/**************************************************************************/
/*  visual_shader_particle_nodes.cpp                                      */
/**************************************************************************/
/*                         This file is part of:                          */
/*                             GODOT ENGINE                               */
/*                        https://godotengine.org                         */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
/*                                                                        */
/* Permission is hereby granted, free of charge, to any person obtaining  */
/* a copy of this software and associated documentation files (the        */
/* "Software"), to deal in the Software without restriction, including    */
/* without limitation the rights to use, copy, modify, merge, publish,    */
/* distribute, sublicense, and/or sell copies of the Software, and to     */
/* permit persons to whom the Software is furnished to do so, subject to  */
/* the following conditions:                                              */
/*                                                                        */
/* The above copyright notice and this permission notice shall be         */
/* included in all copies or substantial portions of the Software.        */
/*                                                                        */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
/**************************************************************************/

#include "visual_shader_particle_nodes.h"

#include "scene/resources/image_texture.h"

// VisualShaderNodeParticleEmitter

int VisualShaderNodeParticleEmitter::get_output_port_count() const {
	return 1;
}

VisualShaderNodeParticleEmitter::PortType VisualShaderNodeParticleEmitter::get_output_port_type(int p_port) const {
	if (mode_2d) {
		return p_port == 0 ? PORT_TYPE_VECTOR_2D : PORT_TYPE_SCALAR;
	}
	return p_port == 0 ? PORT_TYPE_VECTOR_3D : PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleEmitter::get_output_port_name(int p_port) const {
	if (p_port == 0) {
		return "position";
	}
	return String();
}

bool VisualShaderNodeParticleEmitter::has_output_port_preview(int p_port) const {
	return false;
}

void VisualShaderNodeParticleEmitter::set_mode_2d(bool p_enabled) {
	if (mode_2d == p_enabled) {
		return;
	}
	mode_2d = p_enabled;
	emit_changed();
}

bool VisualShaderNodeParticleEmitter::is_mode_2d() const {
	return mode_2d;
}

Vector<StringName> VisualShaderNodeParticleEmitter::get_editable_properties() const {
	Vector<StringName> props;
	props.push_back("mode_2d");
	return props;
}

HashMap<StringName, String> VisualShaderNodeParticleEmitter::get_editable_properties_names() const {
	HashMap<StringName, String> names;
	names.insert("mode_2d", RTR("2D Mode"));
	return names;
}

bool VisualShaderNodeParticleEmitter::is_show_prop_names() const {
	return true;
}

void VisualShaderNodeParticleEmitter::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_mode_2d", "enabled"), &VisualShaderNodeParticleEmitter::set_mode_2d);
	ClassDB::bind_method(D_METHOD("is_mode_2d"), &VisualShaderNodeParticleEmitter::is_mode_2d);

	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "mode_2d"), "set_mode_2d", "is_mode_2d");
}

VisualShaderNodeParticleEmitter::VisualShaderNodeParticleEmitter() {
}

// VisualShaderNodeParticleSphereEmitter

String VisualShaderNodeParticleSphereEmitter::get_caption() const {
	return "SphereEmitter";
}

int VisualShaderNodeParticleSphereEmitter::get_input_port_count() const {
	return 2;
}

VisualShaderNodeParticleSphereEmitter::PortType VisualShaderNodeParticleSphereEmitter::get_input_port_type(int p_port) const {
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleSphereEmitter::get_input_port_name(int p_port) const {
	if (p_port == 0) {
		return "radius";
	} else if (p_port == 1) {
		return "inner_radius";
	}
	return String();
}

String VisualShaderNodeParticleSphereEmitter::generate_global_per_node(Shader::Mode p_mode, int p_id) const {
	String code;

	code += "vec2 __get_random_point_in_circle(inout uint seed, float radius, float inner_radius) {\n";
	code += "	return __get_random_unit_vec2(seed) * __randf_range(seed, inner_radius, radius);\n";
	code += "}\n\n";

	code += "vec3 __get_random_point_in_sphere(inout uint seed, float radius, float inner_radius) {\n";
	code += "	return __get_random_unit_vec3(seed) * __randf_range(seed, inner_radius, radius);\n";
	code += "}\n\n";

	return code;
}

String VisualShaderNodeParticleSphereEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;

	if (mode_2d) {
		code += "	" + p_output_vars[0] + " = __get_random_point_in_circle(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ");\n";
	} else {
		code += "	" + p_output_vars[0] + " = __get_random_point_in_sphere(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ");\n";
	}

	return code;
}

VisualShaderNodeParticleSphereEmitter::VisualShaderNodeParticleSphereEmitter() {
	set_input_port_default_value(0, 10.0);
	set_input_port_default_value(1, 0.0);
}

// VisualShaderNodeParticleBoxEmitter

String VisualShaderNodeParticleBoxEmitter::get_caption() const {
	return "BoxEmitter";
}

int VisualShaderNodeParticleBoxEmitter::get_input_port_count() const {
	return 1;
}

VisualShaderNodeParticleBoxEmitter::PortType VisualShaderNodeParticleBoxEmitter::get_input_port_type(int p_port) const {
	if (p_port == 0) {
		if (mode_2d) {
			return PORT_TYPE_VECTOR_2D;
		}
		return PORT_TYPE_VECTOR_3D;
	}
	return PORT_TYPE_SCALAR;
}

void VisualShaderNodeParticleBoxEmitter::set_mode_2d(bool p_enabled) {
	if (mode_2d == p_enabled) {
		return;
	}
	if (p_enabled) {
		set_input_port_default_value(0, Vector2(), get_input_port_default_value(0));
	} else {
		set_input_port_default_value(0, Vector3(), get_input_port_default_value(0));
	}
	mode_2d = p_enabled;
	emit_changed();
}

String VisualShaderNodeParticleBoxEmitter::get_input_port_name(int p_port) const {
	if (p_port == 0) {
		return "extents";
	}
	return String();
}

String VisualShaderNodeParticleBoxEmitter::generate_global_per_node(Shader::Mode p_mode, int p_id) const {
	String code;

	code += "vec2 __get_random_point_in_box2d(inout uint seed, vec2 extents) {\n";
	code += "	vec2 half_extents = extents / 2.0;\n";
	code += "	return vec2(__randf_range(seed, -half_extents.x, half_extents.x), __randf_range(seed, -half_extents.y, half_extents.y));\n";
	code += "}\n\n";

	code += "vec3 __get_random_point_in_box3d(inout uint seed, vec3 extents) {\n";
	code += "	vec3 half_extents = extents / 2.0;\n";
	code += "	return vec3(__randf_range(seed, -half_extents.x, half_extents.x), __randf_range(seed, -half_extents.y, half_extents.y), __randf_range(seed, -half_extents.z, half_extents.z));\n";
	code += "}\n\n";

	return code;
}

String VisualShaderNodeParticleBoxEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;
	if (mode_2d) {
		code += "	" + p_output_vars[0] + " = __get_random_point_in_box2d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ");\n";
	} else {
		code += "	" + p_output_vars[0] + " = __get_random_point_in_box3d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ");\n";
	}
	return code;
}

VisualShaderNodeParticleBoxEmitter::VisualShaderNodeParticleBoxEmitter() {
	set_input_port_default_value(0, Vector3(1.0, 1.0, 1.0));
}

// VisualShaderNodeParticleRingEmitter

String VisualShaderNodeParticleRingEmitter::get_caption() const {
	return "RingEmitter";
}

int VisualShaderNodeParticleRingEmitter::get_input_port_count() const {
	return 3;
}

