// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2011-2023 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief Functions for finding dominant direction of a set of colors. */ #if !defined(ASTCENC_DECOMPRESS_ONLY) #include "astcenc_internal.h" #include <cassert> /** * @brief Compute the average RGB color of each partition. * * The algorithm here uses a vectorized sequential scan and per-partition * color accumulators, using select() to mask texel lanes in other partitions. * * We only accumulate sums for N-1 partitions during the scan; the value for * the last partition can be computed given that we know the block-wide average * already. * * Because of this we could reduce the loop iteration count so it "just" spans * the max texel index needed for the N-1 partitions, which could need fewer * iterations than the full block texel count. However, this makes the loop * count erratic and causes more branch mispredictions so is a net loss. * * @param pi The partitioning to use. * @param blk The block data to process. * @param[out] averages The output averages. Unused partition indices will * not be initialized, and lane<3> will be zero. */ static void compute_partition_averages_rgb( const partition_info& pi, const image_block& blk, vfloat4 averages[BLOCK_MAX_PARTITIONS] ) { unsigned int partition_count = pi.partition_count; unsigned int texel_count = blk.texel_count; promise(texel_count > 0); // For 1 partition just use the precomputed mean if (partition_count == 1) { averages[0] = blk.data_mean.swz<0, 1, 2>(); } // For 2 partitions scan results for partition 0, compute partition 1 else if (partition_count == 2) { vfloatacc pp_avg_rgb[3] {}; vint lane_id = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vint texel_partition(pi.partition_of_texel + i); vmask lane_mask = lane_id < vint(texel_count); lane_id += vint(ASTCENC_SIMD_WIDTH); vmask p0_mask = lane_mask & (texel_partition == vint(0)); vfloat data_r = loada(blk.data_r + i); haccumulate(pp_avg_rgb[0], data_r, p0_mask); vfloat data_g = loada(blk.data_g + i); haccumulate(pp_avg_rgb[1], data_g, p0_mask); vfloat data_b = loada(blk.data_b + i); haccumulate(pp_avg_rgb[2], data_b, p0_mask); } vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0]), hadd_s(pp_avg_rgb[1]), hadd_s(pp_avg_rgb[2])); vfloat4 p1_total = block_total - p0_total; averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); } // For 3 partitions scan results for partition 0/1, compute partition 2 else if (partition_count == 3) { vfloatacc pp_avg_rgb[2][3] {}; vint lane_id = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vint texel_partition(pi.partition_of_texel + i); vmask lane_mask = lane_id < vint(texel_count); lane_id += vint(ASTCENC_SIMD_WIDTH); vmask p0_mask = lane_mask & (texel_partition == vint(0)); vmask p1_mask = lane_mask & (texel_partition == vint(1)); vfloat data_r = loada(blk.data_r + i); haccumulate(pp_avg_rgb[0][0], data_r, p0_mask); haccumulate(pp_avg_rgb[1][0], data_r, p1_mask); vfloat data_g = loada(blk.data_g + i); haccumulate(pp_avg_rgb[0][1], data_g, p0_mask); haccumulate(pp_avg_rgb[1][1], data_g, p1_mask); vfloat data_b = loada(blk.data_b + i); haccumulate(pp_avg_rgb[0][2], data_b, p0_mask); haccumulate(pp_avg_rgb[1][2], data_b, p1_mask); } vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0][0]), hadd_s(pp_avg_rgb[0][1]), hadd_s(pp_avg_rgb[0][2])); vfloat4 p1_total = vfloat3(hadd_s(pp_avg_rgb[1][0]), hadd_s(pp_avg_rgb[1][1]), hadd_s(pp_avg_rgb[1][2])); vfloat4 p2_total = block_total - p0_total - p1_total; averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); } else { // For 4 partitions scan results for partition 0/1/2, compute partition 3 vfloatacc pp_avg_rgb[3][3] {}; vint lane_id = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vint texel_partition(pi.partition_of_texel + i); vmask lane_mask = lane_id < vint(texel_count); lane_id += vint(ASTCENC_SIMD_WIDTH); vmask p0_mask = lane_mask & (texel_partition == vint(0)); vmask p1_mask = lane_mask & (texel_partition == vint(1)); vmask p2_mask = lane_mask & (texel_partition == vint(2)); vfloat data_r = loada(blk.data_r + i); haccumulate(pp_avg_rgb[0][0], data_r, p0_mask); haccumulate(pp_avg_rgb[1][0], data_r, p1_mask); haccumulate(pp_avg_rgb[2][0], data_r, p2_mask); vfloat data_g = loada(blk.data_g + i); haccumulate(pp_avg_rgb[0][1], data_g, p0_mask); haccumulate(pp_avg_rgb[1][1], data_g, p1_mask); haccumulate(pp_avg_rgb[2][1], data_g, p2_mask); vfloat data_b = loada(blk.data_b + i); haccumulate(pp_avg_rgb[0][2], data_b, p0_mask); haccumulate(pp_avg_rgb[1][2], data_b, p1_mask); haccumulate(pp_avg_rgb[2][2], data_b, p2_mask); } vfloat4 block_total = blk.data_mean.swz<0, 1, 2>() * static_cast<float>(blk.texel_count); vfloat4 p0_total = vfloat3(hadd_s(pp_avg_rgb[0][0]), hadd_s(pp_avg_rgb[0][1]), hadd_s(pp_avg_rgb[0][2])); vfloat4 p1_total = vfloat3(hadd_s(pp_avg_rgb[1][0]), hadd_s(pp_avg_rgb[1][1]), hadd_s(pp_avg_rgb[1][2])); vfloat4 p2_total = vfloat3(hadd_s(pp_avg_rgb[2][0]), hadd_s(pp_avg_rgb[2][1]), hadd_s(pp_avg_rgb[2][2])); vfloat4 p3_total = block_total - p0_total - p1_total- p2_total; averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); averages[3] = p3_total / static_cast<float>(pi.partition_texel_count[3]); } } /** * @brief Compute the average RGBA color of each partition. * * The algorithm here uses a vectorized sequential scan and per-partition * color accumulators, using select() to mask texel lanes in other partitions. * * We only accumulate sums for N-1 partitions during the scan; the value for * the last partition can be computed given that we know the block-wide average * already. * * Because of this we could reduce the loop iteration count so it "just" spans * the max texel index needed for the N-1 partitions, which could need fewer * iterations than the full block texel count. However, this makes the loop * count erratic and causes more branch mispredictions so is a net loss. * * @param pi The partitioning to use. * @param blk The block data to process. * @param[out] averages The output averages. Unused partition indices will * not be initialized. */ static void compute_partition_averages_rgba( const partition_info& pi, const image_block& blk, vfloat4 averages[BLOCK_MAX_PARTITIONS] ) { unsigned int partition_count = pi.partition_count; unsigned int texel_count = blk.texel_count; promise(texel_count > 0); // For 1 partition just use the precomputed mean if (partition_count == 1) { averages[0] = blk.data_mean; } // For 2 partitions scan results for partition 0, compute partition 1 else if (partition_count == 2) { vfloat4 pp_avg_rgba[4] {}; vint lane_id = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vint texel_partition(pi.partition_of_texel + i); vmask lane_mask = lane_id < vint(texel_count); lane_id += vint(ASTCENC_SIMD_WIDTH); vmask p0_mask = lane_mask & (texel_partition == vint(0)); vfloat data_r = loada(blk.data_r + i); haccumulate(pp_avg_rgba[0], data_r, p0_mask); vfloat data_g = loada(blk.data_g + i); haccumulate(pp_avg_rgba[1], data_g, p0_mask); vfloat data_b = loada(blk.data_b + i); haccumulate(pp_avg_rgba[2], data_b, p0_mask); vfloat data_a = loada(blk.data_a + i); haccumulate(pp_avg_rgba[3], data_a, p0_mask); } vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0]), hadd_s(pp_avg_rgba[1]), hadd_s(pp_avg_rgba[2]), hadd_s(pp_avg_rgba[3])); vfloat4 p1_total = block_total - p0_total; averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); } // For 3 partitions scan results for partition 0/1, compute partition 2 else if (partition_count == 3) { vfloat4 pp_avg_rgba[2][4] {}; vint lane_id = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vint texel_partition(pi.partition_of_texel + i); vmask lane_mask = lane_id < vint(texel_count); lane_id += vint(ASTCENC_SIMD_WIDTH); vmask p0_mask = lane_mask & (texel_partition == vint(0)); vmask p1_mask = lane_mask & (texel_partition == vint(1)); vfloat data_r = loada(blk.data_r + i); haccumulate(pp_avg_rgba[0][0], data_r, p0_mask); haccumulate(pp_avg_rgba[1][0], data_r, p1_mask); vfloat data_g = loada(blk.data_g + i); haccumulate(pp_avg_rgba[0][1], data_g, p0_mask); haccumulate(pp_avg_rgba[1][1], data_g, p1_mask); vfloat data_b = loada(blk.data_b + i); haccumulate(pp_avg_rgba[0][2], data_b, p0_mask); haccumulate(pp_avg_rgba[1][2], data_b, p1_mask); vfloat data_a = loada(blk.data_a + i); haccumulate(pp_avg_rgba[0][3], data_a, p0_mask); haccumulate(pp_avg_rgba[1][3], data_a, p1_mask); } vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0][0]), hadd_s(pp_avg_rgba[0][1]), hadd_s(pp_avg_rgba[0][2]), hadd_s(pp_avg_rgba[0][3])); vfloat4 p1_total = vfloat4(hadd_s(pp_avg_rgba[1][0]), hadd_s(pp_avg_rgba[1][1]), hadd_s(pp_avg_rgba[1][2]), hadd_s(pp_avg_rgba[1][3])); vfloat4 p2_total = block_total - p0_total - p1_total; averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); } else { // For 4 partitions scan results for partition 0/1/2, compute partition 3 vfloat4 pp_avg_rgba[3][4] {}; vint lane_id = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vint texel_partition(pi.partition_of_texel + i); vmask lane_mask = lane_id < vint(texel_count); lane_id += vint(ASTCENC_SIMD_WIDTH); vmask p0_mask = lane_mask & (texel_partition == vint(0)); vmask p1_mask = lane_mask & (texel_partition == vint(1)); vmask p2_mask = lane_mask & (texel_partition == vint(2)); vfloat data_r = loada(blk.data_r + i); haccumulate(pp_avg_rgba[0][0], data_r, p0_mask); haccumulate(pp_avg_rgba[1][0], data_r, p1_mask); haccumulate(pp_avg_rgba[2][0], data_r, p2_mask); vfloat data_g = loada(blk.data_g + i); haccumulate(pp_avg_rgba[0][1], data_g, p0_mask); haccumulate(pp_avg_rgba[1][1], data_g, p1_mask); haccumulate(pp_avg_rgba[2][1], data_g, p2_mask); vfloat data_b = loada(blk.data_b + i); haccumulate(pp_avg_rgba[0][2], data_b, p0_mask); haccumulate(pp_avg_rgba[1][2], data_b, p1_mask); haccumulate(pp_avg_rgba[2][2], data_b, p2_mask); vfloat data_a = loada(blk.data_a + i); haccumulate(pp_avg_rgba[0][3], data_a, p0_mask); haccumulate(pp_avg_rgba[1][3], data_a, p1_mask); haccumulate(pp_avg_rgba[2][3], data_a, p2_mask); } vfloat4 block_total = blk.data_mean * static_cast<float>(blk.texel_count); vfloat4 p0_total = vfloat4(hadd_s(pp_avg_rgba[0][0]), hadd_s(pp_avg_rgba[0][1]), hadd_s(pp_avg_rgba[0][2]), hadd_s(pp_avg_rgba[0][3])); vfloat4 p1_total = vfloat4(hadd_s(pp_avg_rgba[1][0]), hadd_s(pp_avg_rgba[1][1]), hadd_s(pp_avg_rgba[1][2]), hadd_s(pp_avg_rgba[1][3])); vfloat4 p2_total = vfloat4(hadd_s(pp_avg_rgba[2][0]), hadd_s(pp_avg_rgba[2][1]), hadd_s(pp_avg_rgba[2][2]), hadd_s(pp_avg_rgba[2][3])); vfloat4 p3_total = block_total - p0_total - p1_total- p2_total; averages[0] = p0_total / static_cast<float>(pi.partition_texel_count[0]); averages[1] = p1_total / static_cast<float>(pi.partition_texel_count[1]); averages[2] = p2_total / static_cast<float>(pi.partition_texel_count[2]); averages[3] = p3_total / static_cast<float>(pi.partition_texel_count[3]); } } /* See header for documentation. */ void compute_avgs_and_dirs_4_comp( const partition_info& pi, const image_block& blk, partition_metrics pm[BLOCK_MAX_PARTITIONS] ) { int partition_count = pi.partition_count; promise(partition_count > 0); // Pre-compute partition_averages vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; compute_partition_averages_rgba(pi, blk, partition_averages); for (int partition = 0; partition < partition_count; partition++) { const uint8_t *texel_indexes = pi.texels_of_partition[partition]; unsigned int texel_count = pi.partition_texel_count[partition]; promise(texel_count > 0); vfloat4 average = partition_averages[partition]; pm[partition].avg = average; vfloat4 sum_xp = vfloat4::zero(); vfloat4 sum_yp = vfloat4::zero(); vfloat4 sum_zp = vfloat4::zero(); vfloat4 sum_wp = vfloat4::zero(); for (unsigned int i = 0; i < texel_count; i++) { unsigned int iwt = texel_indexes[i]; vfloat4 texel_datum = blk.texel(iwt); texel_datum = texel_datum - average; vfloat4 zero = vfloat4::zero(); vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; sum_xp += select(zero, texel_datum, tdm0); vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; sum_yp += select(zero, texel_datum, tdm1); vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; sum_zp += select(zero, texel_datum, tdm2); vmask4 tdm3 = texel_datum.swz<3,3,3,3>() > zero; sum_wp += select(zero, texel_datum, tdm3); } vfloat4 prod_xp = dot(sum_xp, sum_xp); vfloat4 prod_yp = dot(sum_yp, sum_yp); vfloat4 prod_zp = dot(sum_zp, sum_zp); vfloat4 prod_wp = dot(sum_wp, sum_wp); vfloat4 best_vector = sum_xp; vfloat4 best_sum = prod_xp; vmask4 mask = prod_yp > best_sum; best_vector = select(best_vector, sum_yp, mask); best_sum = select(best_sum, prod_yp, mask); mask = prod_zp > best_sum; best_vector = select(best_vector, sum_zp, mask); best_sum = select(best_sum, prod_zp, mask); mask = prod_wp > best_sum; best_vector = select(best_vector, sum_wp, mask); pm[partition].dir = best_vector; } } /* See header for documentation. */ void compute_avgs_and_dirs_3_comp( const partition_info& pi, const image_block& blk, unsigned int omitted_component, partition_metrics pm[BLOCK_MAX_PARTITIONS] ) { // Pre-compute partition_averages vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; compute_partition_averages_rgba(pi, blk, partition_averages); const float* data_vr = blk.data_r; const float* data_vg = blk.data_g; const float* data_vb = blk.data_b; // TODO: Data-driven permute would be useful to avoid this ... if (omitted_component == 0) { partition_averages[0] = partition_averages[0].swz<1, 2, 3>(); partition_averages[1] = partition_averages[1].swz<1, 2, 