// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2019-2022 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief 4x32-bit vectors, implemented using plain C++. * * This module implements 4-wide 32-bit float, int, and mask vectors. This * module provides a scalar fallback for VLA code, primarily useful for * debugging VLA algorithms without the complexity of handling SIMD. Only the * baseline level of functionality needed to support VLA is provided. * * Note that the vector conditional operators implemented by this module are * designed to behave like SIMD conditional operators that generate lane masks. * Rather than returning 0/1 booleans like normal C++ code they will return * 0/-1 to give a full lane-width bitmask. * * Note that the documentation for this module still talks about "vectors" to * help developers think about the implied VLA behavior when writing optimized * paths. */ #ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED #define ASTC_VECMATHLIB_NONE_4_H_INCLUDED #ifndef ASTCENC_SIMD_INLINE #error "Include astcenc_vecmathlib.h, do not include directly" #endif #include #include #include #include // ============================================================================ // vfloat4 data type // ============================================================================ /** * @brief Data type for 4-wide floats. */ struct vfloat4 { /** * @brief Construct from zero-initialized value. */ ASTCENC_SIMD_INLINE vfloat4() = default; /** * @brief Construct from 4 values loaded from an unaligned address. * * Consider using loada() which is better with wider VLA vectors if data is * aligned to vector length. */ ASTCENC_SIMD_INLINE explicit vfloat4(const float* p) { m[0] = p[0]; m[1] = p[1]; m[2] = p[2]; m[3] = p[3]; } /** * @brief Construct from 4 scalar values replicated across all lanes. * * Consider using zero() for constexpr zeros. */ ASTCENC_SIMD_INLINE explicit vfloat4(float a) { m[0] = a; m[1] = a; m[2] = a; m[3] = a; } /** * @brief Construct from 4 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) { m[0] = a; m[1] = b; m[2] = c; m[3] = d; } /** * @brief Get the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE float lane() const { return m[l]; } /** * @brief Set the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE void set_lane(float a) { m[l] = a; } /** * @brief Factory that returns a vector of zeros. */ static ASTCENC_SIMD_INLINE vfloat4 zero() { return vfloat4(0.0f); } /** * @brief Factory that returns a replicated scalar loaded from memory. */ static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) { return vfloat4(*p); } /** * @brief Factory that returns a vector loaded from aligned memory. */ static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) { return vfloat4(p); } /** * @brief Factory that returns a vector containing the lane IDs. */ static ASTCENC_SIMD_INLINE vfloat4 lane_id() { return vfloat4(0.0f, 1.0f, 2.0f, 3.0f); } /** * @brief Return a swizzled float 2. */ template ASTCENC_SIMD_INLINE vfloat4 swz() const { return vfloat4(lane(), lane(), 0.0f, 0.0f); } /** * @brief Return a swizzled float 3. */ template ASTCENC_SIMD_INLINE vfloat4 swz() const { return vfloat4(lane(), lane(), lane(), 0.0f); } /** * @brief Return a swizzled float 4. */ template ASTCENC_SIMD_INLINE vfloat4 swz() const { return vfloat4(lane(), lane(), lane(), lane()); } /** * @brief The vector ... */ float m[4]; }; // ============================================================================ // vint4 data type // ============================================================================ /** * @brief Data type for 4-wide ints. */ struct vint4 { /** * @brief Construct from zero-initialized value. */ ASTCENC_SIMD_INLINE vint4() = default; /** * @brief Construct from 4 values loaded from