VisualShaderNodeParticleRingEmitter::PortType VisualShaderNodeParticleRingEmitter::get_input_port_type(int p_port) const {
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleRingEmitter::get_input_port_name(int p_port) const {
	if (p_port == 0) {
		return "radius";
	} else if (p_port == 1) {
		return "inner_radius";
	} else if (p_port == 2) {
		return "height";
	}
	return String();
}

String VisualShaderNodeParticleRingEmitter::generate_global_per_node(Shader::Mode p_mode, int p_id) const {
	String code;

	code += "vec2 __get_random_point_on_ring2d(inout uint seed, float radius, float inner_radius) {\n";
	code += "	float angle = __rand_from_seed(seed) * TAU;\n";
	code += "	vec2 ring = vec2(sin(angle), cos(angle)) * __randf_range(seed, inner_radius, radius);\n";
	code += "	return vec2(ring.x, ring.y);\n";
	code += "}\n\n";

	code += "vec3 __get_random_point_on_ring3d(inout uint seed, float radius, float inner_radius, float height) {\n";
	code += "	float angle = __rand_from_seed(seed) * TAU;\n";
	code += "	vec2 ring = vec2(sin(angle), cos(angle)) * __randf_range(seed, inner_radius, radius);\n";
	code += "	return vec3(ring.x, __randf_range(seed, min(0.0, height), max(0.0, height)), ring.y);\n";
	code += "}\n\n";

	return code;
}

String VisualShaderNodeParticleRingEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;

	if (mode_2d) {
		code = "	" + p_output_vars[0] + " = __get_random_point_on_ring2d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ");\n";
	} else {
		code = "	" + p_output_vars[0] + " = __get_random_point_on_ring3d(__seed, " + (p_input_vars[0].is_empty() ? (String)get_input_port_default_value(0) : p_input_vars[0]) + ", " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ", " + (p_input_vars[2].is_empty() ? (String)get_input_port_default_value(2) : p_input_vars[2]) + ");\n";
	}

	return code;
}

VisualShaderNodeParticleRingEmitter::VisualShaderNodeParticleRingEmitter() {
	set_input_port_default_value(0, 10.0);
	set_input_port_default_value(1, 0.0);
	set_input_port_default_value(2, 0.0);
}

// VisualShaderNodeParticleMeshEmitter

String VisualShaderNodeParticleMeshEmitter::get_caption() const {
	return "MeshEmitter";
}

int VisualShaderNodeParticleMeshEmitter::get_output_port_count() const {
	return 6;
}

VisualShaderNodeParticleBoxEmitter::PortType VisualShaderNodeParticleMeshEmitter::get_output_port_type(int p_port) const {
	switch (p_port) {
		case 0: // position
			if (mode_2d) {
				return PORT_TYPE_VECTOR_2D;
			}
			return PORT_TYPE_VECTOR_3D;
		case 1: // normal
			if (mode_2d) {
				return PORT_TYPE_VECTOR_2D;
			}
			return PORT_TYPE_VECTOR_3D;
		case 2: // color
			return PORT_TYPE_VECTOR_3D;
		case 3: // alpha
			return PORT_TYPE_SCALAR;
		case 4: // uv
			return PORT_TYPE_VECTOR_2D;
		case 5: // uv2
			return PORT_TYPE_VECTOR_2D;
	}
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleMeshEmitter::get_output_port_name(int p_port) const {
	switch (p_port) {
		case 0:
			return "position";
		case 1:
			return "normal";
		case 2:
			return "color";
		case 3:
			return "alpha";
		case 4:
			return "uv";
		case 5:
			return "uv2";
	}
	return String();
}

int VisualShaderNodeParticleMeshEmitter::get_input_port_count() const {
	return 0;
}

VisualShaderNodeParticleBoxEmitter::PortType VisualShaderNodeParticleMeshEmitter::get_input_port_type(int p_port) const {
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleMeshEmitter::get_input_port_name(int p_port) const {
	return String();
}

String VisualShaderNodeParticleMeshEmitter::generate_global(Shader::Mode p_mode, VisualShader::Type p_type, int p_id) const {
	String code;

	if (is_output_port_connected(0)) { // position
		code += "uniform sampler2D " + make_unique_id(p_type, p_id, "mesh_vx") + ";\n";
	}

	if (is_output_port_connected(1)) { // normal
		code += "uniform sampler2D " + make_unique_id(p_type, p_id, "mesh_nm") + ";\n";
	}

	if (is_output_port_connected(2) || is_output_port_connected(3)) { // color & alpha
		code += "uniform sampler2D " + make_unique_id(p_type, p_id, "mesh_col") + ";\n";
	}

	if (is_output_port_connected(4)) { // uv
		code += "uniform sampler2D " + make_unique_id(p_type, p_id, "mesh_uv") + ";\n";
	}

	if (is_output_port_connected(5)) { // uv2
		code += "uniform sampler2D " + make_unique_id(p_type, p_id, "mesh_uv2") + ";\n";
	}

	return code;
}

String VisualShaderNodeParticleMeshEmitter::_generate_code(VisualShader::Type p_type, int p_id, const String *p_output_vars, int p_index, const String &p_texture_name, PortType p_port_type) const {
	String code;
	if (is_output_port_connected(p_index)) {
		switch (p_port_type) {
			case PORT_TYPE_VECTOR_2D: {
				code += vformat("		%s = texelFetch(%s, ivec2(__scalar_ibuff, 0), 0).xy;\n", p_output_vars[p_index], make_unique_id(p_type, p_id, p_texture_name));
			} break;
			case PORT_TYPE_VECTOR_3D: {
				if (mode_2d) {
					code += vformat("		%s = texelFetch(%s, ivec2(__scalar_ibuff, 0), 0).xy;\n", p_output_vars[p_index], make_unique_id(p_type, p_id, p_texture_name));
				} else {
					code += vformat("		%s = texelFetch(%s, ivec2(__scalar_ibuff, 0), 0).xyz;\n", p_output_vars[p_index], make_unique_id(p_type, p_id, p_texture_name));
				}
			} break;
			default:
				break;
		}
	}
	return code;
}

String VisualShaderNodeParticleMeshEmitter::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;
	code += "	{\n";
	code += "		int __scalar_ibuff = int(__rand_from_seed(__seed) * 65535.0) % " + itos(position_texture->get_width()) + ";\n";

	code += _generate_code(p_type, p_id, p_output_vars, 0, "mesh_vx", VisualShaderNode::PORT_TYPE_VECTOR_3D);
	code += _generate_code(p_type, p_id, p_output_vars, 1, "mesh_nm", VisualShaderNode::PORT_TYPE_VECTOR_3D);

	if (is_output_port_connected(2) || is_output_port_connected(3)) {
		code += vformat("		vec4 __vec4_buff = texelFetch(%s, ivec2(__scalar_ibuff, 0), 0);\n", make_unique_id(p_type, p_id, "mesh_col"));

		if (is_output_port_connected(2)) {
			code += "		" + p_output_vars[2] + " = __vec4_buff.rgb;\n";
		}
		if (is_output_port_connected(3)) {
			code += "		" + p_output_vars[3] + " = __vec4_buff.a;\n";
		}
	}

	code += _generate_code(p_type, p_id, p_output_vars, 4, "mesh_uv", VisualShaderNode::PORT_TYPE_VECTOR_2D);
	code += _generate_code(p_type, p_id, p_output_vars, 5, "mesh_uv2", VisualShaderNode::PORT_TYPE_VECTOR_2D);

	code += "	}\n";
	return code;
}

Vector<VisualShader::DefaultTextureParam> VisualShaderNodeParticleMeshEmitter::get_default_texture_parameters(VisualShader::Type p_type, int p_id) const {
	Vector<VisualShader::DefaultTextureParam> ret;

