/* * KdTree2d.cpp * RVO2 Library * * Copyright 2008 University of North Carolina at Chapel Hill * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Please send all bug reports to . * * The authors may be contacted via: * * Jur van den Berg, Stephen J. Guy, Jamie Snape, Ming C. Lin, Dinesh Manocha * Dept. of Computer Science * 201 S. Columbia St. * Frederick P. Brooks, Jr. Computer Science Bldg. * Chapel Hill, N.C. 27599-3175 * United States of America * * */ #include "KdTree2d.h" #include "Agent2d.h" #include "RVOSimulator2d.h" #include "Obstacle2d.h" namespace RVO2D { KdTree2D::KdTree2D(RVOSimulator2D *sim) : obstacleTree_(NULL), sim_(sim) { } KdTree2D::~KdTree2D() { deleteObstacleTree(obstacleTree_); } void KdTree2D::buildAgentTree(std::vector agents) { agents_.swap(agents); if (!agents_.empty()) { agentTree_.resize(2 * agents_.size() - 1); buildAgentTreeRecursive(0, agents_.size(), 0); } } void KdTree2D::buildAgentTreeRecursive(size_t begin, size_t end, size_t node) { agentTree_[node].begin = begin; agentTree_[node].end = end; agentTree_[node].minX = agentTree_[node].maxX = agents_[begin]->position_.x(); agentTree_[node].minY = agentTree_[node].maxY = agents_[begin]->position_.y(); for (size_t i = begin + 1; i < end; ++i) { agentTree_[node].maxX = std::max(agentTree_[node].maxX, agents_[i]->position_.x()); agentTree_[node].minX = std::min(agentTree_[node].minX, agents_[i]->position_.x()); agentTree_[node].maxY = std::max(agentTree_[node].maxY, agents_[i]->position_.y()); agentTree_[node].minY = std::min(agentTree_[node].minY, agents_[i]->position_.y()); } if (end - begin > MAX_LEAF_SIZE) { /* No leaf node. */ const bool isVertical = (agentTree_[node].maxX - agentTree_[node].minX > agentTree_[node].maxY - agentTree_[node].minY); const float splitValue = (isVertical ? 0.5f * (agentTree_[node].maxX + agentTree_[node].minX) : 0.5f * (agentTree_[node].maxY + agentTree_[node].minY)); size_t left = begin; size_t right = end; while (left < right) { while (left < right && (isVertical ? agents_[left]->position_.x() : agents_[left]->position_.y()) < splitValue) { ++left; } while (right > left && (isVertical ? agents_[right - 1]->position_.x() : agents_[right - 1]->position_.y()) >= splitValue) { --right; } if (left < right) { std::swap(agents_[left], agents_[right - 1]); ++left; --right; } } if (left == begin) { ++left; ++right; } agentTree_[node].left = node + 1; agentTree_[node].right = node + 2 * (left - begin); buildAgentTreeRecursive(begin, left, agentTree_[node].left); buildAgentTreeRecursive(left, end, agentTree_[node].right); } } void KdTree2D::buildObstacleTree(std::vector obstacles) { deleteObstacleTree(obstacleTree_); obstacleTree_ = buildObstacleTreeRecursive(obstacles); } KdTree2D::ObstacleTreeNode *KdTree2D::buildObstacleTreeRecursive(const std::vector &obstacles) { if (obstacles.empty()) { return NULL; } else { ObstacleTreeNode *const node = new ObstacleTreeNode; size_t optimalSplit = 0; size_t minLeft = obstacles.size(); size_t minRight = obstacles.size(); for (size_t i = 0; i < obstacles.size(); ++i) { size_t leftSize = 0; size_t rightSize = 0; const Obstacle2D *const obstacleI1 = obstacles[i]; const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_; /* Compute optimal split node. */ for (size_t j = 0; j < obstacles.size(); ++j) { if (i == j) { continue; } const Obstacle2D *const obstacleJ1 = obstacles[j]; const Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_; const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_); const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_); if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) { ++leftSize; } else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) { ++rightSize; } else { ++leftSize; ++rightSize; } if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) >= std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) { break; } } if (std::make_pair(std::max(leftSize, rightSize), std::min(leftSize, rightSize)) < std::make_pair(std::max(minLeft, minRight), std::min(minLeft, minRight))) { minLeft = leftSize; minRight = rightSize; optimalSplit = i; } } /* Build split node. */ std::vector leftObstacles(minLeft); std::vector rightObstacles(minRight); size_t leftCounter = 0; size_t rightCounter = 0; const size_t i = optimalSplit; const Obstacle2D *const obstacleI1 = obstacles[i]; const Obstacle2D *const obstacleI2 = obstacleI1->nextObstacle_; for (size_t j = 0; j < obstacles.size(); ++j) { if (i == j) { continue; } Obstacle2D *const obstacleJ1 = obstacles[j]; Obstacle2D *const obstacleJ2 = obstacleJ1->nextObstacle_; const float j1LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ1->point_); const float j2LeftOfI = leftOf(obstacleI1->point_, obstacleI2->point_, obstacleJ2->point_); if (j1LeftOfI >= -RVO_EPSILON && j2LeftOfI >= -RVO_EPSILON) { leftObstacles[leftCounter++] = obstacles[j]; } else if (j1LeftOfI <= RVO_EPSILON && j2LeftOfI <= RVO_EPSILON) { rightObstacles[rightCounter++] = obstacles[j]; } else { /* Split obstacle j. */ const float t = det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleI1->point_) / det(obstacleI2->point_ - obstacleI1->point_, obstacleJ1->point_ - obstacleJ2->point_); const