/* clang-format off */ [vertex] /* clang-format on */ #version 450 /* clang-format off */ VERSION_DEFINES /* clang-format on */ #include "scene_forward_inc.glsl" /* INPUT ATTRIBS */ layout(location = 0) in vec3 vertex_attrib; /* clang-format on */ layout(location = 1) in vec3 normal_attrib; #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 2) in vec4 tangent_attrib; #endif #if defined(COLOR_USED) layout(location = 3) in vec4 color_attrib; #endif #if defined(UV_USED) layout(location = 4) in vec2 uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 5) in vec2 uv2_attrib; #endif layout(location = 6) in uvec4 bone_attrib; // always bound, even if unused /* Varyings */ layout(location = 0) out vec3 vertex_interp; layout(location = 1) out vec3 normal_interp; #if defined(COLOR_USED) layout(location = 2) out vec4 color_interp; #endif #if defined(UV_USED) layout(location = 3) out vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) out vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) out vec3 tangent_interp; layout(location = 6) out vec3 binormal_interp; #endif #ifdef USE_MATERIAL_UNIFORMS layout(set = 3, binding = 0, std140) uniform MaterialUniforms { /* clang-format off */ MATERIAL_UNIFORMS /* clang-format on */ } material; #endif /* clang-format off */ VERTEX_SHADER_GLOBALS /* clang-format on */ // FIXME: This triggers a Mesa bug that breaks rendering, so disabled for now. // See GH-13450 and https://bugs.freedesktop.org/show_bug.cgi?id=100316 invariant gl_Position; layout(location =7) flat out uint instance_index; #ifdef MODE_DUAL_PARABOLOID layout(location =8) out float dp_clip; #endif void main() { instance_index = draw_call.instance_index; vec4 instance_custom = vec4(0.0); #if defined(COLOR_USED) color_interp = color_attrib; #endif mat4 world_matrix = instances.data[instance_index].transform; mat3 world_normal_matrix= mat3(instances.data[instance_index].normal_transform); if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH)) { //multimesh, instances are for it uint offset = (instances.data[instance_index].flags>>INSTANCE_FLAGS_MULTIMESH_STRIDE_SHIFT)&INSTANCE_FLAGS_MULTIMESH_STRIDE_MASK; offset*=gl_InstanceIndex; mat4 matrix; if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_FORMAT_2D)) { matrix = mat4(transforms.data[offset+0],transforms.data[offset+1],vec4(0.0,0.0,1.0,0.0),vec4(0.0,0.0,0.0,1.0)); offset+=2; } else { matrix = mat4(transforms.data[offset+0],transforms.data[offset+1],transforms.data[offset+2],vec4(0.0,0.0,0.0,1.0)); offset+=3; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_COLOR)) { #ifdef COLOR_USED color_interp *= transforms.data[offset]; #endif offset+=1; } if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_MULTIMESH_HAS_CUSTOM_DATA)) { instance_custom = transforms.data[offset]; } //transpose matrix = transpose(matrix); world_matrix = world_matrix * matrix; world_normal_matrix = world_normal_matrix * mat3(matrix); } else { //not a multimesh, instances are for multiple draw calls instance_index += gl_InstanceIndex; } vec3 vertex = vertex_attrib; vec3 normal = normal_attrib; #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 tangent = tangent_attrib.xyz; float binormalf = tangent_attrib.a; vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif if (bool(instances.data[instance_index].flags & INSTANCE_FLAGS_SKELETON)) { //multimesh, instances are for it uvec2 bones_01 = uvec2(bone_attrib.x&0xFFFF,bone_attrib.x>>16) * 3; uvec2 bones_23 = uvec2(bone_attrib.y&0xFFFF,bone_attrib.y>>16) * 3; vec2 weights_01 = unpackUnorm2x16(bone_attrib.z); vec2 weights_23 = unpackUnorm2x16(bone_attrib.w); mat4 m = mat4(transforms.data[bones_01.x],transforms.data[bones_01.x+1],transforms.data[bones_01.x+2],vec4(0.0,0.0,0.0,1.0)) * weights_01.x; m += mat4(transforms.data[bones_01.y],transforms.data[bones_01.y+1],transforms.data[bones_01.y+2],vec4(0.0,0.0,0.0,1.0)) * weights_01.y; m += mat4(transforms.data[bones_23.x],transforms.data[bones_23.x+1],transforms.data[bones_23.x+2],vec4(0.0,0.0,0.0,1.0)) * weights_23.x; m += mat4(transforms.data[bones_23.y],transforms.data[bones_23.y+1],transforms.data[bones_23.y+2],vec4(0.0,0.0,0.0,1.0)) * weights_23.y; //reverse order because its transposed vertex = (vec4(vertex,1.0) * m).xyz; normal = (vec4(normal,0.0) * m).xyz; #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = (vec4(tangent,0.0) * m).xyz; binormal = (vec4(binormal,0.0) * m).xyz; #endif } #if defined(UV_USED) uv_interp = uv_attrib; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) uv2_interp = uv2_attrib; #endif #ifdef USE_OVERRIDE_POSITION vec4 position; #endif mat4 projection_matrix = scene_data.projection_matrix; //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (world_matrix * vec4(vertex,1.0)).xyz; normal = world_normal_matrix * normal; #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent = world_normal_matrix * tangent; binormal = world_normal_matrix * binormal; #endif #endif float roughness = 1.0; mat4 modelview = scene_data.inv_camera_matrix * world_matrix; mat3 modelview_normal = mat3(scene_data.inv_camera_matrix) * world_normal_matrix; { /* clang-format off */ VERTEX_SHADER_CODE /* clang-format on */ } // using local coordinates (default) #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = (modelview * vec4(vertex,1.0)).xyz; normal = modelview_normal * normal; #endif #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = modelview_normal * binormal; tangent = modelview_normal * tangent; #endif //using world coordinates #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = (scene_data.inv_camera_matrix * vec4(vertex,1.0)).xyz; normal = mat3(scene_data.inverse_normal_matrix) * normal; #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) binormal = mat3(scene_data.camera_inverse_binormal_matrix) * binormal; tangent = mat3(scene_data.camera_inverse_tangent_matrix) * tangent; #endif #endif vertex_interp = vertex; normal_interp = normal; #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef MODE_RENDER_DEPTH #ifdef MODE_DUAL_PARABOLOID vertex_interp.z *= scene_data.dual_paraboloid_side; normal_interp.z *= scene_data.dual_paraboloid_side; dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges vec3 vtx = vertex_interp + normalize(vertex_interp) * scene_data.z_offset; float distance = length(vtx); vtx = normalize(vtx); vtx.xy /= 1.0 - vtx.z; vtx.z = (distance / scene_data.z_far); vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; #else float z_ofs = scene_data.z_offset; z_ofs += (1.0 - abs(normal_interp.z)) * scene_data.z_slope_scale; vertex_interp.z -= z_ofs; #endif #endif //MODE_RENDER_DEPTH #ifdef USE_OVERRIDE_POSITION gl_Position = position; #else gl_Position = projection_matrix * vec4(vertex_interp, 1.0); #endif } /* clang-format off */ [fragment] /* clang-format on */ #version 450 /* clang-format off */ VERSION_DEFINES /* clang-format on */ #include "scene_forward_inc.glsl" /* Varyings */ layout(location = 0) in vec3 vertex_interp; layout(location = 1) in vec3 normal_interp; #if defined(COLOR_USED) layout(location = 2) in vec4 color_interp; #endif #if defined(UV_USED) layout(location = 3) in vec2 uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) layout(location = 4) in vec2 uv2_interp; #endif #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) layout(location = 5) in vec3 tangent_interp; layout(location = 6) in vec3 binormal_interp; #endif layout(location =7) flat in uint instance_index; #ifdef MODE_DUAL_PARABOLOID layout(location =8) in float dp_clip; #endif //defines to keep compatibility with vertex #define world_matrix instances.data[instance_index].transform #define world_normal_matrix instances.data[instance_index].normal_transform #define projection_matrix scene_data.projection_matrix #ifdef USE_MATERIAL_UNIFORMS layout(set = 3, binding = 0, std140) uniform MaterialUniforms { /* clang-format off */ MATERIAL_UNIFORMS /* clang-format on */ } material; #endif /* clang-format off */ FRAGMENT_SHADER_GLOBALS /* clang-format on */ #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_MATERIAL layout(location = 0) out vec4 albedo_output_buffer; layout(location = 1) out vec4 normal_output_buffer; layout(location = 2) out vec4 orm_output_buffer; layout(location = 3) out vec4 emission_output_buffer; layout(location = 4) out float depth_output_buffer; #endif #else // RENDER DEPTH #ifdef MODE_MULTIPLE_RENDER_TARGETS layout(location = 0) out vec4 diffuse_buffer; //diffuse (rgb) and roughness layout(location = 1) out vec4 specular_buffer; //specular and SSS (subsurface scatter) #else layout(location = 0) out vec4 frag_color; #endif #endif // RENDER DEPTH // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. // We're dividing this factor off because the overall term we'll end up looks like // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): // // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) // // We're basically regouping this as // // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] // // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. // // The contents of the D and G (G1) functions (GGX) are taken from // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). // Eqns 71-72 and 85-86 (see also Eqns 43 and 80). #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) float G_GGX_2cos(float cos_theta_m, float alpha) { // Schlick's approximation // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) // Eq. (19), although see Heitz (2014) the about the problems with his derivation. // It nevertheless approximates GGX well with k = alpha/2. float k = 0.5 * alpha; return 0.5 / (cos_theta_m * (1.0 - k) + k); // float cos2 = cos_theta_m * cos_theta_m; // float sin2 = (1.0 - cos2); // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); } float D_GGX(float cos_theta_m, float alpha) { float alpha2 = alpha * alpha; float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; return alpha2 / (M_PI * d * d); } float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float s_x = alpha_x * cos_phi; float s_y = alpha_y * sin_phi; return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float r_x = cos_phi / alpha_x; float r_y = sin_phi / alpha_y; float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } float GTR1(float NdotH, float a) { if (a >= 1.0) return 1.0 / M_PI; float a2 = a * a; float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; return (a2 - 1.0) / (M_PI * log(a2) * t); } vec3 F0(float metallic, float specular, vec3 albedo) { float dielectric = 0.16 * specular * specular; // use albedo * metallic as colored specular reflectance at 0 angle for metallic materials; // see