	if (is_output_port_connected(0)) {
		VisualShader::DefaultTextureParam dtp;
		dtp.name = make_unique_id(p_type, p_id, "mesh_vx");
		dtp.params.push_back(position_texture);
		ret.push_back(dtp);
	}

	if (is_output_port_connected(1)) {
		VisualShader::DefaultTextureParam dtp;
		dtp.name = make_unique_id(p_type, p_id, "mesh_nm");
		dtp.params.push_back(normal_texture);
		ret.push_back(dtp);
	}

	if (is_output_port_connected(2) || is_output_port_connected(3)) {
		VisualShader::DefaultTextureParam dtp;
		dtp.name = make_unique_id(p_type, p_id, "mesh_col");
		dtp.params.push_back(color_texture);
		ret.push_back(dtp);
	}

	if (is_output_port_connected(4)) {
		VisualShader::DefaultTextureParam dtp;
		dtp.name = make_unique_id(p_type, p_id, "mesh_uv");
		dtp.params.push_back(uv_texture);
		ret.push_back(dtp);
	}

	if (is_output_port_connected(5)) {
		VisualShader::DefaultTextureParam dtp;
		dtp.name = make_unique_id(p_type, p_id, "mesh_uv2");
		dtp.params.push_back(uv2_texture);
		ret.push_back(dtp);
	}

	return ret;
}

void VisualShaderNodeParticleMeshEmitter::_update_texture(const Vector<Vector2> &p_array, Ref<ImageTexture> &r_texture) {
	Ref<Image> image;
	image.instantiate();

	if (p_array.size() == 0) {
		image->initialize_data(1, 1, false, Image::Format::FORMAT_RGBF);
	} else {
		image->initialize_data(p_array.size(), 1, false, Image::Format::FORMAT_RGBF);
	}

	for (int i = 0; i < p_array.size(); i++) {
		Vector2 v = p_array[i];
		image->set_pixel(i, 0, Color(v.x, v.y, 0));
	}
	if (r_texture->get_width() != p_array.size() || p_array.size() == 0) {
		r_texture->set_image(image);
	} else {
		r_texture->update(image);
	}
}

void VisualShaderNodeParticleMeshEmitter::_update_texture(const Vector<Vector3> &p_array, Ref<ImageTexture> &r_texture) {
	Ref<Image> image;
	image.instantiate();

	if (p_array.size() == 0) {
		image->initialize_data(1, 1, false, Image::Format::FORMAT_RGBF);
	} else {
		image->initialize_data(p_array.size(), 1, false, Image::Format::FORMAT_RGBF);
	}

	for (int i = 0; i < p_array.size(); i++) {
		Vector3 v = p_array[i];
		image->set_pixel(i, 0, Color(v.x, v.y, v.z));
	}
	if (r_texture->get_width() != p_array.size() || p_array.size() == 0) {
		r_texture->set_image(image);
	} else {
		r_texture->update(image);
	}
}

void VisualShaderNodeParticleMeshEmitter::_update_texture(const Vector<Color> &p_array, Ref<ImageTexture> &r_texture) {
	Ref<Image> image;
	image.instantiate();

	if (p_array.size() == 0) {
		image->initialize_data(1, 1, false, Image::Format::FORMAT_RGBA8);
	} else {
		image->initialize_data(p_array.size(), 1, false, Image::Format::FORMAT_RGBA8);
	}

	for (int i = 0; i < p_array.size(); i++) {
		image->set_pixel(i, 0, p_array[i]);
	}
	if (r_texture->get_width() != p_array.size() || p_array.size() == 0) {
		r_texture->set_image(image);
	} else {
		r_texture->update(image);
	}
}

void VisualShaderNodeParticleMeshEmitter::_update_textures() {
	if (!mesh.is_valid()) {
		return;
	}

	Vector<Vector3> vertices;
	Vector<Vector3> normals;
	Vector<Color> colors;
	Vector<Vector2> uvs;
	Vector<Vector2> uvs2;

	const int surface_count = mesh->get_surface_count();

	if (use_all_surfaces) {
		for (int i = 0; i < surface_count; i++) {
			const Array surface_arrays = mesh->surface_get_arrays(i);
			const int surface_arrays_size = surface_arrays.size();

			// position
			if (surface_arrays_size > Mesh::ARRAY_VERTEX) {
				Array vertex_array = surface_arrays[Mesh::ARRAY_VERTEX];
				for (int j = 0; j < vertex_array.size(); j++) {
					vertices.push_back((Vector3)vertex_array[j]);
				}
			}

			// normal
			if (surface_arrays_size > Mesh::ARRAY_NORMAL) {
				Array normal_array = surface_arrays[Mesh::ARRAY_NORMAL];
				for (int j = 0; j < normal_array.size(); j++) {
					normals.push_back((Vector3)normal_array[j]);
				}
			}

			// color
			if (surface_arrays_size > Mesh::ARRAY_COLOR) {
				Array color_array = surface_arrays[Mesh::ARRAY_COLOR];
				for (int j = 0; j < color_array.size(); j++) {
					colors.push_back((Color)color_array[j]);
				}
			}

			// uv
			if (surface_arrays_size > Mesh::ARRAY_TEX_UV) {
				Array uv_array = surface_arrays[Mesh::ARRAY_TEX_UV];
				for (int j = 0; j < uv_array.size(); j++) {
					uvs.push_back((Vector2)uv_array[j]);
				}
			}

			// uv2
			if (surface_arrays_size > Mesh::ARRAY_TEX_UV2) {
				Array uv2_array = surface_arrays[Mesh::ARRAY_TEX_UV2];
				for (int j = 0; j < uv2_array.size(); j++) {
					uvs2.push_back((Vector2)uv2_array[j]);
				}
			}
		}
	} else {
		if (surface_index >= 0 && surface_index < surface_count) {
			const Array surface_arrays = mesh->surface_get_arrays(surface_index);
			const int surface_arrays_size = surface_arrays.size();

			// position
			if (surface_arrays_size > Mesh::ARRAY_VERTEX) {
				Array vertex_array = surface_arrays[Mesh::ARRAY_VERTEX];
				for (int i = 0; i < vertex_array.size(); i++) {
					vertices.push_back((Vector3)vertex_array[i]);
				}
			}

			// normal
			if (surface_arrays_size > Mesh::ARRAY_NORMAL) {
				Array normal_array = surface_arrays[Mesh::ARRAY_NORMAL];
				for (int i = 0; i < normal_array.size(); i++) {
					normals.push_back((Vector3)normal_array[i]);
				}
			}

			// color
			if (surface_arrays_size > Mesh::ARRAY_COLOR) {
				Array color_array = surface_arrays[Mesh::ARRAY_COLOR];
				for (int i = 0; i < color_array.size(); i++) {
					colors.push_back((Color)color_array[i]);
				}
			}

			// uv
			if (surface_arrays_size > Mesh::ARRAY_TEX_UV) {
				Array uv_array = surface_arrays[Mesh::ARRAY_TEX_UV];
				for (int j = 0; j < uv_array.size(); j++) {
					uvs.push_back((Vector2)uv_array[j]);
				}
			}

			// uv2
			if (surface_arrays_size > Mesh::ARRAY_TEX_UV2) {
				Array uv2_array = surface_arrays[Mesh::ARRAY_TEX_UV2];
				for (int j = 0; j < uv2_array.size(); j++) {
					uvs2.push_back((Vector2)uv2_array[j]);
				}
			}
		}
	}

