/*************************************************************************/ /* visual_server_scene.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef VISUALSERVERSCENE_H #define VISUALSERVERSCENE_H #include "servers/visual/rasterizer.h" #include "core/math/bvh.h" #include "core/math/geometry.h" #include "core/math/octree.h" #include "core/os/semaphore.h" #include "core/os/thread.h" #include "core/self_list.h" #include "servers/arvr/arvr_interface.h" class VisualServerScene { public: enum { MAX_INSTANCE_CULL = 65536, MAX_LIGHTS_CULLED = 4096, MAX_REFLECTION_PROBES_CULLED = 4096, MAX_ROOM_CULL = 32, MAX_EXTERIOR_PORTALS = 128, }; uint64_t render_pass; bool _use_bvh; static VisualServerScene *singleton; /* CAMERA API */ struct Camera : public RID_Data { enum Type { PERSPECTIVE, ORTHOGONAL, FRUSTUM }; Type type; float fov; float znear, zfar; float size; Vector2 offset; uint32_t visible_layers; bool vaspect; RID env; Transform transform; Camera() { visible_layers = 0xFFFFFFFF; fov = 70; type = PERSPECTIVE; znear = 0.05; zfar = 100; size = 1.0; offset = Vector2(); vaspect = false; } }; mutable RID_Owner camera_owner; virtual RID camera_create(); virtual void camera_set_perspective(RID p_camera, float p_fovy_degrees, float p_z_near, float p_z_far); virtual void camera_set_orthogonal(RID p_camera, float p_size, float p_z_near, float p_z_far); virtual void camera_set_frustum(RID p_camera, float p_size, Vector2 p_offset, float p_z_near, float p_z_far); virtual void camera_set_transform(RID p_camera, const Transform &p_transform); virtual void camera_set_cull_mask(RID p_camera, uint32_t p_layers); virtual void camera_set_environment(RID p_camera, RID p_env); virtual void camera_set_use_vertical_aspect(RID p_camera, bool p_enable); /* SCENARIO API */ struct Instance; // common interface for all spatial partitioning schemes // this is a bit excessive boilerplatewise but can be removed if we decide to stick with one method // note this is actually the BVH id +1, so that visual server can test against zero // for validity to maintain compatibility with octree (where 0 indicates invalid) typedef uint32_t SpatialPartitionID; class SpatialPartitioningScene { public: virtual SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1) = 0; virtual void erase(SpatialPartitionID p_handle) = 0; virtual void move(SpatialPartitionID p_handle, const AABB &p_aabb) = 0; virtual void update() {} virtual void set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) = 0; virtual int cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF) = 0; virtual int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0; virtual int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF) = 0; typedef void *(*PairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int); typedef void (*UnpairCallback)(void *, uint32_t, Instance *, int, uint32_t, Instance *, int, void *); virtual void set_pair_callback(PairCallback p_callback, void *p_userdata) = 0; virtual void set_unpair_callback(UnpairCallback p_callback, void *p_userdata) = 0; // bvh specific virtual void params_set_node_expansion(real_t p_value) {} virtual void params_set_pairing_expansion(real_t p_value) {} // octree specific virtual void set_balance(float p_balance) {} virtual ~SpatialPartitioningScene() {} }; class SpatialPartitioningScene_Octree : public SpatialPartitioningScene { Octree_CL _octree; public: SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1); void erase(SpatialPartitionID p_handle); void move(SpatialPartitionID p_handle, const AABB &p_aabb); void set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask); int cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF); int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); void set_pair_callback(PairCallback p_callback, void *p_userdata); void set_unpair_callback(UnpairCallback p_callback, void *p_userdata); void set_balance(float p_balance); }; class SpatialPartitioningScene_BVH : public SpatialPartitioningScene { // Note that