/**************************************************************************/ /* debug_effects.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "debug_effects.h" #include "servers/rendering/renderer_rd/renderer_compositor_rd.h" #include "servers/rendering/renderer_rd/storage_rd/light_storage.h" #include "servers/rendering/renderer_rd/storage_rd/material_storage.h" #include "servers/rendering/renderer_rd/uniform_set_cache_rd.h" using namespace RendererRD; DebugEffects::DebugEffects() { { // Shadow Frustum debug shader Vector modes; modes.push_back(""); shadow_frustum.shader.initialize(modes); shadow_frustum.shader_version = shadow_frustum.shader.version_create(); RD::PipelineRasterizationState raster_state = RD::PipelineRasterizationState(); shadow_frustum.pipelines[SFP_TRANSPARENT].setup(shadow_frustum.shader.version_get_shader(shadow_frustum.shader_version, 0), RD::RENDER_PRIMITIVE_TRIANGLES, raster_state, RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_blend(), 0); raster_state.wireframe = true; shadow_frustum.pipelines[SFP_WIREFRAME].setup(shadow_frustum.shader.version_get_shader(shadow_frustum.shader_version, 0), RD::RENDER_PRIMITIVE_LINES, raster_state, RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_disabled(), 0); } { // Motion Vectors debug shader. Vector modes; modes.push_back(""); motion_vectors.shader.initialize(modes); motion_vectors.shader_version = motion_vectors.shader.version_create(); motion_vectors.pipeline.setup(motion_vectors.shader.version_get_shader(motion_vectors.shader_version, 0), RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), RD::PipelineDepthStencilState(), RD::PipelineColorBlendState::create_blend(), 0); } } void DebugEffects::_create_frustum_arrays() { if (frustum.vertex_buffer.is_null()) { // Create vertex buffer, but don't put data in it yet frustum.vertex_buffer = RD::get_singleton()->vertex_buffer_create(8 * sizeof(float) * 3, Vector(), false); Vector attributes; Vector buffers; RD::VertexAttribute vd; vd.location = 0; vd.stride = sizeof(float) * 3; vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT; attributes.push_back(vd); buffers.push_back(frustum.vertex_buffer); frustum.vertex_format = RD::get_singleton()->vertex_format_create(attributes); frustum.vertex_array = RD::get_singleton()->vertex_array_create(8, frustum.vertex_format, buffers); } if (frustum.index_buffer.is_null()) { uint16_t indices[6 * 2 * 3] = { // Far 0, 1, 2, // FLT, FLB, FRT 1, 3, 2, // FLB, FRB, FRT // Near 4, 6, 5, // NLT, NRT, NLB 6, 7, 5, // NRT, NRB, NLB // Left 0, 4, 1, // FLT, NLT, FLB 4, 5, 1, // NLT, NLB, FLB // Right 6, 2, 7, // NRT, FRT, NRB 2, 3, 7, // FRT, FRB, NRB // Top 0, 2, 4, // FLT, FRT, NLT 2, 6, 4, // FRT, NRT, NLT // Bottom 5, 7, 1, // NLB, NRB, FLB, 7, 3, 1, // NRB, FRB, FLB }; // Create our index_array PackedByteArray data; data.resize(6 * 2 * 3 * 2); { uint8_t *w = data.ptrw(); uint16_t *p16 = (uint16_t *)w; for (int i = 0; i < 6 * 2 * 3; i++) { *p16 = indices[i]; p16++; } } frustum.index_buffer = RD::get_singleton()->index_buffer_create(6 * 2 * 3, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, data); frustum.index_array = RD::get_singleton()->index_array_create(frustum.index_buffer, 0, 6 * 2 * 3); } if (frustum.lines_buffer.is_null()) { uint16_t indices[12 * 2] = { 0, 1, // FLT - FLB 1, 3, // FLB - FRB 3, 2, // FRB - FRT 2, 0, // FRT - FLT 4, 6, // NLT - NRT 6, 7, // NRT - NRB 7, 5, // NRB - NLB 5, 4, // NLB - NLT 0, 4, // FLT - NLT 1, 5, // FLB - NLB 2, 6, // FRT - NRT 3, 7, // FRB - NRB }; // Create our lines_array PackedByteArray data; data.resize(12 * 2 * 2); { uint8_t *w = data.ptrw(); uint16_t *p16 = (uint16_t *)w; for (int i = 0; i < 12 * 2; i++) { *p16 = indices[i]; p16++; } } frustum.lines_buffer = RD::get_singleton()->index_buffer_create(12 * 2, RenderingDevice::INDEX_BUFFER_FORMAT_UINT16, data); frustum.lines_array = RD::get_singleton()->index_array_create(frustum.lines_buffer, 0, 12 * 2); } } DebugEffects::~DebugEffects() { shadow_frustum.shader.version_free(shadow_frustum.shader_version); // Destroy vertex buffer and array. if (frustum.vertex_buffer.is_valid()) { RD::get_singleton()->free(frustum.vertex_buffer); // Array gets freed as dependency. } // Destroy index buffer and array, if (frustum.index_buffer.is_valid()) { RD::get_singleton()->free(frustum.index_buffer); // Array gets freed as dependency. } // Destroy lines buffer and array. if (frustum.lines_buffer.is_valid()) { RD::get_singleton()->free(frustum.lines_buffer); // Array gets freed as