/**************************************************************************/ /* test_basis.h */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #ifndef TEST_BASIS_H #define TEST_BASIS_H #include "core/math/basis.h" #include "core/math/random_number_generator.h" #include "tests/test_macros.h" namespace TestBasis { Vector3 deg_to_rad(const Vector3 &p_rotation) { return p_rotation / 180.0 * Math_PI; } Vector3 rad2deg(const Vector3 &p_rotation) { return p_rotation / Math_PI * 180.0; } String get_rot_order_name(EulerOrder ro) { switch (ro) { case EulerOrder::XYZ: return "XYZ"; case EulerOrder::XZY: return "XZY"; case EulerOrder::YZX: return "YZX"; case EulerOrder::YXZ: return "YXZ"; case EulerOrder::ZXY: return "ZXY"; case EulerOrder::ZYX: return "ZYX"; default: return "[Not supported]"; } } void test_rotation(Vector3 deg_original_euler, EulerOrder rot_order) { // This test: // 1. Converts the rotation vector from deg to rad. // 2. Converts euler to basis. // 3. Converts the above basis back into euler. // 4. Converts the above euler into basis again. // 5. Compares the basis obtained in step 2 with the basis of step 4 // // The conversion "basis to euler", done in the step 3, may be different from // the original euler, even if the final rotation are the same. // This happens because there are more ways to represents the same rotation, // both valid, using eulers. // For this reason is necessary to convert that euler back to basis and finally // compares it. // // In this way we can assert that both functions: basis to euler / euler to basis // are correct. // Euler to rotation const Vector3 original_euler = deg_to_rad(deg_original_euler); const Basis to_rotation = Basis::from_euler(original_euler, rot_order); // Euler from rotation const Vector3 euler_from_rotation = to_rotation.get_euler(rot_order); const Basis rotation_from_computed_euler = Basis::from_euler(euler_from_rotation, rot_order); Basis res = to_rotation.inverse() * rotation_from_computed_euler; CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Fail due to X %s\n", String(res.get_column(0))).utf8().ptr()); CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Fail due to Y %s\n", String(res.get_column(1))).utf8().ptr()); CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Fail due to Z %s\n", String(res.get_column(2))).utf8().ptr()); // Double check `to_rotation` decomposing with XYZ rotation order. const Vector3 euler_xyz_from_rotation = to_rotation.get_euler(EulerOrder::XYZ); Basis rotation_from_xyz_computed_euler = Basis::from_euler(euler_xyz_from_rotation, EulerOrder::XYZ); res = to_rotation.inverse() * rotation_from_xyz_computed_euler; CHECK_MESSAGE((res.get_column(0) - Vector3(1.0, 0.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to X %s\n", String(res.get_column(0))).utf8().ptr()); CHECK_MESSAGE((res.get_column(1) - Vector3(0.0, 1.0, 0.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Y %s\n", String(res.get_column(1))).utf8().ptr()); CHECK_MESSAGE((res.get_column(2) - Vector3(0.0, 0.0, 1.0)).length() <= 0.1, vformat("Double check with XYZ rot order failed, due to Z %s\n", String(res.get_column(2))).utf8().ptr()); INFO(vformat("Rotation order: %s\n.", get_rot_order_name(rot_order)).utf8().ptr()); INFO(vformat("Original Rotation: %s\n", String(deg_original_euler)).utf8().ptr()); INFO(vformat("Quaternion to rotation order: %s\n", String(rad2deg(euler_from_rotation))).utf8().ptr()); } TEST_CASE("[Basis] Euler conversions") { Vector euler_order_to_test; euler_order_to_test.push_back(EulerOrder::XYZ); euler_order_to_test.push_back(EulerOrder::XZY); euler_order_to_test.push_back(EulerOrder::YZX); euler_order_to_test.push_back(EulerOrder::YXZ); euler_order_to_test.push_back(EulerOrder::ZXY); euler_order_to_test.push_back(EulerOrder::ZYX); Vector vectors_to_test; // Test the special cases. vectors_to_test.push_back(Vector3(0.