The vector's Y component. Also accessible by using the index position [code][1][/code].
Enumerated value for the X axis. Returned by [method max_axis_index] and [method min_axis_index].
Enumerated value for the Y axis. Returned by [method max_axis_index] and [method min_axis_index].
Zero vector, a vector with all components set to [code]0[/code].
One vector, a vector with all components set to [code]1[/code].
Left unit vector. Represents the direction of left.
Right unit vector. Represents the direction of right.
Up unit vector. Y is down in 2D, so this vector points -Y.
Down unit vector. Y is down in 2D, so this vector points +Y.
Returns [code]true[/code] if the vectors are not equal.
Gets the remainder of each component of the [Vector2i] with the components of the given [Vector2i]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector2i(10, -20) % Vector2i(7, 8)) # Prints "(3, -4)"
[/codeblock]
Gets the remainder of each component of the [Vector2i] with the the given [int]. This operation uses truncated division, which is often not desired as it does not work well with negative numbers. Consider using [method @GlobalScope.posmod] instead if you want to handle negative numbers.
[codeblock]
print(Vector2i(10, -20) % 7) # Prints "(3, -6)"
[/codeblock]
Multiplies each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) * Vector2i(3, 4)) # Prints "(30, 80)"
[/codeblock]
Multiplies each component of the [Vector2i] by the given [float]. Returns a [Vector2].
[codeblock]
print(Vector2i(10, 15) * 0.9) # Prints "(9, 13.5)"
[/codeblock]
Multiplies each component of the [Vector2i] by the given [int].
Adds each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) + Vector2i(3, 4)) # Prints "(13, 24)"
[/codeblock]
Subtracts each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) - Vector2i(3, 4)) # Prints "(7, 16)"
[/codeblock]
Divides each component of the [Vector2i] by the components of the given [Vector2i].
[codeblock]
print(Vector2i(10, 20) / Vector2i(2, 5)) # Prints "(5, 4)"
[/codeblock]
Divides each component of the [Vector2i] by the given [float]. Returns a [Vector2].
[codeblock]
print(Vector2i(10, 20) / 2.9) # Prints "(5, 10)"
[/codeblock]
Divides each component of the [Vector2i] by the given [int].
Compares two [Vector2i] vectors by first checking if the X value of the left vector is less than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
Compares two [Vector2i] vectors by first checking if the X value of the left vector is less than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
Returns [code]true[/code] if the vectors are equal.
Compares two [Vector2i] vectors by first checking if the X value of the left vector is greater than the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
Compares two [Vector2i] vectors by first checking if the X value of the left vector is greater than or equal to the X value of the [param right] vector. If the X values are exactly equal, then it repeats this check with the Y values of the two vectors. This operator is useful for sorting vectors.
Access vector components using their [param index]. [code]v[0][/code] is equivalent to [code]v.x[/code], and [code]v[1][/code] is equivalent to [code]v.y[/code].
Returns the same value as if the [code]+[/code] was not there. Unary [code]+[/code] does nothing, but sometimes it can make your code more readable.
Returns the negative value of the [Vector2i]. This is the same as writing [code]Vector2i(-v.x, -v.y)[/code]. This operation flips the direction of the vector while keeping the same magnitude.