	_update_texture(vertices, position_texture);
	_update_texture(normals, normal_texture);
	_update_texture(colors, color_texture);
	_update_texture(uvs, uv_texture);
	_update_texture(uvs2, uv2_texture);
}

void VisualShaderNodeParticleMeshEmitter::set_mesh(Ref<Mesh> p_mesh) {
	if (mesh == p_mesh) {
		return;
	}

	if (mesh.is_valid()) {
		mesh->disconnect_changed(callable_mp(this, &VisualShaderNodeParticleMeshEmitter::_update_textures));
	}

	mesh = p_mesh;

	if (mesh.is_valid()) {
		mesh->connect_changed(callable_mp(this, &VisualShaderNodeParticleMeshEmitter::_update_textures));
	}

	emit_changed();
}

Ref<Mesh> VisualShaderNodeParticleMeshEmitter::get_mesh() const {
	return mesh;
}

void VisualShaderNodeParticleMeshEmitter::set_use_all_surfaces(bool p_enabled) {
	if (use_all_surfaces == p_enabled) {
		return;
	}
	use_all_surfaces = p_enabled;
	emit_changed();
}

bool VisualShaderNodeParticleMeshEmitter::is_use_all_surfaces() const {
	return use_all_surfaces;
}

void VisualShaderNodeParticleMeshEmitter::set_surface_index(int p_surface_index) {
	if (mesh.is_valid()) {
		if (mesh->get_surface_count() > 0) {
			p_surface_index = CLAMP(p_surface_index, 0, mesh->get_surface_count() - 1);
		} else {
			p_surface_index = 0;
		}
	} else if (p_surface_index < 0) {
		p_surface_index = 0;
	}
	if (surface_index == p_surface_index) {
		return;
	}
	surface_index = p_surface_index;
	emit_changed();
}

int VisualShaderNodeParticleMeshEmitter::get_surface_index() const {
	return surface_index;
}

Vector<StringName> VisualShaderNodeParticleMeshEmitter::get_editable_properties() const {
	Vector<StringName> props = VisualShaderNodeParticleEmitter::get_editable_properties();

	props.push_back("mesh");
	props.push_back("use_all_surfaces");
	if (!use_all_surfaces) {
		props.push_back("surface_index");
	}

	return props;
}

HashMap<StringName, String> VisualShaderNodeParticleMeshEmitter::get_editable_properties_names() const {
	HashMap<StringName, String> names = VisualShaderNodeParticleEmitter::get_editable_properties_names();

	names.insert("mesh", RTR("Mesh"));
	names.insert("use_all_surfaces", RTR("Use All Surfaces"));
	if (!use_all_surfaces) {
		names.insert("surface_index", RTR("Surface Index"));
	}

	return names;
}

void VisualShaderNodeParticleMeshEmitter::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_mesh", "mesh"), &VisualShaderNodeParticleMeshEmitter::set_mesh);
	ClassDB::bind_method(D_METHOD("get_mesh"), &VisualShaderNodeParticleMeshEmitter::get_mesh);
	ClassDB::bind_method(D_METHOD("set_use_all_surfaces", "enabled"), &VisualShaderNodeParticleMeshEmitter::set_use_all_surfaces);
	ClassDB::bind_method(D_METHOD("is_use_all_surfaces"), &VisualShaderNodeParticleMeshEmitter::is_use_all_surfaces);
	ClassDB::bind_method(D_METHOD("set_surface_index", "surface_index"), &VisualShaderNodeParticleMeshEmitter::set_surface_index);
	ClassDB::bind_method(D_METHOD("get_surface_index"), &VisualShaderNodeParticleMeshEmitter::get_surface_index);

	ADD_PROPERTY(PropertyInfo(Variant::OBJECT, "mesh", PROPERTY_HINT_RESOURCE_TYPE, "Mesh"), "set_mesh", "get_mesh");
	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "use_all_surfaces"), "set_use_all_surfaces", "is_use_all_surfaces");
	ADD_PROPERTY(PropertyInfo(Variant::INT, "surface_index"), "set_surface_index", "get_surface_index");
}

VisualShaderNodeParticleMeshEmitter::VisualShaderNodeParticleMeshEmitter() {
	connect_changed(callable_mp(this, &VisualShaderNodeParticleMeshEmitter::_update_textures));

	position_texture.instantiate();
	normal_texture.instantiate();
	color_texture.instantiate();
	uv_texture.instantiate();
	uv2_texture.instantiate();

	simple_decl = false;
}

// VisualShaderNodeParticleMultiplyByAxisAngle

void VisualShaderNodeParticleMultiplyByAxisAngle::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_degrees_mode", "enabled"), &VisualShaderNodeParticleMultiplyByAxisAngle::set_degrees_mode);
	ClassDB::bind_method(D_METHOD("is_degrees_mode"), &VisualShaderNodeParticleMultiplyByAxisAngle::is_degrees_mode);

	ADD_PROPERTY(PropertyInfo(Variant::BOOL, "degrees_mode"), "set_degrees_mode", "is_degrees_mode");
}

String VisualShaderNodeParticleMultiplyByAxisAngle::get_caption() const {
	return "MultiplyByAxisAngle";
}

int VisualShaderNodeParticleMultiplyByAxisAngle::get_input_port_count() const {
	return 3;
}

VisualShaderNodeParticleMultiplyByAxisAngle::PortType VisualShaderNodeParticleMultiplyByAxisAngle::get_input_port_type(int p_port) const {
	if (p_port == 0 || p_port == 1) { // position, rotation_axis
		return PORT_TYPE_VECTOR_3D;
	}
	return PORT_TYPE_SCALAR; // angle (degrees/radians)
}

String VisualShaderNodeParticleMultiplyByAxisAngle::get_input_port_name(int p_port) const {
	if (p_port == 0) {
		return "position";
	}
	if (p_port == 1) {
		return "axis";
	}
	if (p_port == 2) {
		if (degrees_mode) {
			return "angle (degrees)";
		} else {
			return "angle (radians)";
		}
	}
	return String();
}

bool VisualShaderNodeParticleMultiplyByAxisAngle::is_show_prop_names() const {
	return true;
}

int VisualShaderNodeParticleMultiplyByAxisAngle::get_output_port_count() const {
	return 1;
}

VisualShaderNodeParticleMultiplyByAxisAngle::PortType VisualShaderNodeParticleMultiplyByAxisAngle::get_output_port_type(int p_port) const {
	return p_port == 0 ? PORT_TYPE_VECTOR_3D : PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleMultiplyByAxisAngle::get_output_port_name(int p_port) const {
	return "position";
}

String VisualShaderNodeParticleMultiplyByAxisAngle::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;
	if (degrees_mode) {
		code += "	" + p_output_vars[0] + " = __build_rotation_mat3(" + (p_input_vars[1].is_empty() ? ("vec3" + (String)get_input_port_default_value(1)) : p_input_vars[1]) + ", radians(" + (p_input_vars[2].is_empty() ? (String)get_input_port_default_value(2) : p_input_vars[2]) + ")) * " + (p_input_vars[0].is_empty() ? "vec3(0.0)" : p_input_vars[0]) + ";\n";
	} else {
		code += "	" + p_output_vars[0] + " = __build_rotation_mat3(" + (p_input_vars[1].is_empty() ? ("vec3" + (String)get_input_port_default_value(1)) : p_input_vars[1]) + ", " + (p_input_vars[2].is_empty() ? (String)get_input_port_default_value(2) : p_input_vars[2]) + ") * " + (p_input_vars[0].is_empty() ? "vec3(0.0)" : p_input_vars[0]) + ";\n";
	}
	return code;
}

void VisualShaderNodeParticleMultiplyByAxisAngle::set_degrees_mode(bool p_enabled) {
	degrees_mode = p_enabled;
	emit_changed();
}

bool VisualShaderNodeParticleMultiplyByAxisAngle::is_degrees_mode() const {
	return degrees_mode;
}