dependency. } motion_vectors.shader.version_free(motion_vectors.shader_version); } void DebugEffects::draw_shadow_frustum(RID p_light, const Projection &p_cam_projection, const Transform3D &p_cam_transform, RID p_dest_fb, const Rect2 p_rect) { RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton(); RID base = light_storage->light_instance_get_base_light(p_light); ERR_FAIL_COND(light_storage->light_get_type(base) != RS::LIGHT_DIRECTIONAL); // Make sure our buffers and arrays exist. _create_frustum_arrays(); // Setup a points buffer for our view frustum. PackedByteArray points; points.resize(8 * sizeof(float) * 3); // Get info about our splits. RS::LightDirectionalShadowMode shadow_mode = light_storage->light_directional_get_shadow_mode(base); bool overlap = light_storage->light_directional_get_blend_splits(base); int splits = 1; if (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) { splits = 4; } else if (shadow_mode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) { splits = 2; } // Setup our camera info (this is mostly a duplicate of the logic found in RendererSceneCull::_light_instance_setup_directional_shadow). bool is_orthogonal = p_cam_projection.is_orthogonal(); real_t aspect = p_cam_projection.get_aspect(); real_t fov = 0.0; Vector2 vp_he; if (is_orthogonal) { vp_he = p_cam_projection.get_viewport_half_extents(); } else { fov = p_cam_projection.get_fov(); //this is actually yfov, because set aspect tries to keep it } real_t min_distance = p_cam_projection.get_z_near(); real_t max_distance = p_cam_projection.get_z_far(); real_t shadow_max = RSG::light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_MAX_DISTANCE); if (shadow_max > 0 && !is_orthogonal) { max_distance = MIN(shadow_max, max_distance); } // Make sure we've not got bad info coming in. max_distance = MAX(max_distance, min_distance + 0.001); min_distance = MIN(min_distance, max_distance); real_t range = max_distance - min_distance; real_t distances[5]; distances[0] = min_distance; for (int i = 0; i < splits; i++) { distances[i + 1] = min_distance + RSG::light_storage->light_get_param(base, RS::LightParam(RS::LIGHT_PARAM_SHADOW_SPLIT_1_OFFSET + i)) * range; }; distances[splits] = max_distance; Color colors[4] = { Color(1.0, 0.0, 0.0, 0.1), Color(0.0, 1.0, 0.0, 0.1), Color(0.0, 0.0, 1.0, 0.1), Color(1.0, 1.0, 0.0, 0.1), }; for (int split = 0; split < splits; split++) { // Load frustum points into vertex buffer. uint8_t *w = points.ptrw(); Vector3 *vw = (Vector3 *)w; Projection projection; if (is_orthogonal) { projection.set_orthogonal(vp_he.y * 2.0, aspect, distances[(split == 0 || !overlap) ? split : split - 1], distances[split + 1], false); } else { projection.set_perspective(fov, aspect, distances[(split == 0 || !overlap) ? split : split - 1], distances[split + 1], true); } bool res = projection.get_endpoints(p_cam_transform, vw); ERR_CONTINUE(!res); RD::get_singleton()->buffer_update(frustum.vertex_buffer, 0, 8 * sizeof(float) * 3, w); // Get our light projection info. Projection light_projection = light_storage->light_instance_get_shadow_camera(p_light, split); Transform3D light_transform = light_storage->light_instance_get_shadow_transform(p_light, split); Rect2 atlas_rect_norm = light_storage->light_instance_get_directional_shadow_atlas_rect(p_light, split); if (!is_orthogonal) { light_transform.orthogonalize(); } // Setup our push constant. ShadowFrustumPushConstant push_constant; MaterialStorage::store_camera(light_projection * Projection(light_transform.inverse()), push_constant.mvp); push_constant.color[0] = colors[split].r; push_constant.color[1] = colors[split].g; push_constant.color[2] = colors[split].b; push_constant.color[3] = colors[split].a; // Adjust our rect to our atlas position. Rect2 rect = p_rect; rect.position.x += atlas_rect_norm.position.x * rect.size.x; rect.position.y += atlas_rect_norm.position.y * rect.size.y; rect.size.x *= atlas_rect_norm.size.x; rect.size.y *= atlas_rect_norm.size.y; // And draw our frustum. RD::FramebufferFormatID fb_format_id = RD::get_singleton()->framebuffer_get_format(p_dest_fb); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_DISCARD, Vector(), 0.0, 0, rect); RID pipeline = shadow_frustum.pipelines[SFP_TRANSPARENT].get_render_pipeline(frustum.vertex_format, fb_format_id); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline); RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array); RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.index_array); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, true); pipeline = shadow_frustum.pipelines[SFP_WIREFRAME].get_render_pipeline(frustum.vertex_format, fb_format_id); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline); RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array); RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.lines_array); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, true); RD::get_singleton()->draw_list_end(); if (split < (splits - 1) && splits > 1) { // Also draw it in the last split so we get a proper overview of the whole view frustum... // Get our light projection info. light_projection = light_storage->light_instance_get_shadow_camera(p_light, (splits - 1)); light_transform = light_storage->light_instance_get_shadow_transform(p_light, (splits - 1)); atlas_rect_norm = light_storage->light_instance_get_directional_shadow_atlas_rect(p_light, (splits - 1)); if (!is_orthogonal) { light_transform.orthogonalize(); } // Update our push constant. MaterialStorage::store_camera(light_projection * Projection(light_transform.inverse()), push_constant.mvp); push_constant.color[0] = colors[split].r; push_constant.color[1] = colors[split].g; push_constant.color[2] = colors[split].b; push_constant.color[3] = colors[split].a; // Adjust our rect to our atlas position. rect = p_rect; rect.position.x += atlas_rect_norm.position.x * rect.size.x; rect.position.y += atlas_rect_norm.position.y * rect.size.y; rect.size.x *= atlas_rect_norm.size.x; rect.size.y *= atlas_rect_norm.size.y; draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_DISCARD, Vector(), 0.0, 0, rect); pipeline = shadow_frustum.pipelines[SFP_TRANSPARENT].get_render_pipeline(frustum.vertex_format, fb_format_id); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline); RD::get_singleton()->draw_list_bind_vertex_array(draw_list, frustum.vertex_array); RD::get_singleton()->draw_list_bind_index_array(draw_list, frustum.index_array); RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(ShadowFrustumPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, true); RD::get_singleton()->draw_list_end(); } } } void DebugEffects::draw_motion_vectors(RID p_velocity, RID p_depth, RID p_dest_fb, const Projection &p_current_projection, const Transform3D &p_current_transform, const Projection &p_previous_projection, const Transform3D &p_previous_transform, Size2i p_resolution) { MaterialStorage *material_storage = MaterialStorage::get_singleton(); ERR_FAIL_NULL(material_storage); UniformSetCacheRD *uniform_set_cache = UniformSetCacheRD::get_singleton(); ERR_FAIL_NULL(uniform_set_cache); RID default_sampler = material_storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); RD::Uniform u_source_velocity(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 0, Vector({ default_sampler, p_velocity })); RD::Uniform u_source_depth(RD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE, 1, Vector({ default_sampler, p_depth })); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_dest_fb, RD::INITIAL_ACTION_LOAD, RD::FINAL_ACTION_STORE, RD::INITIAL_ACTION_DISCARD, RD::FINAL_ACTION_DISCARD); RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, motion_vectors.pipeline.get_render_pipeline(RD::INVALID_ID, RD::get_singleton()->framebuffer_get_format(p_dest_fb), false, RD::get_singleton()->draw_list_get_current_pass())); Projection correction; correction.set_depth_correction(true, true, false); Projection reprojection = (correction * p_previous_projection) * p_previous_transform.affine_inverse() * p_current_transform * (correction * p_current_projection).inverse(); RendererRD::MaterialStorage::store_camera(reprojection, motion_vectors.push_constant.reprojection_matrix); motion_vectors.push_constant.resolution[0] = p_resolution.width; motion_vectors.push_constant.resolution[1] = p_resolution.height; motion_vectors.push_constant.force_derive_from_depth = false; RID shader = motion_vectors.shader.version_get_shader(motion_vectors.shader_version, 0); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, uniform_set_cache->get_cache(shader, 0, u_source_velocity, u_source_depth), 0); RD::get_singleton()->draw_list_set_push_constant(draw_list, &motion_vectors.push_constant, sizeof(MotionVectorsPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u); #ifdef DRAW_DERIVATION_FROM_DEPTH_ON_TOP motion_vectors.push_constant.force_derive_from_depth = true; RD::get_singleton()->draw_list_set_push_constant(draw_list, &motion_vectors.push_constant, sizeof(MotionVectorsPushConstant)); RD::get_singleton()->draw_list_draw(draw_list, false, 1u, 3u); #endif RD::get_singleton()->draw_list_end(); }