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.5, 0.5, 0.5)); vectors_to_test.push_back(Vector3(-0.5, -0.5, -0.5)); vectors_to_test.push_back(Vector3(40.0, 40.0, 40.0)); vectors_to_test.push_back(Vector3(-40.0, -40.0, -40.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, -90.0)); vectors_to_test.push_back(Vector3(0.0, -90.0, 0.0)); vectors_to_test.push_back(Vector3(-90.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, 90.0)); vectors_to_test.push_back(Vector3(0.0, 90.0, 0.0)); vectors_to_test.push_back(Vector3(90.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, -30.0)); vectors_to_test.push_back(Vector3(0.0, -30.0, 0.0)); vectors_to_test.push_back(Vector3(-30.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.0, 0.0, 30.0)); vectors_to_test.push_back(Vector3(0.0, 30.0, 0.0)); vectors_to_test.push_back(Vector3(30.0, 0.0, 0.0)); vectors_to_test.push_back(Vector3(0.5, 50.0, 20.0)); vectors_to_test.push_back(Vector3(-0.5, -50.0, -20.0)); vectors_to_test.push_back(Vector3(0.5, 0.0, 90.0)); vectors_to_test.push_back(Vector3(0.5, 0.0, -90.0)); vectors_to_test.push_back(Vector3(360.0, 360.0, 360.0)); vectors_to_test.push_back(Vector3(-360.0, -360.0, -360.0)); vectors_to_test.push_back(Vector3(-90.0, 60.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, 60.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, -60.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, -60.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, 60.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, 60.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, -60.0, 90.0)); vectors_to_test.push_back(Vector3(-90.0, -60.0, 90.0)); vectors_to_test.push_back(Vector3(60.0, 90.0, -40.0)); vectors_to_test.push_back(Vector3(60.0, -90.0, -40.0)); vectors_to_test.push_back(Vector3(-60.0, -90.0, -40.0)); vectors_to_test.push_back(Vector3(-60.0, 90.0, 40.0)); vectors_to_test.push_back(Vector3(60.0, 90.0, 40.0)); vectors_to_test.push_back(Vector3(60.0, -90.0, 40.0)); vectors_to_test.push_back(Vector3(-60.0, -90.0, 40.0)); vectors_to_test.push_back(Vector3(-90.0, 90.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, 90.0, -90.0)); vectors_to_test.push_back(Vector3(90.0, -90.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, -90.0, -90.0)); vectors_to_test.push_back(Vector3(-90.0, 90.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, 90.0, 90.0)); vectors_to_test.push_back(Vector3(90.0, -90.0, 90.0)); vectors_to_test.push_back(Vector3(20.0, 150.0, 30.0)); vectors_to_test.push_back(Vector3(20.0, -150.0, 30.0)); vectors_to_test.push_back(Vector3(-120.0, -150.0, 30.0)); vectors_to_test.push_back(Vector3(-120.0, -150.0, -130.0)); vectors_to_test.push_back(Vector3(120.0, -150.0, -130.0)); vectors_to_test.push_back(Vector3(120.0, 150.0, -130.0)); vectors_to_test.push_back(Vector3(120.0, 150.0, 130.0)); for (int h = 0; h < euler_order_to_test.size(); h += 1) { for (int i = 0; i < vectors_to_test.size(); i += 1) { test_rotation(vectors_to_test[i], euler_order_to_test[h]); } } } TEST_CASE("[Stress][Basis] Euler conversions") { Vector euler_order_to_test; euler_order_to_test.push_back(EulerOrder::XYZ); euler_order_to_test.push_back(EulerOrder::XZY); euler_order_to_test.push_back(EulerOrder::YZX); euler_order_to_test.push_back(EulerOrder::YXZ); euler_order_to_test.push_back(EulerOrder::ZXY); euler_order_to_test.push_back(EulerOrder::ZYX); Vector vectors_to_test; // Add 1000 random vectors with weirds numbers. RandomNumberGenerator rng; for (int _ = 0; _ < 1000; _ += 1) { vectors_to_test.push_back(Vector3( rng.randf_range(-1800, 1800), rng.randf_range(-1800, 1800), rng.randf_range(-1800, 1800))); } for (int h = 0; h < euler_order_to_test.size(); h += 1) { for (int i = 0; i < vectors_to_test.size(); i += 1) { test_rotation(vectors_to_test[i], euler_order_to_test[h]); } } } TEST_CASE("[Basis] Set axis