Vector<StringName> VisualShaderNodeParticleMultiplyByAxisAngle::get_editable_properties() const {
	Vector<StringName> props;
	props.push_back("degrees_mode");
	return props;
}

bool VisualShaderNodeParticleMultiplyByAxisAngle::has_output_port_preview(int p_port) const {
	return false;
}

VisualShaderNodeParticleMultiplyByAxisAngle::VisualShaderNodeParticleMultiplyByAxisAngle() {
	set_input_port_default_value(1, Vector3(1, 0, 0));
	set_input_port_default_value(2, 0.0);
}

// VisualShaderNodeParticleConeVelocity

String VisualShaderNodeParticleConeVelocity::get_caption() const {
	return "ConeVelocity";
}

int VisualShaderNodeParticleConeVelocity::get_input_port_count() const {
	return 2;
}

VisualShaderNodeParticleConeVelocity::PortType VisualShaderNodeParticleConeVelocity::get_input_port_type(int p_port) const {
	if (p_port == 0) {
		return PORT_TYPE_VECTOR_3D;
	} else if (p_port == 1) {
		return PORT_TYPE_SCALAR;
	}
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleConeVelocity::get_input_port_name(int p_port) const {
	if (p_port == 0) {
		return "direction";
	} else if (p_port == 1) {
		return "spread(degrees)";
	}
	return String();
}

int VisualShaderNodeParticleConeVelocity::get_output_port_count() const {
	return 1;
}

VisualShaderNodeParticleConeVelocity::PortType VisualShaderNodeParticleConeVelocity::get_output_port_type(int p_port) const {
	return p_port == 0 ? PORT_TYPE_VECTOR_3D : PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleConeVelocity::get_output_port_name(int p_port) const {
	if (p_port == 0) {
		return "velocity";
	}
	return String();
}

bool VisualShaderNodeParticleConeVelocity::has_output_port_preview(int p_port) const {
	return false;
}

String VisualShaderNodeParticleConeVelocity::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;
	code += "	{\n";
	code += "		float __radians = radians(" + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ");\n";
	code += "		float __scalar_buff1 = __rand_from_seed_m1_p1(__seed) * __radians;\n";
	code += "		float __scalar_buff2 = __rand_from_seed_m1_p1(__seed) * __radians;\n";
	code += "		vec3 __vec3_buff1 = " + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + ";\n";
	code += "		__scalar_buff1 += __vec3_buff1.z != 0.0 ? atan(__vec3_buff1.x, __vec3_buff1.z) : sign(__vec3_buff1.x) * (PI / 2.0);\n";
	code += "		__scalar_buff2 += __vec3_buff1.z != 0.0 ? atan(__vec3_buff1.y, abs(__vec3_buff1.z)) : (__vec3_buff1.x != 0.0 ? atan(__vec3_buff1.y, abs(__vec3_buff1.x)) : sign(__vec3_buff1.y) * (PI / 2.0));\n";
	code += "		__vec3_buff1 = vec3(sin(__scalar_buff1), 0.0, cos(__scalar_buff1));\n";
	code += "		vec3 __vec3_buff2 = vec3(0.0, sin(__scalar_buff2), cos(__scalar_buff2));\n";
	code += "		__vec3_buff2.z = __vec3_buff2.z / max(0.0001, sqrt(abs(__vec3_buff2.z)));\n";
	code += "		" + p_output_vars[0] + " = normalize(vec3(__vec3_buff1.x * __vec3_buff2.z, __vec3_buff2.y, __vec3_buff1.z * __vec3_buff2.z));\n";
	code += "	}\n";
	return code;
}

VisualShaderNodeParticleConeVelocity::VisualShaderNodeParticleConeVelocity() {
	set_input_port_default_value(0, Vector3(1, 0, 0));
	set_input_port_default_value(1, 45.0);

	simple_decl = false;
}

// VisualShaderNodeParticleRandomness

void VisualShaderNodeParticleRandomness::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_op_type", "type"), &VisualShaderNodeParticleRandomness::set_op_type);
	ClassDB::bind_method(D_METHOD("get_op_type"), &VisualShaderNodeParticleRandomness::get_op_type);

	ADD_PROPERTY(PropertyInfo(Variant::INT, "op_type", PROPERTY_HINT_ENUM, "Scalar,Vector2,Vector3,Vector4"), "set_op_type", "get_op_type");

	BIND_ENUM_CONSTANT(OP_TYPE_SCALAR);
	BIND_ENUM_CONSTANT(OP_TYPE_VECTOR_2D);
	BIND_ENUM_CONSTANT(OP_TYPE_VECTOR_3D);
	BIND_ENUM_CONSTANT(OP_TYPE_VECTOR_4D);
	BIND_ENUM_CONSTANT(OP_TYPE_MAX);
}

Vector<StringName> VisualShaderNodeParticleRandomness::get_editable_properties() const {
	Vector<StringName> props;
	props.push_back("op_type");
	return props;
}

String VisualShaderNodeParticleRandomness::get_caption() const {
	return "ParticleRandomness";
}

int VisualShaderNodeParticleRandomness::get_output_port_count() const {
	return 1;
}

VisualShaderNodeParticleRandomness::PortType VisualShaderNodeParticleRandomness::get_output_port_type(int p_port) const {
	switch (op_type) {
		case OP_TYPE_VECTOR_2D:
			return p_port == 0 ? PORT_TYPE_VECTOR_2D : PORT_TYPE_SCALAR;
		case OP_TYPE_VECTOR_3D:
			return p_port == 0 ? PORT_TYPE_VECTOR_3D : PORT_TYPE_SCALAR;
		case OP_TYPE_VECTOR_4D:
			return p_port == 0 ? PORT_TYPE_VECTOR_4D : PORT_TYPE_SCALAR;
		default:
			break;
	}
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleRandomness::get_output_port_name(int p_port) const {
	return "random";
}

int VisualShaderNodeParticleRandomness::get_input_port_count() const {
	return 3;
}

VisualShaderNodeParticleRandomness::PortType VisualShaderNodeParticleRandomness::get_input_port_type(int p_port) const {
	switch (p_port) {
		case 0:
			return PORT_TYPE_SCALAR_UINT;
		case 1:
		case 2:
			switch (op_type) {
				case OP_TYPE_VECTOR_2D:
					return PORT_TYPE_VECTOR_2D;
				case OP_TYPE_VECTOR_3D:
					return PORT_TYPE_VECTOR_3D;
				case OP_TYPE_VECTOR_4D:
					return PORT_TYPE_VECTOR_4D;
				default:
					break;
			}
			break;
	}
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleRandomness::get_input_port_name(int p_port) const {
	switch (p_port) {
		case 0:
			return "seed";
		case 1:
			return "min";
		case 2:
			return "max";
	}
	return String();
}

bool VisualShaderNodeParticleRandomness::is_input_port_default(int p_port, Shader::Mode p_mode) const {
	return p_port == 0; // seed
}