an unaligned address. * * Consider using vint4::loada() which is better with wider VLA vectors * if data is aligned. */ ASTCENC_SIMD_INLINE explicit vint4(const int* p) { m[0] = p[0]; m[1] = p[1]; m[2] = p[2]; m[3] = p[3]; } /** * @brief Construct from 4 uint8_t loaded from an unaligned address. */ ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) { m[0] = p[0]; m[1] = p[1]; m[2] = p[2]; m[3] = p[3]; } /** * @brief Construct from 4 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) { m[0] = a; m[1] = b; m[2] = c; m[3] = d; } /** * @brief Construct from 4 scalar values replicated across all lanes. * * Consider using vint4::zero() for constexpr zeros. */ ASTCENC_SIMD_INLINE explicit vint4(int a) { m[0] = a; m[1] = a; m[2] = a; m[3] = a; } /** * @brief Get the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE int lane() const { return m[l]; } /** * @brief Set the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE void set_lane(int a) { m[l] = a; } /** * @brief Factory that returns a vector of zeros. */ static ASTCENC_SIMD_INLINE vint4 zero() { return vint4(0); } /** * @brief Factory that returns a replicated scalar loaded from memory. */ static ASTCENC_SIMD_INLINE vint4 load1(const int* p) { return vint4(*p); } /** * @brief Factory that returns a vector loaded from 16B aligned memory. */ static ASTCENC_SIMD_INLINE vint4 loada(const int* p) { return vint4(p); } /** * @brief Factory that returns a vector containing the lane IDs. */ static ASTCENC_SIMD_INLINE vint4 lane_id() { return vint4(0, 1, 2, 3); } /** * @brief The vector ... */ int m[4]; }; // ============================================================================ // vmask4 data type // ============================================================================ /** * @brief Data type for 4-wide control plane masks. */ struct vmask4 { /** * @brief Construct from an existing mask value. */ ASTCENC_SIMD_INLINE explicit vmask4(int* p) { m[0] = p[0]; m[1] = p[1]; m[2] = p[2]; m[3] = p[3]; } /** * @brief Construct from 1 scalar value. */ ASTCENC_SIMD_INLINE explicit vmask4(bool a) { m[0] = a == false ? 0 : -1; m[1] = a == false ? 0 : -1; m[2] = a == false ? 0 : -1; m[3] = a == false ? 0 : -1; } /** * @brief Construct from 4 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) { m[0] = a == false ? 0 : -1; m[1] = b == false ? 0 : -1; m[2] = c == false ? 0 : -1; m[3] = d == false ? 0 : -1; } /** * @brief The vector ... */ int m[4]; }; // ============================================================================ // vmask4 operators and functions // ============================================================================ /** * @brief Overload: mask union (or). */ ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) { return vmask4(a.m[0] | b.m[0], a.m[1] | b.m[1], a.m[2] | b.m[2], a.m[3] | b.m[3]); } /** * @brief Overload: mask intersect (and). */ ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) { return vmask4(a.m[0] & b.m[0], a.m[1] & b.m[1], a.m[2] & b.m[2], a.m[3] & b.m[3]); } /** * @brief Overload: mask difference (xor). */ ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) { return vmask4(a.m[0] ^ b.m[0], a.m[1] ^ b.m[1], a.m[2] ^ b.m[2], a.m[3] ^ b.m[3]); } /** * @brief Overload: mask invert (not). */ ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) { return vmask4(~a.m[0], ~a.m[1], ~a.m[2], ~a.m[3]); } /** * @brief Return a 1-bit mask code indicating mask status. * * bit0 = lane 0 */ ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) { return ((a.m[0] >> 31) & 0x1) | ((a.m[1] >> 30) & 0x2) | ((a.m[2] >> 29) & 0x4) | ((a.m[3] >> 28) & 0x8); } // ============================================================================ // vint4 operators and functions // ============================================================================ /** * @brief Overload: vector by vector addition. */ ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) { return vint4(a.m[0] + b.m[0], a.m[1] + b.m[1], a.m[2] + b.m[2], a.m[3] + b.m[3]); } /** * @brief Overload: vector by vector subtraction. */ ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) { return vint4(a.m[0] - b.m[0], a.m[1] - b.m[1], a.m[2] - b.m[2], a.m[3] - b.m[3]); } /** * @brief Overload: vector by vector multiplication. */ ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) { return vint4(a.m[0] * b.m[0], a.m[1] * b.m[1], a.m[2] * b.m[2], a.m[3] * b.m[3]); } /** * @brief Overload: vector bit invert. */ ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) { return vint4(~a.m[0], ~a.m[1], ~a.m[2], ~a.m[3]); } /** * @brief Overload: vector by vector bitwise or. */ ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) { return vint4(a.m[0] | b.m[0], a.m[1] | b.m[1], a.m[2] | b.m[2], a.m[3] | b.m[3]); } /** * @brief Overload: vector by vector bitwise and. */ ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) { return vint4(a.m[0] & b.m[0], a.m[1] & b.m[1], a.m[2] & b.m[2], a.m[3] & b.m[3]); } /** * @brief Overload: vector by vector bitwise xor. */ ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) { return vint4(a.m[0] ^ b.m[0], a.m[1] ^ b.m[1], a.m[2] ^ b.m[2], a.m[3] ^ b.m[3]); } /** * @brief Overload: vector by vector equality. */ ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) { return vmask4(a.m[0] == b.m[0], a.m[1] == b.m[1], a.m[2] == b.m[2], a.m[3] == b.m[3]); } /** * @brief Overload: vector by vector inequality. */ ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) { return vmask4(a.m[0] != b.m[0], a.m[1] != b.m[1], a.m[2] != b.m[2], a.m[3] != b.m[3]); } /** * @brief Overload: vector by vector less than. */ ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) { return vmask4(a.m[0] < b.m[0], a.m[1] < b.m[1], a.m[2] < b.m[2], a.m[3] < b.m[3]); } /** * @brief Overload: vector by vector greater than. */ ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) { return vmask4(a.m[0] > b.m[0], a.m[1] > b.m[1], a.m[2] > b.m[2], a.m[3] > b.m[3]); } /** * @brief Logical shift left. */ template ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) { return vint4(a.m[0] << s, a.m[1] << s, a.m[2] << s, a.m[3] << s); } /** * @brief Logical shift right. */ template ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) { unsigned int as0 = static_cast(a.m[0]) >> s; unsigned int as1 = static_cast(a.m[1]) >> s; unsigned int as2 = static_cast(a.m[2]) >> s; unsigned int as3 = static_cast(a.m[3]) >> s; return vint4(static_cast(as0), static_cast(as1), static_cast(as2), static_cast(as3)); } /** * @brief Arithmetic shift right. */ template ASTCENC_SIMD_INLINE vint4 asr(vint4 a) { return vint4(a.m[0] >> s, a.m[1] >> s, a.m[2] >> s, a.m[3] >> s); } /** * @brief Return the min vector of two vectors. */ ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) { return vint4(a.m[0] < b.m[0] ? a.m[0] : b.m[0], a.m[1] < b.m[1] ? a.m[1] : b.m[1], a.m[2] < b.m[2] ? a.m[2] : b.m[2], a.m[3] < b.m[3] ? a.m[3] : b.m[3]); } /** * @brief Return the min vector of two vectors. */ ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) { return vint4(a.m[0] > b.m[0] ? a.m[0] : b.m[0], a.m[1] > b.m[1] ? a.m[1] : b.m[1], a.m[2] > b.m[2] ? a.m[2] : b.m[2], a.m[3] > b.m[3] ? a.m[3] : b.m[3]); } /** * @brief Return the horizontal minimum of a single vector. */ ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) { int b = std::min(a.m[0], a.m[1]); int c = std::min(a.m[2], a.m[3]); return vint4(std::min(b, c)); } /** * @brief Return the horizontal maximum of a single vector. */ ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) { int b = std::max(a.m[0], a.m[1]); int c = std::max(a.m[2], a.m[3]); return