angle") { Vector3 axis; real_t angle; real_t pi = (real_t)Math_PI; // Testing the singularity when the angle is 0°. Basis identity(1, 0, 0, 0, 1, 0, 0, 0, 1); identity.get_axis_angle(axis, angle); CHECK(angle == 0); // Testing the singularity when the angle is 180°. Basis singularityPi(-1, 0, 0, 0, 1, 0, 0, 0, -1); singularityPi.get_axis_angle(axis, angle); CHECK(angle == doctest::Approx(pi)); // Testing reversing the an axis (of an 30° angle). float cos30deg = Math::cos(Math::deg_to_rad((real_t)30.0)); Basis z_positive(cos30deg, -0.5, 0, 0.5, cos30deg, 0, 0, 0, 1); Basis z_negative(cos30deg, 0.5, 0, -0.5, cos30deg, 0, 0, 0, 1); z_positive.get_axis_angle(axis, angle); CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0))); CHECK(axis == Vector3(0, 0, 1)); z_negative.get_axis_angle(axis, angle); CHECK(angle == doctest::Approx(Math::deg_to_rad((real_t)30.0))); CHECK(axis == Vector3(0, 0, -1)); // Testing a rotation of 90° on x-y-z. Basis x90deg(1, 0, 0, 0, 0, -1, 0, 1, 0); x90deg.get_axis_angle(axis, angle); CHECK(angle == doctest::Approx(pi / (real_t)2)); CHECK(axis == Vector3(1, 0, 0)); Basis y90deg(0, 0, 1, 0, 1, 0, -1, 0, 0); y90deg.get_axis_angle(axis, angle); CHECK(axis == Vector3(0, 1, 0)); Basis z90deg(0, -1, 0, 1, 0, 0, 0, 0, 1); z90deg.get_axis_angle(axis, angle); CHECK(axis == Vector3(0, 0, 1)); // Regression test: checks that the method returns a small angle (not 0). Basis tiny(1, 0, 0, 0, 0.9999995, -0.001, 0, 001, 0.9999995); // The min angle possible with float is 0.001rad. tiny.get_axis_angle(axis, angle); CHECK(angle == doctest::Approx(0.001).epsilon(0.0001)); // Regression test: checks that the method returns an angle which is a number (not NaN) Basis bugNan(1.00000024, 0, 0.000100001693, 0, 1, 0, -0.000100009143, 0, 1.00000024); bugNan.get_axis_angle(axis, angle); CHECK(!Math::is_nan(angle)); } TEST_CASE("[Basis] Finite number checks") { const Vector3 x(0, 1, 2); const Vector3 infinite(NAN, NAN, NAN); CHECK_MESSAGE( Basis(x, x, x).is_finite(), "Basis with all components finite should be finite"); CHECK_FALSE_MESSAGE( Basis(infinite, x, x).is_finite(), "Basis with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Basis(x, infinite, x).is_finite(), "Basis with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Basis(x, x, infinite).is_finite(), "Basis with one component infinite should not be finite."); CHECK_FALSE_MESSAGE( Basis(infinite, infinite, x).is_finite(), "Basis with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Basis(infinite, x, infinite).is_finite(), "Basis with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Basis(x, infinite, infinite).is_finite(), "Basis with two components infinite should not be finite."); CHECK_FALSE_MESSAGE( Basis(infinite, infinite, infinite).is_finite(), "Basis with three components infinite should not be finite."); } TEST_CASE("[Basis] Is conformal checks") { CHECK_MESSAGE( Basis().is_conformal(), "Identity Basis should be conformal."); CHECK_MESSAGE( Basis::from_euler(Vector3(1.2, 3.4, 5.6)).is_conformal(), "Basis with only rotation should be conformal."); CHECK_MESSAGE( Basis::from_scale(Vector3(-1, -1, -1)).is_conformal(), "Basis with only a flip should be conformal."); CHECK_MESSAGE( Basis::from_scale(Vector3(1.2, 1.2, 1.2)).is_conformal(), "Basis with only uniform scale should be conformal."); CHECK_MESSAGE( Basis(Vector3(3, 4, 0), Vector3(4, -3, 0.0), Vector3(0, 0, 5)).is_conformal(), "Basis with a flip, rotation, and uniform scale should be conformal."); CHECK_FALSE_MESSAGE( Basis::from_scale(Vector3(1.2, 3.4, 5.6)).is_conformal(), "Basis with non-uniform scale should not be conformal."); CHECK_FALSE_MESSAGE( Basis(Vector3(Math_SQRT12, Math_SQRT12, 0), Vector3(0, 1, 0), Vector3(0, 0, 1)).is_conformal(), "Basis with the X axis skewed 45 degrees should not be conformal."); } } // namespace TestBasis #endif // TEST_BASIS_H