String VisualShaderNodeParticleRandomness::generate_global_per_node(Shader::Mode p_mode, int p_id) const {
	String code;

	code += "vec2 __randv2_range(inout uint seed, vec2 from, vec2 to) {\n";
	code += "	return vec2(__randf_range(seed, from.x, to.x), __randf_range(seed, from.y, to.y));\n";
	code += "}\n\n";

	code += "vec3 __randv3_range(inout uint seed, vec3 from, vec3 to) {\n";
	code += "	return vec3(__randf_range(seed, from.x, to.x), __randf_range(seed, from.y, to.y), __randf_range(seed, from.z, to.z));\n";
	code += "}\n\n";

	code += "vec4 __randv4_range(inout uint seed, vec4 from, vec4 to) {\n";
	code += "	return vec4(__randf_range(seed, from.x, to.x), __randf_range(seed, from.y, to.y), __randf_range(seed, from.z, to.z), __randf_range(seed, from.w, to.w));\n";
	code += "}\n\n";

	return code;
}

String VisualShaderNodeParticleRandomness::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	static const char *func[(int)OP_TYPE_MAX] = { "__randf_range", "__randv2_range", "__randv3_range", "__randv4_range" };
	return vformat("	%s = %s(%s, %s, %s);\n", p_output_vars[0], func[op_type], p_input_vars[0].is_empty() ? "__seed" : p_input_vars[0], p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1], p_input_vars[2].is_empty() ? (String)get_input_port_default_value(2) : p_input_vars[2]);
}

void VisualShaderNodeParticleRandomness::set_op_type(OpType p_op_type) {
	ERR_FAIL_INDEX(int(p_op_type), int(OP_TYPE_MAX));
	if (op_type == p_op_type) {
		return;
	}
	switch (p_op_type) {
		case OP_TYPE_SCALAR: {
			set_input_port_default_value(1, 0.0, get_input_port_default_value(1));
			set_input_port_default_value(2, 0.0, get_input_port_default_value(2));
		} break;
		case OP_TYPE_VECTOR_2D: {
			set_input_port_default_value(1, Vector2(), get_input_port_default_value(1));
			set_input_port_default_value(2, Vector2(), get_input_port_default_value(2));
		} break;
		case OP_TYPE_VECTOR_3D: {
			set_input_port_default_value(1, Vector3(), get_input_port_default_value(1));
			set_input_port_default_value(2, Vector3(), get_input_port_default_value(2));
		} break;
		case OP_TYPE_VECTOR_4D: {
			set_input_port_default_value(1, Quaternion(), get_input_port_default_value(1));
			set_input_port_default_value(2, Quaternion(), get_input_port_default_value(2));
		} break;
		default:
			break;
	}
	op_type = p_op_type;
	emit_changed();
}

VisualShaderNodeParticleRandomness::OpType VisualShaderNodeParticleRandomness::get_op_type() const {
	return op_type;
}

bool VisualShaderNodeParticleRandomness::has_output_port_preview(int p_port) const {
	return false;
}

VisualShaderNodeParticleRandomness::VisualShaderNodeParticleRandomness() {
	set_input_port_default_value(1, -1.0);
	set_input_port_default_value(2, 1.0);
}

// VisualShaderNodeParticleAccelerator

void VisualShaderNodeParticleAccelerator::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_mode", "mode"), &VisualShaderNodeParticleAccelerator::set_mode);
	ClassDB::bind_method(D_METHOD("get_mode"), &VisualShaderNodeParticleAccelerator::get_mode);

	ADD_PROPERTY(PropertyInfo(Variant::INT, "mode", PROPERTY_HINT_ENUM, "Linear,Radial,Tangential"), "set_mode", "get_mode");

	BIND_ENUM_CONSTANT(MODE_LINEAR);
	BIND_ENUM_CONSTANT(MODE_RADIAL)
	BIND_ENUM_CONSTANT(MODE_TANGENTIAL);
	BIND_ENUM_CONSTANT(MODE_MAX);
}

Vector<StringName> VisualShaderNodeParticleAccelerator::get_editable_properties() const {
	Vector<StringName> props;
	props.push_back("mode");
	return props;
}

String VisualShaderNodeParticleAccelerator::get_caption() const {
	return "ParticleAccelerator";
}

int VisualShaderNodeParticleAccelerator::get_output_port_count() const {
	return 1;
}

VisualShaderNodeParticleAccelerator::PortType VisualShaderNodeParticleAccelerator::get_output_port_type(int p_port) const {
	return p_port == 0 ? PORT_TYPE_VECTOR_3D : PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleAccelerator::get_output_port_name(int p_port) const {
	return String();
}

int VisualShaderNodeParticleAccelerator::get_input_port_count() const {
	return 3;
}

VisualShaderNodeParticleAccelerator::PortType VisualShaderNodeParticleAccelerator::get_input_port_type(int p_port) const {
	if (p_port == 0) {
		return PORT_TYPE_VECTOR_3D;
	} else if (p_port == 1) {
		return PORT_TYPE_SCALAR;
	} else if (p_port == 2) {
		return PORT_TYPE_VECTOR_3D;
	}
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleAccelerator::get_input_port_name(int p_port) const {
	if (p_port == 0) {
		return "amount";
	} else if (p_port == 1) {
		return "randomness";
	} else if (p_port == 2) {
		return "axis";
	}
	return String();
}

String VisualShaderNodeParticleAccelerator::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;
	code += "	{\n";
	switch (mode) {
		case MODE_LINEAR:
			code += "		" + p_output_vars[0] + " = length(VELOCITY) > 0.0 ? " + "normalize(VELOCITY) * " + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + " * mix(1.0, __rand_from_seed(__seed), " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ") : vec3(0.0);\n";
			break;
		case MODE_RADIAL:
			code += "		vec3 __diff = TRANSFORM[3].xyz - EMISSION_TRANSFORM[3].xyz;\n";
			code += "		vec3 __ndiff = normalize(__diff);\n\n";
			code += "		" + p_output_vars[0] + " = length(__diff) > 0.0 ? __ndiff * " + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + " * mix(1.0, __rand_from_seed(__seed), " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ") : vec3(0.0);\n";
			break;
		case MODE_TANGENTIAL:
			code += "		vec3 __diff = TRANSFORM[3].xyz - EMISSION_TRANSFORM[3].xyz;\n";
			code += "		vec3 __ndiff = normalize(__diff);\n\n";
			code += "		vec3 __vec3_buff1 = cross(__ndiff, normalize(" + (p_input_vars[2].is_empty() ? "vec3" + (String)get_input_port_default_value(2) : p_input_vars[2]) + "));\n";
			code += "		" + p_output_vars[0] + " = length(__vec3_buff1) > 0.0 ? normalize(__vec3_buff1) * (" + (p_input_vars[0].is_empty() ? "vec3" + (String)get_input_port_default_value(0) : p_input_vars[0]) + " * mix(1.0, __rand_from_seed(__seed), " + (p_input_vars[1].is_empty() ? (String)get_input_port_default_value(1) : p_input_vars[1]) + ")) : vec3(0.0);\n";
			break;
		default:
			break;
	}
	code += "	}\n";
	return code;
}

void VisualShaderNodeParticleAccelerator::set_mode(Mode p_mode) {
	ERR_FAIL_INDEX(int(p_mode), int(MODE_MAX));
	if (mode == p_mode) {
		return;
	}
	mode = p_mode;
	emit_changed();
}

VisualShaderNodeParticleAccelerator::Mode VisualShaderNodeParticleAccelerator::get_mode() const {
	return mode;
}

bool VisualShaderNodeParticleAccelerator::has_output_port_preview(int p_port) const {
	return false;
}