vint4(std::max(b, c)); } /** * @brief Return the horizontal sum of vector lanes as a scalar. */ ASTCENC_SIMD_INLINE int hadd_s(vint4 a) { return a.m[0] + a.m[1] + a.m[2] + a.m[3]; } /** * @brief Store a vector to an aligned memory address. */ ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) { p[0] = a.m[0]; p[1] = a.m[1]; p[2] = a.m[2]; p[3] = a.m[3]; } /** * @brief Store a vector to an unaligned memory address. */ ASTCENC_SIMD_INLINE void store(vint4 a, int* p) { p[0] = a.m[0]; p[1] = a.m[1]; p[2] = a.m[2]; p[3] = a.m[3]; } /** * @brief Store lowest N (vector width) bytes into an unaligned address. */ ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) { int* pi = reinterpret_cast(p); *pi = a.m[0]; } /** * @brief Gather N (vector width) indices from the array. */ ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) { return vint4(base[indices.m[0]], base[indices.m[1]], base[indices.m[2]], base[indices.m[3]]); } /** * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. */ ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) { int b0 = a.m[0] & 0xFF; int b1 = a.m[1] & 0xFF; int b2 = a.m[2] & 0xFF; int b3 = a.m[3] & 0xFF; int b = b0 | (b1 << 8) | (b2 << 16) | (b3 << 24); return vint4(b, 0, 0, 0); } /** * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) { return vint4((cond.m[0] & static_cast(0x80000000)) ? b.m[0] : a.m[0], (cond.m[1] & static_cast(0x80000000)) ? b.m[1] : a.m[1], (cond.m[2] & static_cast(0x80000000)) ? b.m[2] : a.m[2], (cond.m[3] & static_cast(0x80000000)) ? b.m[3] : a.m[3]); } // ============================================================================ // vfloat4 operators and functions // ============================================================================ /** * @brief Overload: vector by vector addition. */ ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) { return vfloat4(a.m[0] + b.m[0], a.m[1] + b.m[1], a.m[2] + b.m[2], a.m[3] + b.m[3]); } /** * @brief Overload: vector by vector subtraction. */ ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) { return vfloat4(a.m[0] - b.m[0], a.m[1] - b.m[1], a.m[2] - b.m[2], a.m[3] - b.m[3]); } /** * @brief Overload: vector by vector multiplication. */ ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) { return vfloat4(a.m[0] * b.m[0], a.m[1] * b.m[1], a.m[2] * b.m[2], a.m[3] * b.m[3]); } /** * @brief Overload: vector by vector division. */ ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) { return vfloat4(a.m[0] / b.m[0], a.m[1] / b.m[1], a.m[2] / b.m[2], a.m[3] / b.m[3]); } /** * @brief Overload: vector by vector equality. */ ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) { return vmask4(a.m[0] == b.m[0], a.m[1] == b.m[1], a.m[2] == b.m[2], a.m[3] == b.m[3]); } /** * @brief Overload: vector by vector inequality. */ ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) { return vmask4(a.m[0] != b.m[0], a.m[1] != b.m[1], a.m[2] != b.m[2], a.m[3] != b.m[3]); } /** * @brief Overload: vector by vector less than. */ ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) { return vmask4(a.m[0] < b.m[0], a.m[1] < b.m[1], a.m[2] < b.m[2], a.m[3] < b.m[3]); } /** * @brief Overload: vector by vector greater than. */ ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) { return vmask4(a.m[0] > b.m[0], a.m[1] > b.m[1], a.m[2] > b.m[2], a.m[3] > b.m[3]); } /** * @brief Overload: vector by vector less than or equal. */ ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) { return vmask4(a.m[0] <= b.m[0], a.m[1] <= b.m[1], a.m[2] <= b.m[2], a.m[3] <= b.m[3]); } /** * @brief Overload: vector by vector greater than or equal. */ ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) { return vmask4(a.m[0] >= b.m[0], a.m[1] >= b.m[1], a.m[2] >= b.m[2], a.m[3] >= b.m[3]); } /** * @brief Return the min vector of two vectors. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) { return vfloat4(a.m[0] < b.m[0] ? a.m[0] : b.m[0], a.m[1] < b.m[1] ? a.m[1] : b.m[1], a.m[2] < b.m[2] ? a.m[2] : b.m[2], a.m[3] < b.m[3] ? a.m[3] : b.m[3]); } /** * @brief Return the max vector of two vectors. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) { return vfloat4(a.m[0] > b.m[0] ? a.m[0] : b.m[0], a.m[1] > b.m[1] ? a.m[1] : b.m[1], a.m[2] > b.m[2] ? a.m[2] : b.m[2], a.m[3] > b.m[3] ? a.m[3] : b.m[3]); } /** * @brief Return the absolute value of the float vector. */ ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) { return vfloat4(std::abs(a.m[0]), std::abs(a.m[1]), std::abs(a.m[2]), std::abs(a.m[3])); } /** * @brief Return a float rounded to the nearest integer value. */ ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) { assert(std::fegetround() == FE_TONEAREST); return vfloat4(std::nearbyint(a.m[0]), std::nearbyint(a.m[1]), std::nearbyint(a.m[2]), std::nearbyint(a.m[3])); } /** * @brief Return the horizontal minimum of a vector. */ ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) { float tmp1 = std::min(a.m[0], a.m[1]); float tmp2 = std::min(a.m[2], a.m[3]); return vfloat4(std::min(tmp1, tmp2)); } /** * @brief Return the horizontal maximum of a vector. */ ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) { float tmp1 = std::max(a.m[0], a.m[1]); float tmp2 = std::max(a.m[2], a.m[3]); return vfloat4(std::max(tmp1, tmp2)); } /** * @brief Return the horizontal sum of a vector. */ ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) { // Use halving add, gives invariance with SIMD versions return (a.m[0] + a.m[2]) + (a.m[1] + a.m[3]); } /** * @brief Return the sqrt of the lanes in the vector. */ ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) { return vfloat4(std::sqrt(a.m[0]), std::sqrt(a.m[1]), std::sqrt(a.m[2]), std::sqrt(a.m[3])); } /** * @brief Return lanes from @c b if @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) { return vfloat4((cond.m[0] & static_cast(0x80000000)) ? b.m[0] : a.m[0], (cond.m[1] & static_cast(0x80000000)) ? b.m[1] : a.m[1], (cond.m[2] & static_cast(0x80000000)) ? b.m[2] : a.m[2], (cond.m[3] & static_cast(0x80000000)) ? b.m[3] : a.m[3]); } /** * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) { return vfloat4((cond.m[0] & static_cast(0x80000000)) ? b.m[0] : a.m[0], (cond.m[1] & static_cast(0x80000000)) ? b.m[1] : a.m[1], (cond.m[2] & static_cast(0x80000000)) ? b.m[2] : a.m[2], (cond.m[3] & static_cast(0x80000000)) ? b.m[3] : a.m[3]); } /** * @brief Load a vector of gathered results from an array; */ ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) { return vfloat4(base[indices.m[0]], base[indices.m[1]], base[indices.m[2]], base[indices.m[3]]); } /** * @brief Store a vector to an unaligned memory address. */ ASTCENC_SIMD_INLINE void store(vfloat4 a, float* ptr) { ptr[0] = a.m[0]; ptr[1] = a.m[1]; ptr[2] = a.m[2]; ptr[3] = a.m[3]; } /** * @brief Store a vector to an aligned memory address. */ ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* ptr) { ptr[0] = a.m[0]; ptr[1] = a.m[1]; ptr[2] = a.m[2]; ptr[3] = a.m[3]; } /** * @brief Return a integer value for a float vector, using truncation. */ ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) { return vint4(static_cast(a.m[0]), static_cast(a.m[1]), static_cast(a.m[2]), static_cast(a.m[3])); } /**f * @brief Return a integer value for a float vector, using round-to-nearest. */ ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) { return vint4(static_cast(a.m[0] + 0.5f), static_cast(a.m[1] + 0.5f), static_cast(a.m[2] + 0.5f), static_cast(a.m[3] + 0.5f)); } /** * @brief Return a float value for a integer vector. */ ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) { return