3>(); partition_averages[2] = partition_averages[2].swz<1, 2, 3>(); partition_averages[3] = partition_averages[3].swz<1, 2, 3>(); data_vr = blk.data_g; data_vg = blk.data_b; data_vb = blk.data_a; } else if (omitted_component == 1) { partition_averages[0] = partition_averages[0].swz<0, 2, 3>(); partition_averages[1] = partition_averages[1].swz<0, 2, 3>(); partition_averages[2] = partition_averages[2].swz<0, 2, 3>(); partition_averages[3] = partition_averages[3].swz<0, 2, 3>(); data_vg = blk.data_b; data_vb = blk.data_a; } else if (omitted_component == 2) { partition_averages[0] = partition_averages[0].swz<0, 1, 3>(); partition_averages[1] = partition_averages[1].swz<0, 1, 3>(); partition_averages[2] = partition_averages[2].swz<0, 1, 3>(); partition_averages[3] = partition_averages[3].swz<0, 1, 3>(); data_vb = blk.data_a; } else { partition_averages[0] = partition_averages[0].swz<0, 1, 2>(); partition_averages[1] = partition_averages[1].swz<0, 1, 2>(); partition_averages[2] = partition_averages[2].swz<0, 1, 2>(); partition_averages[3] = partition_averages[3].swz<0, 1, 2>(); } unsigned int partition_count = pi.partition_count; promise(partition_count > 0); for (unsigned int partition = 0; partition < partition_count; partition++) { const uint8_t *texel_indexes = pi.texels_of_partition[partition]; unsigned int texel_count = pi.partition_texel_count[partition]; promise(texel_count > 0); vfloat4 average = partition_averages[partition]; pm[partition].avg = average; vfloat4 sum_xp = vfloat4::zero(); vfloat4 sum_yp = vfloat4::zero(); vfloat4 sum_zp = vfloat4::zero(); for (unsigned int i = 0; i < texel_count; i++) { unsigned int iwt = texel_indexes[i]; vfloat4 texel_datum = vfloat3(data_vr[iwt], data_vg[iwt], data_vb[iwt]); texel_datum = texel_datum - average; vfloat4 zero = vfloat4::zero(); vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; sum_xp += select(zero, texel_datum, tdm0); vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; sum_yp += select(zero, texel_datum, tdm1); vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; sum_zp += select(zero, texel_datum, tdm2); } vfloat4 prod_xp = dot(sum_xp, sum_xp); vfloat4 prod_yp = dot(sum_yp, sum_yp); vfloat4 prod_zp = dot(sum_zp, sum_zp); vfloat4 best_vector = sum_xp; vfloat4 best_sum = prod_xp; vmask4 mask = prod_yp > best_sum; best_vector = select(best_vector, sum_yp, mask); best_sum = select(best_sum, prod_yp, mask); mask = prod_zp > best_sum; best_vector = select(best_vector, sum_zp, mask); pm[partition].dir = best_vector; } } /* See header for documentation. */ void compute_avgs_and_dirs_3_comp_rgb( const partition_info& pi, const image_block& blk, partition_metrics pm[BLOCK_MAX_PARTITIONS] ) { unsigned int partition_count = pi.partition_count; promise(partition_count > 0); // Pre-compute partition_averages vfloat4 partition_averages[BLOCK_MAX_PARTITIONS]; compute_partition_averages_rgb(pi, blk, partition_averages); for (unsigned int partition = 0; partition < partition_count; partition++) { const uint8_t *texel_indexes = pi.texels_of_partition[partition]; unsigned int texel_count = pi.partition_texel_count[partition]; promise(texel_count > 0); vfloat4 average = partition_averages[partition]; pm[partition].avg = average; vfloat4 sum_xp = vfloat4::zero(); vfloat4 sum_yp = vfloat4::zero(); vfloat4 sum_zp = vfloat4::zero(); for (unsigned int i = 0; i < texel_count; i++) { unsigned int