VisualShaderNodeParticleAccelerator::VisualShaderNodeParticleAccelerator() {
	set_input_port_default_value(0, Vector3(1, 1, 1));
	set_input_port_default_value(1, 0.0);
	set_input_port_default_value(2, Vector3(0, -9.8, 0));

	simple_decl = false;
}

// VisualShaderNodeParticleOutput

String VisualShaderNodeParticleOutput::get_caption() const {
	switch (shader_type) {
		case VisualShader::TYPE_START:
			return "StartOutput";
		case VisualShader::TYPE_PROCESS:
			return "ProcessOutput";
		case VisualShader::TYPE_COLLIDE:
			return "CollideOutput";
		case VisualShader::TYPE_START_CUSTOM:
			return "CustomStartOutput";
		case VisualShader::TYPE_PROCESS_CUSTOM:
			return "CustomProcessOutput";
		default:
			ERR_PRINT(vformat("Unexpected shader_type %d for VisualShaderNodeParticleOutput.", shader_type));
			return "";
	}
}

int VisualShaderNodeParticleOutput::get_input_port_count() const {
	switch (shader_type) {
		case VisualShader::TYPE_START:
			return 8;
		case VisualShader::TYPE_PROCESS:
			return 7;
		case VisualShader::TYPE_COLLIDE:
			return 5;
		case VisualShader::TYPE_START_CUSTOM:
		case VisualShader::TYPE_PROCESS_CUSTOM:
			return 6;
		default:
			ERR_PRINT(vformat("Unexpected shader_type %d for VisualShaderNodeParticleOutput.", shader_type));
			return 0;
	}
}

VisualShaderNodeParticleOutput::PortType VisualShaderNodeParticleOutput::get_input_port_type(int p_port) const {
	switch (p_port) {
		case 0:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				return PORT_TYPE_VECTOR_3D; // custom.rgb
			}
			return PORT_TYPE_BOOLEAN; // active
		case 1:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				break; // custom.a (scalar)
			}
			return PORT_TYPE_VECTOR_3D; // velocity
		case 2:
			return PORT_TYPE_VECTOR_3D; // color & velocity
		case 3:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				return PORT_TYPE_VECTOR_3D; // color
			}
			break; // alpha (scalar)
		case 4:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				break; // alpha
			}
			if (shader_type == VisualShader::TYPE_PROCESS) {
				break; // scale
			}
			if (shader_type == VisualShader::TYPE_COLLIDE) {
				return PORT_TYPE_TRANSFORM; // transform
			}
			return PORT_TYPE_VECTOR_3D; // position
		case 5:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				return PORT_TYPE_TRANSFORM; // transform
			}
			if (shader_type == VisualShader::TYPE_PROCESS) {
				return PORT_TYPE_VECTOR_3D; // rotation_axis
			}
			break; // scale (scalar)
		case 6:
			if (shader_type == VisualShader::TYPE_START) {
				return PORT_TYPE_VECTOR_3D; // rotation_axis
			}
			break;
		case 7:
			break; // angle (scalar)
	}
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleOutput::get_input_port_name(int p_port) const {
	String port_name;
	switch (p_port) {
		case 0:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				port_name = "custom";
				break;
			}
			port_name = "active";
			break;
		case 1:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				port_name = "custom_alpha";
				break;
			}
			port_name = "velocity";
			break;
		case 2:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				port_name = "velocity";
				break;
			}
			port_name = "color";
			break;
		case 3:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				port_name = "color";
				break;
			}
			port_name = "alpha";
			break;
		case 4:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				port_name = "alpha";
				break;
			}
			if (shader_type == VisualShader::TYPE_PROCESS) {
				port_name = "scale";
				break;
			}
			if (shader_type == VisualShader::TYPE_COLLIDE) {
				port_name = "transform";
				break;
			}
			port_name = "position";
			break;
		case 5:
			if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
				port_name = "transform";
				break;
			}
			if (shader_type == VisualShader::TYPE_PROCESS) {
				port_name = "rotation_axis";
				break;
			}
			port_name = "scale";
			break;
		case 6:
			if (shader_type == VisualShader::TYPE_PROCESS) {
				port_name = "angle_in_radians";
				break;
			}
			port_name = "rotation_axis";
			break;
		case 7:
			port_name = "angle_in_radians";
			break;
		default:
			break;
	}
	if (!port_name.is_empty()) {
		return port_name.capitalize();
	}
	return String();
}

bool VisualShaderNodeParticleOutput::is_port_separator(int p_index) const {
	if (shader_type == VisualShader::TYPE_START || shader_type == VisualShader::TYPE_PROCESS) {
		String port_name = get_input_port_name(p_index);
		return bool(port_name == "Scale");
	}
	if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
		String port_name = get_input_port_name(p_index);
		return bool(port_name == "Velocity");
	}
	return false;
}

String VisualShaderNodeParticleOutput::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;
	String tab = "	";

	if (shader_type == VisualShader::TYPE_START_CUSTOM || shader_type == VisualShader::TYPE_PROCESS_CUSTOM) {
		if (!p_input_vars[0].is_empty()) { // custom.rgb
			code += tab + "CUSTOM.rgb = " + p_input_vars[0] + ";\n";
		}
		if (!p_input_vars[1].is_empty()) { // custom.a
			code += tab + "CUSTOM.a = " + p_input_vars[1] + ";\n";
		}
		if (!p_input_vars[2].is_empty()) { // velocity
			code += tab + "VELOCITY = " + p_input_vars[2] + ";\n";
		}
		if (!p_input_vars[3].is_empty()) { // color.rgb
			code += tab + "COLOR.rgb = " + p_input_vars[3] + ";\n";
		}
		if (!p_input_vars[4].is_empty()) { // color.a
			code += tab + "COLOR.a = " + p_input_vars[4] + ";\n";
		}
		if (!p_input_vars[5].is_empty()) { // transform
			code += tab + "TRANSFORM = " + p_input_vars[5] + ";\n";
		}
	} else {
		if (!p_input_vars[0].is_empty()) { // Active (begin).
			code += tab + "ACTIVE = " + p_input_vars[0] + ";\n";
			code += tab + "if(ACTIVE) {\n";
			tab += "	";
		}
		if (!p_input_vars[1].is_empty()) { // velocity
			code += tab + "VELOCITY = " + p_input_vars[1] + ";\n";
		}
		if (!p_input_vars[2].is_empty()) { // color
			code += tab + "COLOR.rgb = " + p_input_vars[2] + ";\n";
		}
		if (!p_input_vars[3].is_empty()) { // alpha
			code += tab + "COLOR.a = " + p_input_vars[3] + ";\n";
		}

		// position
		if (shader_type == VisualShader::TYPE_START) {
			code += tab + "if (RESTART_POSITION) {\n";
			if (!p_input_vars[4].is_empty()) {
				code += tab + "	TRANSFORM = mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(" + p_input_vars[4] + ", 1.0));\n";
			} else {
				code += tab + "	TRANSFORM = mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0));\n";
			}
			code += tab + "	if (RESTART_VELOCITY) {\n";
			code += tab + "		VELOCITY = (EMISSION_TRANSFORM * vec4(VELOCITY, 0.0)).xyz;\n";
			code += tab + "	}\n";
			code += tab + "	TRANSFORM = EMISSION_TRANSFORM * TRANSFORM;\n";
			code += tab + "}\n";
		} else if (shader_type == VisualShader::TYPE_COLLIDE) { // position
			if (!p_input_vars[4].is_empty()) {
				code += tab + "TRANSFORM = " + p_input_vars[4] + ";\n";
			}
		}

		if (shader_type == VisualShader::TYPE_START || shader_type == VisualShader::TYPE_PROCESS) {
			int scale = 5;
			int rotation_axis = 6;
			int rotation = 7;
			if (shader_type == VisualShader::TYPE_PROCESS) {
				scale = 4;
				rotation_axis = 5;
				rotation = 6;
			}
			String op;
			if (shader_type == VisualShader::TYPE_START) {
				op = "*=";
			} else {
				op = "=";
			}

			if (!p_input_vars[rotation].is_empty()) { // rotation_axis & angle_in_radians
				String axis;
				if (p_input_vars[rotation_axis].is_empty()) {
					axis = "vec3(0, 1, 0)";
				} else {
					axis = p_input_vars[rotation_axis];
				}
				code += tab + "TRANSFORM " + op + " __build_rotation_mat4(" + axis + ", " + p_input_vars[rotation] + ");\n";
			}
			if (!p_input_vars[scale].is_empty()) { // scale
				code += tab + "TRANSFORM " + op + " mat4(vec4(" + p_input_vars[scale] + ", 0, 0, 0), vec4(0, " + p_input_vars[scale] + ", 0, 0), vec4(0, 0, " + p_input_vars[scale] + ", 0), vec4(0, 0, 0, 1));\n";
			}
		}
		if (!p_input_vars[0].is_empty()) { // Active (end).
			code += "	}\n";
		}
	}
	return code;
}