Vector2 splitpoint = obstacleJ1->point_ + t * (obstacleJ2->point_ - obstacleJ1->point_); Obstacle2D *const newObstacle = new Obstacle2D(); newObstacle->point_ = splitpoint; newObstacle->prevObstacle_ = obstacleJ1; newObstacle->nextObstacle_ = obstacleJ2; newObstacle->isConvex_ = true; newObstacle->unitDir_ = obstacleJ1->unitDir_; newObstacle->id_ = sim_->obstacles_.size(); sim_->obstacles_.push_back(newObstacle); obstacleJ1->nextObstacle_ = newObstacle; obstacleJ2->prevObstacle_ = newObstacle; if (j1LeftOfI > 0.0f) { leftObstacles[leftCounter++] = obstacleJ1; rightObstacles[rightCounter++] = newObstacle; } else { rightObstacles[rightCounter++] = obstacleJ1; leftObstacles[leftCounter++] = newObstacle; } } } node->obstacle = obstacleI1; node->left = buildObstacleTreeRecursive(leftObstacles); node->right = buildObstacleTreeRecursive(rightObstacles); return node; } } void KdTree2D::computeAgentNeighbors(Agent2D *agent, float &rangeSq) const { queryAgentTreeRecursive(agent, rangeSq, 0); } void KdTree2D::computeObstacleNeighbors(Agent2D *agent, float rangeSq) const { queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_); } void KdTree2D::deleteObstacleTree(ObstacleTreeNode *node) { if (node != NULL) { deleteObstacleTree(node->left); deleteObstacleTree(node->right); delete node; } } void KdTree2D::queryAgentTreeRecursive(Agent2D *agent, float &rangeSq, size_t node) const { if (agentTree_[node].end - agentTree_[node].begin <= MAX_LEAF_SIZE) { for (size_t i = agentTree_[node].begin; i < agentTree_[node].end; ++i) { agent->insertAgentNeighbor(agents_[i], rangeSq); } } else { const float distSqLeft = sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].left].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].left].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].left].maxY)); const float distSqRight = sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minX - agent->position_.x())) + sqr(std::max(0.0f, agent->position_.x() - agentTree_[agentTree_[node].right].maxX)) + sqr(std::max(0.0f, agentTree_[agentTree_[node].right].minY - agent->position_.y())) + sqr(std::max(0.0f, agent->position_.y() - agentTree_[agentTree_[node].right].maxY)); if (distSqLeft < distSqRight) { if (distSqLeft < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left); if (distSqRight < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right); } } } else { if (distSqRight < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].right); if (distSqLeft < rangeSq) { queryAgentTreeRecursive(agent, rangeSq, agentTree_[node].left); } } } } } void KdTree2D::queryObstacleTreeRecursive(Agent2D *agent, float rangeSq, const ObstacleTreeNode *node) const { if (node == NULL) { return; } else { const Obstacle2D *const obstacle1 = node->obstacle; const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_; const float agentLeftOfLine = leftOf(obstacle1->point_, obstacle2->point_, agent->position_); queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->left : node->right)); const float distSqLine = sqr(agentLeftOfLine) / absSq(obstacle2->point_ - obstacle1->point_); if (distSqLine < rangeSq) { if (agentLeftOfLine < 0.0f) { /* * Try obstacle at this node only if agent is on right side of * obstacle (and can see obstacle). */ agent->insertObstacleNeighbor(node->obstacle, rangeSq); } /* Try other side of line. */ queryObstacleTreeRecursive(agent, rangeSq, (agentLeftOfLine >= 0.0f ? node->right : node->left)); } } } bool KdTree2D::queryVisibility(const Vector2 &q1, const Vector2 &q2, float radius) const { return queryVisibilityRecursive(q1, q2, radius, obstacleTree_); } bool KdTree2D::queryVisibilityRecursive(const Vector2 &q1, const Vector2 &q2, float radius, const ObstacleTreeNode *node) const { if (node == NULL) { return true; } else { const Obstacle2D *const obstacle1 = node->obstacle; const Obstacle2D *const obstacle2 = obstacle1->nextObstacle_; const float q1LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q1); const float q2LeftOfI = leftOf(obstacle1->point_, obstacle2->point_, q2); const float invLengthI = 1.0f / absSq(obstacle2->point_ - obstacle1->point_); if (q1LeftOfI >= 0.0f && q2LeftOfI >= 0.0f) { return queryVisibilityRecursive(q1, q2, radius, node->left) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->right)); } else if (q1LeftOfI <= 0.0f && q2LeftOfI <= 0.0f) { return queryVisibilityRecursive(q1, q2, radius, node->right) && ((sqr(q1LeftOfI) * invLengthI >= sqr(radius) && sqr(q2LeftOfI) * invLengthI >= sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node->left)); } else if (q1LeftOfI >= 0.0f && q2LeftOfI <= 0.0f) { /* One can see through obstacle from left to right. */ return queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right); } else { const float point1LeftOfQ = leftOf(q1, q2, obstacle1->point_); const float point2LeftOfQ = leftOf(q1, q2, obstacle2->point_); const float invLengthQ = 1.0f / absSq(q2 - q1); return (point1LeftOfQ * point2LeftOfQ >= 0.0f && sqr(point1LeftOfQ) * invLengthQ > sqr(radius) && sqr(point2LeftOfQ) * invLengthQ > sqr(radius) && queryVisibilityRecursive(q1, q2, radius, node->left) && queryVisibilityRecursive(q1, q2, radius, node->right)); } } } }