iwt = texel_indexes[i]; vfloat4 texel_datum = blk.texel3(iwt); texel_datum = texel_datum - average; vfloat4 zero = vfloat4::zero(); vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; sum_xp += select(zero, texel_datum, tdm0); vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; sum_yp += select(zero, texel_datum, tdm1); vmask4 tdm2 = texel_datum.swz<2,2,2,2>() > zero; sum_zp += select(zero, texel_datum, tdm2); } vfloat4 prod_xp = dot(sum_xp, sum_xp); vfloat4 prod_yp = dot(sum_yp, sum_yp); vfloat4 prod_zp = dot(sum_zp, sum_zp); vfloat4 best_vector = sum_xp; vfloat4 best_sum = prod_xp; vmask4 mask = prod_yp > best_sum; best_vector = select(best_vector, sum_yp, mask); best_sum = select(best_sum, prod_yp, mask); mask = prod_zp > best_sum; best_vector = select(best_vector, sum_zp, mask); pm[partition].dir = best_vector; } } /* See header for documentation. */ void compute_avgs_and_dirs_2_comp( const partition_info& pt, const image_block& blk, unsigned int component1, unsigned int component2, partition_metrics pm[BLOCK_MAX_PARTITIONS] ) { vfloat4 average; const float* data_vr = nullptr; const float* data_vg = nullptr; if (component1 == 0 && component2 == 1) { average = blk.data_mean.swz<0, 1>(); data_vr = blk.data_r; data_vg = blk.data_g; } else if (component1 == 0 && component2 == 2) { average = blk.data_mean.swz<0, 2>(); data_vr = blk.data_r; data_vg = blk.data_b; } else // (component1 == 1 && component2 == 2) { assert(component1 == 1 && component2 == 2); average = blk.data_mean.swz<1, 2>(); data_vr = blk.data_g; data_vg = blk.data_b; } unsigned int partition_count = pt.partition_count; promise(partition_count > 0); for (unsigned int partition = 0; partition < partition_count; partition++) { const uint8_t *texel_indexes = pt.texels_of_partition[partition]; unsigned int texel_count = pt.partition_texel_count[partition]; promise(texel_count > 0); // Only compute a partition mean if more than one partition if (partition_count > 1) { average = vfloat4::zero(); for (unsigned int i = 0; i < texel_count; i++) { unsigned int iwt = texel_indexes[i]; average += vfloat2(data_vr[iwt], data_vg[iwt]); } average = average / static_cast<float>(texel_count); } pm[partition].avg = average; vfloat4 sum_xp = vfloat4::zero(); vfloat4 sum_yp = vfloat4::zero(); for (unsigned int i = 0; i < texel_count; i++) { unsigned int iwt = texel_indexes[i]; vfloat4 texel_datum = vfloat2(data_vr[iwt], data_vg[iwt]); texel_datum = texel_datum - average; vfloat4 zero = vfloat4::zero(); vmask4 tdm0 = texel_datum.swz<0,0,0,0>() > zero; sum_xp += select(zero, texel_datum, tdm0); vmask4 tdm1 = texel_datum.swz<1,1,1,1>() > zero; sum_yp += select(zero, texel_datum, tdm1); } vfloat4 prod_xp = dot(sum_xp, sum_xp); vfloat4 prod_yp = dot(sum_yp, sum_yp); vfloat4 best_vector = sum_xp; vfloat4 best_sum = prod_xp; vmask4 mask = prod_yp > best_sum; best_vector = select(best_vector, sum_yp, mask); pm[partition].dir = best_vector; } } /* See header for documentation. */ void compute_error_squared_rgba( const partition_info& pi, const image_block& blk, const processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS], const processed_line4 samec_plines[BLOCK_MAX_PARTITIONS], float line_lengths[BLOCK_MAX_PARTITIONS], float& uncor_error, float& samec_error ) { unsigned int partition_count = pi.partition_count; promise(partition_count > 0); vfloatacc uncor_errorsumv = vfloatacc::zero(); vfloatacc