// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
#include "meshoptimizer.h"

#include <assert.h>
#include <float.h>
#include <string.h>

// This work is based on:
// Nicolas Capens. Advanced Rasterization. 2004
namespace meshopt
{

const int kViewport = 256;

struct OverdrawBuffer
{
	float z[kViewport][kViewport][2];
	unsigned int overdraw[kViewport][kViewport][2];
};

#ifndef min
#define min(a, b) ((a) < (b) ? (a) : (b))
#endif

#ifndef max
#define max(a, b) ((a) > (b) ? (a) : (b))
#endif

static float computeDepthGradients(float& dzdx, float& dzdy, float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3)
{
	// z2 = z1 + dzdx * (x2 - x1) + dzdy * (y2 - y1)
	// z3 = z1 + dzdx * (x3 - x1) + dzdy * (y3 - y1)
	// (x2-x1 y2-y1)(dzdx) = (z2-z1)
	// (x3-x1 y3-y1)(dzdy)   (z3-z1)
	// we'll solve it with Cramer's rule
	float det = (x2 - x1) * (y3 - y1) - (y2 - y1) * (x3 - x1);
	float invdet = (det == 0) ? 0 : 1 / det;

	dzdx = (z2 - z1) * (y3 - y1) - (y2 - y1) * (z3 - z1) * invdet;
	dzdy = (x2 - x1) * (z3 - z1) - (z2 - z1) * (x3 - x1) * invdet;

	return det;
}

// half-space fixed point triangle rasterizer
static void rasterize(OverdrawBuffer* buffer, float v1x, float v1y, float v1z, float v2x, float v2y, float v2z, float v3x, float v3y, float v3z)
{
	// compute depth gradients
	float DZx, DZy;
	float det = computeDepthGradients(DZx, DZy, v1x, v1y, v1z, v2x, v2y, v2z, v3x, v3y, v3z);
	int sign = det > 0;

	// flip backfacing triangles to simplify rasterization logic
	if (sign)
	{
		// flipping v2 & v3 preserves depth gradients since they're based on v1
		float t;
		t = v2x, v2x = v3x, v3x = t;
		t = v2y, v2y = v3y, v3y = t;
		t = v2z, v2z = v3z, v3z = t;

		// flip depth since we rasterize backfacing triangles to second buffer with reverse Z; only v1z is used below
		v1z = kViewport - v1z;
		DZx = -DZx;
		DZy = -DZy;
	}

	// coordinates, 28.4 fixed point
	int X1 = int(16.0f * v1x + 0.5f);
	int X2 = int(16.0f * v2x + 0.5f);
	int X3 = int(16.0f * v3x + 0.5f);

	int Y1 = int(16.0f * v1y + 0.5f);
	int Y2 = int(16.0f * v2y + 0.5f);
	int Y3 = int(16.0f * v3y + 0.5f);

	// bounding rectangle, clipped against viewport
	// since we rasterize pixels with covered centers, min >0.5 should round up
	// as for max, due to top-left filling convention we will never rasterize right/bottom edges
	// so max >= 0.5 should round down
	int minx = max((min(X1, min(X2, X3)) + 7) >> 4, 0);
	int maxx = min((max(X1, max(X2, X3)) + 7) >> 4, kViewport);
	int miny = max((min(Y1, min(Y2, Y3)) + 7) >> 4, 0);
	int maxy = min((max(Y1, max(Y2, Y3)) + 7) >> 4, kViewport);

	// deltas, 28.4 fixed point
	int DX12 = X1 - X2;
	int DX23 = X2 - X3;
	int DX31 = X3 - X1;

	int DY12 = Y1 - Y2;
	int DY23 = Y2 - Y3;
	int DY31 = Y3 - Y1;

	// fill convention correction
	int TL1 = DY12 < 0 || (DY12 == 0 && DX12 > 0);
	int TL2 = DY23 < 0 || (DY23 == 0 && DX23 > 0);
	int TL3 = DY31 < 0 || (DY31 == 0 && DX31 > 0);