SpatialPartitionIDs are +1 based when stored in visual server, to enable 0 to indicate invalid ID. BVH_Manager _bvh; public: SpatialPartitionID create(Instance *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t p_pairable_mask = 1); void erase(SpatialPartitionID p_handle); void move(SpatialPartitionID p_handle, const AABB &p_aabb); void update(); void set_pairable(SpatialPartitionID p_handle, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask); int cull_convex(const Vector &p_convex, Instance **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF); int cull_aabb(const AABB &p_aabb, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); int cull_segment(const Vector3 &p_from, const Vector3 &p_to, Instance **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF); void set_pair_callback(PairCallback p_callback, void *p_userdata); void set_unpair_callback(UnpairCallback p_callback, void *p_userdata); void params_set_node_expansion(real_t p_value) { _bvh.params_set_node_expansion(p_value); } void params_set_pairing_expansion(real_t p_value) { _bvh.params_set_pairing_expansion(p_value); } }; struct Scenario : RID_Data { VS::ScenarioDebugMode debug; RID self; SpatialPartitioningScene *sps; List directional_lights; RID environment; RID fallback_environment; RID reflection_probe_shadow_atlas; RID reflection_atlas; SelfList::List instances; Scenario(); ~Scenario() { memdelete(sps); } }; mutable RID_Owner scenario_owner; static void *_instance_pair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int); static void _instance_unpair(void *p_self, SpatialPartitionID, Instance *p_A, int, SpatialPartitionID, Instance *p_B, int, void *); virtual RID scenario_create(); virtual void scenario_set_debug(RID p_scenario, VS::ScenarioDebugMode p_debug_mode); virtual void scenario_set_environment(RID p_scenario, RID p_environment); virtual void scenario_set_fallback_environment(RID p_scenario, RID p_environment); virtual void scenario_set_reflection_atlas_size(RID p_scenario, int p_size, int p_subdiv); /* INSTANCING API */ struct InstanceBaseData { virtual ~InstanceBaseData() {} }; struct Instance : RasterizerScene::InstanceBase { RID self; //scenario stuff SpatialPartitionID spatial_partition_id; Scenario *scenario; SelfList scenario_item; //aabb stuff bool update_aabb; bool update_materials; SelfList update_item; AABB aabb; AABB transformed_aabb; AABB *custom_aabb; // would using aabb directly with a bool be better? float extra_margin; uint32_t object_id; float lod_begin; float lod_end; float lod_begin_hysteresis; float lod_end_hysteresis; RID lod_instance; uint64_t last_render_pass; uint64_t last_frame_pass; uint64_t version; // changes to this, and changes to base increase version InstanceBaseData *base_data; virtual void base_removed() { singleton->instance_set_base(self, RID()); } virtual void base_changed(bool p_aabb, bool p_materials) { singleton->_instance_queue_update(this, p_aabb, p_materials); } Instance() : scenario_item(this), update_item(this) { spatial_partition_id = 0; scenario = NULL; update_aabb = false; update_materials = false; extra_margin = 0; object_id = 0; visible = true; lod_begin = 0; lod_end = 0; lod_begin_hysteresis = 0; lod_end_hysteresis = 0; last_render_pass = 0; last_frame_pass = 0; version = 1; base_data = NULL; custom_aabb = NULL; } ~Instance() { if (base_data) memdelete(base_data); if (custom_aabb) memdelete(custom_aabb); } }; SelfList::List _instance_update_list; void _instance_queue_update(Instance *p_instance, bool p_update_aabb, bool p_update_materials = false); struct InstanceGeometryData : public InstanceBaseData { List lighting; bool lighting_dirty; bool can_cast_shadows; bool material_is_animated; List reflection_probes; bool reflection_dirty; List gi_probes; bool gi_probes_dirty; List lightmap_captures; InstanceGeometryData() { lighting_dirty = false; reflection_dirty = true; can_cast_shadows = true; material_is_animated = true; gi_probes_dirty = true; } }; struct InstanceReflectionProbeData : public InstanceBaseData { Instance *owner; struct PairInfo { List::Element *L; //reflection iterator in geometry Instance *geometry; }; List geometries; RID instance; bool reflection_dirty; SelfList update_list; int render_step; InstanceReflectionProbeData() : update_list(this) { reflection_dirty = true; render_step = -1; } }; SelfList::List reflection_probe_render_list; struct InstanceLightData : public InstanceBaseData { struct PairInfo { List::Element *L; //light iterator in geometry Instance *geometry; }; RID instance; uint64_t last_version; List::Element *D; // directional light in scenario bool shadow_dirty; List geometries; Instance *baked_light; InstanceLightData() { shadow_dirty = true; D = NULL; last_version = 0; baked_light = NULL; } }; struct InstanceGIProbeData : public InstanceBaseData { Instance *owner; struct PairInfo { List::Element *L; //gi probe iterator in geometry Instance *geometry; }; List geometries; Set lights; struct LightCache { VS::LightType type; Transform transform; Color color; float energy; float radius; float attenuation; float spot_angle; float spot_attenuation; bool visible; bool operator==(const LightCache &p_cache) { return (type == p_cache.type && transform == p_cache.transform && color == p_cache.color && energy == p_cache.energy && radius == p_cache.radius && attenuation == p_cache.attenuation && spot_angle == p_cache.spot_angle && spot_attenuation == p_cache.spot_attenuation && visible == p_cache.visible); } bool operator!=(const LightCache &p_cache) { return !operator==(p_cache); } LightCache() { type = VS::LIGHT_DIRECTIONAL; energy = 1.0; radius = 1.0; attenuation = 1.0; spot_angle = 1.0; spot_attenuation = 1.0; visible = true; } }; struct LocalData { uint16_t pos[3]; uint16_t energy[3]; //using 0..1024 for float range 0..1. integer is needed for deterministic add/remove of lights }; struct CompBlockS3TC { uint32_t offset; //offset in mipmap uint32_t source_count; //sources uint32_t sources[16]; //id for each source uint8_t alpha[8]; //alpha block is pre-computed }; struct Dynamic { Map light_cache; Map light_cache_changes; PoolVector light_data; PoolVector local_data; Vector > level_cell_lists; RID probe_data; bool enabled; int bake_dynamic_range; RasterizerStorage::GIProbeCompression compression; Vector > mipmaps_3d; Vector > mipmaps_s3tc; //for s3tc int updating_stage; float propagate; int grid_size[3]; Transform light_to_cell_xform; } dynamic; RID probe_instance; bool invalid; uint32_t base_version; SelfList update_element; InstanceGIProbeData() : update_element(this) { invalid = true; base_version = 0; dynamic.updating_stage = GI_UPDATE_STAGE_CHECK; } }; SelfList::List gi_probe_update_list; struct InstanceLightmapCaptureData : public InstanceBaseData { struct PairInfo { List::Element *L; //iterator in geometry Instance *geometry; }; List geometries; Set users; InstanceLightmapCaptureData() { } }; int instance_cull_count; Instance *instance_cull_result[MAX_INSTANCE_CULL]; Instance *instance_shadow_cull_result[MAX_INSTANCE_CULL]; //used for generating shadowmaps Instance *light_cull_result[MAX_LIGHTS_CULLED]; RID light_instance_cull_result[MAX_LIGHTS_CULLED]; int light_cull_count; int directional_light_count; RID reflection_probe_instance_cull_result[MAX_REFLECTION_PROBES_CULLED]; int reflection_probe_cull_count; RID_Owner instance_owner; virtual RID instance_create(); virtual void instance_set_base(RID p_instance, RID p_base); virtual void instance_set_scenario(RID p_instance, RID p_scenario); virtual void instance_set_layer_mask(RID p_instance, uint32_t p_mask); virtual void instance_set_transform(RID p_instance, const Transform &p_transform); virtual void instance_attach_object_instance_id(RID p_instance, ObjectID p_id); virtual void instance_set_blend_shape_weight(RID p_instance, int p_shape, float p_weight); virtual void instance_set_surface_material(RID p_instance, int p_surface, RID p_material); virtual void instance_set_visible(RID p_instance, bool p_visible); virtual