vfloat4(static_cast(a.m[0]), static_cast(a.m[1]), static_cast(a.m[2]), static_cast(a.m[3])); } /** * @brief Return a float16 value for a float vector, using round-to-nearest. */ ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) { return vint4( float_to_sf16(a.lane<0>()), float_to_sf16(a.lane<1>()), float_to_sf16(a.lane<2>()), float_to_sf16(a.lane<3>())); } /** * @brief Return a float16 value for a float scalar, using round-to-nearest. */ static inline uint16_t float_to_float16(float a) { return float_to_sf16(a); } /** * @brief Return a float value for a float16 vector. */ ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) { return vfloat4( sf16_to_float(static_cast(a.lane<0>())), sf16_to_float(static_cast(a.lane<1>())), sf16_to_float(static_cast(a.lane<2>())), sf16_to_float(static_cast(a.lane<3>()))); } /** * @brief Return a float value for a float16 scalar. */ ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) { return sf16_to_float(a); } /** * @brief Return a float value as an integer bit pattern (i.e. no conversion). * * It is a common trick to convert floats into integer bit patterns, perform * some bit hackery based on knowledge they are IEEE 754 layout, and then * convert them back again. This is the first half of that flip. */ ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) { vint4 r; memcpy(r.m, a.m, 4 * 4); return r; } /** * @brief Return a integer value as a float bit pattern (i.e. no conversion). * * It is a common trick to convert floats into integer bit patterns, perform * some bit hackery based on knowledge they are IEEE 754 layout, and then * convert them back again. This is the second half of that flip. */ ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 a) { vfloat4 r; memcpy(r.m, a.m, 4 * 4); return r; } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) { t0p = t0; } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) { t0p = t0; t1p = t1; } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare( vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) { t0p = t0; t1p = t1; t2p = t2; t3p = t3; } /** * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) { uint8_t table[16]; storea(t0, reinterpret_cast(table + 0)); return vint4(table[idx.lane<0>()], table[idx.lane<1>()], table[idx.lane<2>()], table[idx.lane<3>()]); } /** * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) { uint8_t table[32]; storea(t0, reinterpret_cast(table + 0)); storea(t1, reinterpret_cast(table + 16)); return vint4(table[idx.lane<0>()], table[idx.lane<1>()], table[idx.lane<2>()], table[idx.lane<3>()]); } /** * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) { uint8_t table[64]; storea(t0, reinterpret_cast(table + 0)); storea(t1, reinterpret_cast(table + 16)); storea(t2, reinterpret_cast(table + 32)); storea(t3, reinterpret_cast(table + 48)); return vint4(table[idx.lane<0>()], table[idx.lane<1>()], table[idx.lane<2>()], table[idx.lane<3>()]); } /** * @brief Return a vector of interleaved RGBA data. * * Input vectors have the value stored in the bottom 8 bits of each lane, * with high bits set to zero. * * Output vector stores a single RGBA texel packed in each lane. */ ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) { return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); } /** * @brief Store a vector, skipping masked lanes. * * All masked lanes must be at the end of vector, after all non-masked lanes. */ ASTCENC_SIMD_INLINE void store_lanes_masked(int* base, vint4 data, vmask4 mask) { if (mask.m[3]) { store(data, base); } else if (mask.m[2]) { base[0] = data.lane<0>(); base[1] = data.lane<1>(); base[2] = data.lane<2>(); } else if (mask.m[1]) { base[0] = data.lane<0>(); base[1] = data.lane<1>(); } else if (mask.m[0]) { base[0] = data.lane<0>(); } } #endif // #ifndef ASTC_VECMATHLIB_NONE_4_H_INCLUDED