	// half edge equations, 24.8 fixed point
	// note that we offset minx/miny by half pixel since we want to rasterize pixels with covered centers
	int FX = (minx << 4) + 8;
	int FY = (miny << 4) + 8;
	int CY1 = DX12 * (FY - Y1) - DY12 * (FX - X1) + TL1 - 1;
	int CY2 = DX23 * (FY - Y2) - DY23 * (FX - X2) + TL2 - 1;
	int CY3 = DX31 * (FY - Y3) - DY31 * (FX - X3) + TL3 - 1;
	float ZY = v1z + (DZx * float(FX - X1) + DZy * float(FY - Y1)) * (1 / 16.f);

	for (int y = miny; y < maxy; y++)
	{
		int CX1 = CY1;
		int CX2 = CY2;
		int CX3 = CY3;
		float ZX = ZY;

		for (int x = minx; x < maxx; x++)
		{
			// check if all CXn are non-negative
			if ((CX1 | CX2 | CX3) >= 0)
			{
				if (ZX >= buffer->z[y][x][sign])
				{
					buffer->z[y][x][sign] = ZX;
					buffer->overdraw[y][x][sign]++;
				}
			}

			// signed left shift is UB for negative numbers so use unsigned-signed casts
			CX1 -= int(unsigned(DY12) << 4);
			CX2 -= int(unsigned(DY23) << 4);
			CX3 -= int(unsigned(DY31) << 4);
			ZX += DZx;
		}

		// signed left shift is UB for negative numbers so use unsigned-signed casts
		CY1 += int(unsigned(DX12) << 4);
		CY2 += int(unsigned(DX23) << 4);
		CY3 += int(unsigned(DX31) << 4);
		ZY += DZy;
	}
}

} // namespace meshopt

meshopt_OverdrawStatistics meshopt_analyzeOverdraw(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
{
	using namespace meshopt;

	assert(index_count % 3 == 0);
	assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256);
	assert(vertex_positions_stride % sizeof(float) == 0);

	meshopt_Allocator allocator;

	size_t vertex_stride_float = vertex_positions_stride / sizeof(float);

	meshopt_OverdrawStatistics result = {};

	float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
	float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};

	for (size_t i = 0; i < vertex_count; ++i)
	{
		const float* v = vertex_positions + i * vertex_stride_float;

		for (int j = 0; j < 3; ++j)
		{
			minv[j] = min(minv[j], v[j]);
			maxv[j] = max(maxv[j], v[j]);
		}
	}

	float extent = max(maxv[0] - minv[0], max(maxv[1] - minv[1], maxv[2] - minv[2]));
	float scale = kViewport / extent;

	float* triangles = allocator.allocate<float>(index_count * 3);

	for (size_t i = 0; i < index_count; ++i)
	{
		unsigned int index = indices[i];
		assert(index < vertex_count);

		const float* v = vertex_positions + index * vertex_stride_float;

		triangles[i * 3 + 0] = (v[0] - minv[0]) * scale;
		triangles[i * 3 + 1] = (v[1] - minv[1]) * scale;
		triangles[i * 3 + 2] = (v[2] - minv[2]) * scale;
	}

	OverdrawBuffer* buffer = allocator.allocate<OverdrawBuffer>(1);

	for (int axis = 0; axis < 3; ++axis)
	{
		memset(buffer, 0, sizeof(OverdrawBuffer));

		for (size_t i = 0; i < index_count; i += 3)
		{
			const float* vn0 = &triangles[3 * (i + 0)];
			const float* vn1 = &triangles[3 * (i + 1)];
			const float* vn2 = &triangles[3 * (i + 2)];

			switch (axis)
			{
			case 0:
				rasterize(buffer, vn0[2], vn0[1], vn0[0], vn1[2], vn1[1], vn1[0], vn2[2], vn2[1], vn2[0]);
				break;
			case 1:
				rasterize(buffer, vn0[0], vn0[2], vn0[1], vn1[0], vn1[2], vn1[1], vn2[0], vn2[2], vn2[1]);
				break;
			case 2:
				rasterize(buffer, vn0[1], vn0[0], vn0[2], vn1[1], vn1[0], vn1[2], vn2[1], vn2[0], vn2[2]);
				break;
			}
		}

		for (int y = 0; y < kViewport; ++y)
			for (int x = 0; x < kViewport; ++x)
				for (int s = 0; s < 2; ++s)
				{
					unsigned int overdraw = buffer->overdraw[y][x][s];

					result.pixels_covered += overdraw > 0;
					result.pixels_shaded += overdraw;
				}
	}

	result.overdraw = result.pixels_covered ? float(result.pixels_shaded) / float(result.pixels_covered) : 0.f;

	return result;
}