VisualShaderNodeParticleOutput::VisualShaderNodeParticleOutput() {
}

// EmitParticle

Vector<StringName> VisualShaderNodeParticleEmit::get_editable_properties() const {
	Vector<StringName> props;
	props.push_back("flags");
	return props;
}

void VisualShaderNodeParticleEmit::_bind_methods() {
	ClassDB::bind_method(D_METHOD("set_flags", "flags"), &VisualShaderNodeParticleEmit::set_flags);
	ClassDB::bind_method(D_METHOD("get_flags"), &VisualShaderNodeParticleEmit::get_flags);

	ADD_PROPERTY(PropertyInfo(Variant::INT, "flags", PROPERTY_HINT_FLAGS, "Position,RotScale,Velocity,Color,Custom"), "set_flags", "get_flags");

	BIND_ENUM_CONSTANT(EMIT_FLAG_POSITION);
	BIND_ENUM_CONSTANT(EMIT_FLAG_ROT_SCALE);
	BIND_ENUM_CONSTANT(EMIT_FLAG_VELOCITY);
	BIND_ENUM_CONSTANT(EMIT_FLAG_COLOR);
	BIND_ENUM_CONSTANT(EMIT_FLAG_CUSTOM);
}

String VisualShaderNodeParticleEmit::get_caption() const {
	return "EmitParticle";
}

int VisualShaderNodeParticleEmit::get_input_port_count() const {
	return 7;
}

VisualShaderNodeParticleEmit::PortType VisualShaderNodeParticleEmit::get_input_port_type(int p_port) const {
	switch (p_port) {
		case 0:
			return PORT_TYPE_BOOLEAN;
		case 1:
			return PORT_TYPE_TRANSFORM;
		case 2:
			return PORT_TYPE_VECTOR_3D;
		case 3:
			return PORT_TYPE_VECTOR_3D;
		case 4:
			return PORT_TYPE_SCALAR;
		case 5:
			return PORT_TYPE_VECTOR_3D;
		case 6:
			return PORT_TYPE_SCALAR;
	}
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleEmit::get_input_port_name(int p_port) const {
	switch (p_port) {
		case 0:
			return "condition";
		case 1:
			return "transform";
		case 2:
			return "velocity";
		case 3:
			return "color";
		case 4:
			return "alpha";
		case 5:
			return "custom";
		case 6:
			return "custom_alpha";
	}
	return String();
}

int VisualShaderNodeParticleEmit::get_output_port_count() const {
	return 0;
}

VisualShaderNodeParticleEmit::PortType VisualShaderNodeParticleEmit::get_output_port_type(int p_port) const {
	return PORT_TYPE_SCALAR;
}

String VisualShaderNodeParticleEmit::get_output_port_name(int p_port) const {
	return String();
}

void VisualShaderNodeParticleEmit::add_flag(EmitFlags p_flag) {
	flags |= p_flag;
	emit_changed();
}

bool VisualShaderNodeParticleEmit::has_flag(EmitFlags p_flag) const {
	return flags & p_flag;
}

void VisualShaderNodeParticleEmit::set_flags(EmitFlags p_flags) {
	flags = (int)p_flags;
	emit_changed();
}

VisualShaderNodeParticleEmit::EmitFlags VisualShaderNodeParticleEmit::get_flags() const {
	return EmitFlags(flags);
}

bool VisualShaderNodeParticleEmit::is_show_prop_names() const {
	return true;
}

bool VisualShaderNodeParticleEmit::is_generate_input_var(int p_port) const {
	if (p_port == 0) {
		if (!is_input_port_connected(0)) {
			return false;
		}
	}
	return true;
}

bool VisualShaderNodeParticleEmit::is_input_port_default(int p_port, Shader::Mode p_mode) const {
	switch (p_port) {
		case 1:
			return true;
		case 2:
			return true;
		case 3:
			return true;
		case 4:
			return true;
		case 5:
			return true;
		case 6:
			return true;
	}
	return false;
}

String VisualShaderNodeParticleEmit::generate_code(Shader::Mode p_mode, VisualShader::Type p_type, int p_id, const String *p_input_vars, const String *p_output_vars, bool p_for_preview) const {
	String code;
	String tab;
	bool default_condition = false;

	if (!is_input_port_connected(0)) {
		default_condition = true;
		if (get_input_port_default_value(0)) {
			tab = "	";
		} else {
			return code;
		}
	} else {
		tab = "		";
	}

	String transform;
	if (p_input_vars[1].is_empty()) {
		transform = "TRANSFORM";
	} else {
		transform = p_input_vars[1];
	}

	String velocity;
	if (p_input_vars[2].is_empty()) {
		velocity = "VELOCITY";
	} else {
		velocity = p_input_vars[2];
	}

	String color;
	if (p_input_vars[3].is_empty()) {
		color = "COLOR.rgb";
	} else {
		color = p_input_vars[3];
	}

	String alpha;
	if (p_input_vars[4].is_empty()) {
		alpha = "COLOR.a";
	} else {
		alpha = p_input_vars[4];
	}

	String custom;
	if (p_input_vars[5].is_empty()) {
		custom = "CUSTOM.rgb";
	} else {
		custom = p_input_vars[5];
	}

	String custom_alpha;
	if (p_input_vars[6].is_empty()) {
		custom_alpha = "CUSTOM.a";
	} else {
		custom_alpha = p_input_vars[6];
	}

	List<String> flags_arr;

	if (has_flag(EmitFlags::EMIT_FLAG_POSITION)) {
		flags_arr.push_back("FLAG_EMIT_POSITION");
	}
	if (has_flag(EmitFlags::EMIT_FLAG_ROT_SCALE)) {
		flags_arr.push_back("FLAG_EMIT_ROT_SCALE");
	}
	if (has_flag(EmitFlags::EMIT_FLAG_VELOCITY)) {
		flags_arr.push_back("FLAG_EMIT_VELOCITY");
	}
	if (has_flag(EmitFlags::EMIT_FLAG_COLOR)) {
		flags_arr.push_back("FLAG_EMIT_COLOR");
	}
	if (has_flag(EmitFlags::EMIT_FLAG_CUSTOM)) {
		flags_arr.push_back("FLAG_EMIT_CUSTOM");
	}

	String flags_str;

	for (List<String>::ConstIterator itr = flags_arr.begin(); itr != flags_arr.end(); ++itr) {
		if (itr != flags_arr.begin()) {
			flags_str += "|";
		}
		flags_str += *itr;
	}

	if (flags_str.is_empty()) {
		flags_str = "uint(0)";
	}

	if (!default_condition) {
		code += "	if (" + p_input_vars[0] + ") {\n";
	}

	code += tab + "emit_subparticle(" + transform + ", " + velocity + ", vec4(" + color + ", " + alpha + "), vec4(" + custom + ", " + custom_alpha + "), " + flags_str + ");\n";

	if (!default_condition) {
		code += "	}\n";
	}

	return code;
}

VisualShaderNodeParticleEmit::VisualShaderNodeParticleEmit() {
	set_input_port_default_value(0, true);
}