void instance_set_use_lightmap(RID p_instance, RID p_lightmap_instance, RID p_lightmap); virtual void instance_set_custom_aabb(RID p_instance, AABB p_aabb); virtual void instance_attach_skeleton(RID p_instance, RID p_skeleton); virtual void instance_set_exterior(RID p_instance, bool p_enabled); virtual void instance_set_extra_visibility_margin(RID p_instance, real_t p_margin); // don't use these in a game! virtual Vector instances_cull_aabb(const AABB &p_aabb, RID p_scenario = RID()) const; virtual Vector instances_cull_ray(const Vector3 &p_from, const Vector3 &p_to, RID p_scenario = RID()) const; virtual Vector instances_cull_convex(const Vector &p_convex, RID p_scenario = RID()) const; virtual void instance_geometry_set_flag(RID p_instance, VS::InstanceFlags p_flags, bool p_enabled); virtual void instance_geometry_set_cast_shadows_setting(RID p_instance, VS::ShadowCastingSetting p_shadow_casting_setting); virtual void instance_geometry_set_material_override(RID p_instance, RID p_material); virtual void instance_geometry_set_draw_range(RID p_instance, float p_min, float p_max, float p_min_margin, float p_max_margin); virtual void instance_geometry_set_as_instance_lod(RID p_instance, RID p_as_lod_of_instance); _FORCE_INLINE_ void _update_instance(Instance *p_instance); _FORCE_INLINE_ void _update_instance_aabb(Instance *p_instance); _FORCE_INLINE_ void _update_dirty_instance(Instance *p_instance); _FORCE_INLINE_ void _update_instance_lightmap_captures(Instance *p_instance); _FORCE_INLINE_ bool _light_instance_update_shadow(Instance *p_instance, const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_shadow_atlas, Scenario *p_scenario); void _prepare_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, uint32_t p_visible_layers, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe); void _render_scene(const Transform p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, RID p_force_environment, RID p_scenario, RID p_shadow_atlas, RID p_reflection_probe, int p_reflection_probe_pass); void render_empty_scene(RID p_scenario, RID p_shadow_atlas); void render_camera(RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas); void render_camera(Ref &p_interface, ARVRInterface::Eyes p_eye, RID p_camera, RID p_scenario, Size2 p_viewport_size, RID p_shadow_atlas); void update_dirty_instances(); //probes struct GIProbeDataHeader { uint32_t version; uint32_t cell_subdiv; uint32_t width; uint32_t height; uint32_t depth; uint32_t cell_count; uint32_t leaf_cell_count; }; struct GIProbeDataCell { uint32_t children[8]; uint32_t albedo; uint32_t emission; uint32_t normal; uint32_t level_alpha; }; enum { GI_UPDATE_STAGE_CHECK, GI_UPDATE_STAGE_LIGHTING, GI_UPDATE_STAGE_UPLOADING, }; void _gi_probe_bake_thread(); static void _gi_probe_bake_threads(void *); volatile bool probe_bake_thread_exit; Thread *probe_bake_thread; Semaphore *probe_bake_sem; Mutex *probe_bake_mutex; List probe_bake_list; bool _render_reflection_probe_step(Instance *p_instance, int p_step); void _gi_probe_fill_local_data(int p_idx, int p_level, int p_x, int p_y, int p_z, const GIProbeDataCell *p_cell, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, Vector *prev_cell); _FORCE_INLINE_ uint32_t _gi_bake_find_cell(const GIProbeDataCell *cells, int x, int y, int z, int p_cell_subdiv); void _bake_gi_downscale_light(int p_idx, int p_level, const GIProbeDataCell *p_cells, const GIProbeDataHeader *p_header, InstanceGIProbeData::LocalData *p_local_data, float p_propagate); void _bake_gi_probe_light(const GIProbeDataHeader *header, const GIProbeDataCell *cells, InstanceGIProbeData::LocalData *local_data, const uint32_t *leaves, int p_leaf_count, const InstanceGIProbeData::LightCache &light_cache, int p_sign); void _bake_gi_probe(Instance *p_gi_probe); bool _check_gi_probe(Instance *p_gi_probe); void _setup_gi_probe(Instance *p_instance); void render_probes(); bool free(RID p_rid); VisualServerScene(); virtual ~VisualServerScene(); }; #endif // VISUALSERVERSCENE_H