samec_errorsumv = vfloatacc::zero(); for (unsigned int partition = 0; partition < partition_count; partition++) { const uint8_t *texel_indexes = pi.texels_of_partition[partition]; processed_line4 l_uncor = uncor_plines[partition]; processed_line4 l_samec = samec_plines[partition]; unsigned int texel_count = pi.partition_texel_count[partition]; promise(texel_count > 0); // Vectorize some useful scalar inputs vfloat l_uncor_bs0(l_uncor.bs.lane<0>()); vfloat l_uncor_bs1(l_uncor.bs.lane<1>()); vfloat l_uncor_bs2(l_uncor.bs.lane<2>()); vfloat l_uncor_bs3(l_uncor.bs.lane<3>()); vfloat l_uncor_amod0(l_uncor.amod.lane<0>()); vfloat l_uncor_amod1(l_uncor.amod.lane<1>()); vfloat l_uncor_amod2(l_uncor.amod.lane<2>()); vfloat l_uncor_amod3(l_uncor.amod.lane<3>()); vfloat l_samec_bs0(l_samec.bs.lane<0>()); vfloat l_samec_bs1(l_samec.bs.lane<1>()); vfloat l_samec_bs2(l_samec.bs.lane<2>()); vfloat l_samec_bs3(l_samec.bs.lane<3>()); assert(all(l_samec.amod == vfloat4(0.0f))); vfloat uncor_loparamv(1e10f); vfloat uncor_hiparamv(-1e10f); vfloat ew_r(blk.channel_weight.lane<0>()); vfloat ew_g(blk.channel_weight.lane<1>()); vfloat ew_b(blk.channel_weight.lane<2>()); vfloat ew_a(blk.channel_weight.lane<3>()); // This implementation over-shoots, but this is safe as we initialize the texel_indexes // array to extend the last value. This means min/max are not impacted, but we need to mask // out the dummy values when we compute the line weighting. vint lane_ids = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vmask mask = lane_ids < vint(texel_count); vint texel_idxs(texel_indexes + i); vfloat data_r = gatherf(blk.data_r, texel_idxs); vfloat data_g = gatherf(blk.data_g, texel_idxs); vfloat data_b = gatherf(blk.data_b, texel_idxs); vfloat data_a = gatherf(blk.data_a, texel_idxs); vfloat uncor_param = (data_r * l_uncor_bs0) + (data_g * l_uncor_bs1) + (data_b * l_uncor_bs2) + (data_a * l_uncor_bs3); uncor_loparamv = min(uncor_param, uncor_loparamv); uncor_hiparamv = max(uncor_param, uncor_hiparamv); vfloat uncor_dist0 = (l_uncor_amod0 - data_r) + (uncor_param * l_uncor_bs0); vfloat uncor_dist1 = (l_uncor_amod1 - data_g) + (uncor_param * l_uncor_bs1); vfloat uncor_dist2 = (l_uncor_amod2 - data_b) + (uncor_param * l_uncor_bs2); vfloat uncor_dist3 = (l_uncor_amod3 - data_a) + (uncor_param * l_uncor_bs3); vfloat uncor_err = (ew_r * uncor_dist0 * uncor_dist0) + (ew_g * uncor_dist1 * uncor_dist1) + (ew_b * uncor_dist2 * uncor_dist2) + (ew_a * uncor_dist3 * uncor_dist3); haccumulate(uncor_errorsumv, uncor_err, mask); // Process samechroma data vfloat samec_param = (data_r * l_samec_bs0) + (data_g * l_samec_bs1) + (data_b * l_samec_bs2) + (data_a * l_samec_bs3); vfloat samec_dist0 = samec_param * l_samec_bs0 - data_r; vfloat samec_dist1 = samec_param * l_samec_bs1 - data_g; vfloat samec_dist2 = samec_param * l_samec_bs2 - data_b; vfloat samec_dist3 = samec_param * l_samec_bs3 - data_a; vfloat samec_err = (ew_r * samec_dist0 * samec_dist0) + (ew_g * samec_dist1 * samec_dist1) + (ew_b * samec_dist2 * samec_dist2) + (ew_a * samec_dist3 * samec_dist3); haccumulate(samec_errorsumv, samec_err, mask); lane_ids += vint(ASTCENC_SIMD_WIDTH); } // Turn very small numbers and NaNs into a small number float uncor_linelen = hmax_s(uncor_hiparamv) - hmin_s(uncor_loparamv); line_lengths[partition] = astc::max(uncor_linelen, 1e-7f); } uncor_error = hadd_s(uncor_errorsumv); samec_error = hadd_s(samec_errorsumv); } /* See header for documentation. */ void compute_error_squared_rgb( const partition_info& pi, const image_block& blk, partition_lines3 plines[BLOCK_MAX_PARTITIONS], float& uncor_error, float& samec_error ) { unsigned int partition_count = pi.partition_count; promise(partition_count > 0); vfloatacc uncor_errorsumv = vfloatacc::zero(); vfloatacc samec_errorsumv = vfloatacc::zero(); for (unsigned int partition = 0; partition < partition_count; partition++) { partition_lines3& pl = plines[partition]; const uint8_t *texel_indexes = pi.texels_of_partition[partition]; unsigned int texel_count = pi.partition_texel_count[partition]; promise(texel_count > 0); processed_line3 l_uncor = pl.uncor_pline; processed_line3 l_samec = pl.samec_pline; // Vectorize some useful scalar inputs vfloat l_uncor_bs0(l_uncor.bs.lane<0>()); vfloat l_uncor_bs1(l_uncor.bs.lane<1>()); vfloat l_uncor_bs2(l_uncor.bs.lane<2>()); vfloat l_uncor_amod0(l_uncor.amod.lane<0>()); vfloat l_uncor_amod1(l_uncor.amod.lane<1>()); vfloat l_uncor_amod2(l_uncor.amod.lane<2>()); vfloat l_samec_bs0(l_samec.bs.lane<0>()); vfloat l_samec_bs1(l_samec.bs.lane<1>()); vfloat l_samec_bs2(l_samec.bs.lane<2>()); assert(all(l_samec.amod == vfloat4(0.0f))); vfloat uncor_loparamv(1e10f); vfloat uncor_hiparamv(-1e10f); vfloat ew_r(blk.channel_weight.lane<0>()); vfloat ew_g(blk.channel_weight.lane<1>()); vfloat ew_b(blk.channel_weight.lane<2>()); // This implementation over-shoots, but this is safe as we initialize the weights array // to extend the last value. This means min/max are not impacted, but we need to mask // out the dummy values when we compute the line weighting. vint lane_ids = vint::lane_id(); for (unsigned int i = 0; i < texel_count; i += ASTCENC_SIMD_WIDTH) { vmask mask = lane_ids < vint(texel_count); vint texel_idxs(texel_indexes + i); vfloat data_r = gatherf(blk.data_r, texel_idxs); vfloat data_g = gatherf(blk.data_g, texel_idxs); vfloat data_b = gatherf(blk.data_b, texel_idxs); vfloat uncor_param = (data_r * l_uncor_bs0) + (data_g * l_uncor_bs1) + (data_b * l_uncor_bs2); uncor_loparamv = min(uncor_param, uncor_loparamv); uncor_hiparamv = max(uncor_param, uncor_hiparamv); vfloat uncor_dist0 = (l_uncor_amod0 - data_r) + (uncor_param * l_uncor_bs0); vfloat uncor_dist1 = (l_uncor_amod1 - data_g) + (uncor_param * l_uncor_bs1); vfloat uncor_dist2 = (l_uncor_amod2 - data_b) + (uncor_param * l_uncor_bs2); vfloat uncor_err = (ew_r * uncor_dist0 * uncor_dist0) + (ew_g * uncor_dist1 * uncor_dist1) + (ew_b * uncor_dist2 * uncor_dist2); haccumulate(uncor_errorsumv, uncor_err, mask); // Process samechroma data vfloat samec_param = (data_r * l_samec_bs0) + (data_g * l_samec_bs1) + (data_b * l_samec_bs2); vfloat samec_dist0 = samec_param * l_samec_bs0 - data_r; vfloat samec_dist1 = samec_param * l_samec_bs1 - data_g; vfloat samec_dist2 = samec_param * l_samec_bs2 - data_b; vfloat samec_err = (ew_r * samec_dist0 * samec_dist0) + (ew_g * samec_dist1 * samec_dist1) + (ew_b * samec_dist2 * samec_dist2); haccumulate(samec_errorsumv, samec_err, mask); lane_ids += vint(ASTCENC_SIMD_WIDTH); } // Turn very small numbers and NaNs into a small number float uncor_linelen = hmax_s(uncor_hiparamv) - hmin_s(uncor_loparamv); pl.line_length = astc::max(uncor_linelen, 1e-7f); } uncor_error = hadd_s(uncor_errorsumv); samec_error = hadd_s(samec_errorsumv); } #endif