https://google.github.io/filament/Filament.md.html return mix(vec3(dielectric), albedo, vec3(metallic)); } void light_compute(vec3 N, vec3 L, vec3 V, vec3 light_color, vec3 attenuation, vec3 diffuse_color,float roughness, float metallic, float specular,float specular_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED vec3 transmission, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 B, vec3 T,float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light ) { #if defined(USE_LIGHT_SHADER_CODE) // light is written by the light shader vec3 normal = N; vec3 albedo = diffuse_color; vec3 light = L; vec3 view = V; /* clang-format off */ LIGHT_SHADER_CODE /* clang-format on */ #else float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) vec3 H = normalize(V + L); #endif #if defined(SPECULAR_BLINN) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) float cNdotH = max(dot(N, H), 0.0); #endif #if defined(DIFFUSE_BURLEY) || defined(SPECULAR_SCHLICK_GGX) || defined(LIGHT_CLEARCOAT_USED) float cLdotH = max(dot(L, H), 0.0); #endif if (metallic < 1.0) { #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) { // see http://mimosa-pudica.net/improved-oren-nayar.html float LdotV = dot(L, V); float s = LdotV - NdotL * NdotV; float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); float sigma2 = roughness * roughness; // TODO: this needs checking vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); float B = 0.45 * sigma2 / (sigma2 + 0.09); diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); } #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { float FD90_minus_1 = 2.0 * cLdotH * cLdotH * roughness - 0.5; float FdV = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotV); float FdL = 1.0 + FD90_minus_1 * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; /* float energyBias = mix(roughness, 0.0, 0.5); float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); float fd90 = energyBias + 2.0 * VoH * VoH * roughness; float f0 = 1.0; float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; */ } #else // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; #if defined(LIGHT_TRANSMISSION_USED) diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; #endif #if defined(LIGHT_RIM_USED) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; #endif } if (roughness > 0.0) { // FIXME: roughness == 0 should not disable specular light entirely // D #if defined(SPECULAR_BLINN) //normalized blinn float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float intensity = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); specular_light += light_color * intensity * specular_blob_intensity * attenuation; #elif defined(SPECULAR_PHONG) vec3 R = normalize(-reflect(L, N)); float cRdotV = max(0.0, dot(R, V)); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float phong = pow(cRdotV, shininess); phong *= (shininess + 8.0) * (1.0 / (8.0 * M_PI)); float intensity = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); specular_light += light_color * intensity * specular_blob_intensity * attenuation; #elif defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; float intensity = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; diffuse_light += light_color * intensity * specular_blob_intensity * attenuation; // write to diffuse_light, as in toon shading you generally want no reflection #elif defined(SPECULAR_DISABLED) // none.. #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default #if defined(LIGHT_ANISOTROPY_USED) float alpha_ggx = roughness * roughness; float aspect = sqrt(1.0 - anisotropy * 0.9); float ax = alpha_ggx / aspect; float ay = alpha_ggx * aspect; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); #else float alpha_ggx = roughness * roughness; float D = D_GGX(cNdotH, alpha_ggx); float G = G_GGX_2cos(cNdotL, alpha_ggx) * G_GGX_2cos(cNdotV, alpha_ggx); #endif // F vec3 f0 = F0(metallic, specular, diffuse_color); float cLdotH5 = SchlickFresnel(cLdotH); vec3 F = mix(vec3(cLdotH5), vec3(1.0), f0); vec3 specular_brdf_NL = cNdotL * D * F * G; specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; #endif #if defined(LIGHT_CLEARCOAT_USED) #if !defined(SPECULAR_SCHLICK_GGX) float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); float Fr = mix(.04, 1.0, cLdotH5); float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); float clearcoat_specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; specular_light += clearcoat_specular_brdf_NL * light_color * specular_blob_intensity * attenuation; #endif } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(1.0 - length(attenuation), 0.0, 1.0)); #endif #endif //defined(USE_LIGHT_SHADER_CODE) } #ifndef USE_NO_SHADOWS float sample_shadow(texture2D shadow, vec2 shadow_pixel_size, vec4 coord) { //todo optimize vec2 pos = coord.xy; float depth = coord.z; #ifdef SHADOW_MODE_PCF_13 float avg = textureProj(shadow, vec4(pos, depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth, 1.0)); return avg * (1.0 / 13.0); #endif #ifdef SHADOW_MODE_PCF_5 float avg = textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos, depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(-shadow_pixel_size.x, 0.0), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(0.0, shadow_pixel_size.y), depth, 1.0)); avg += textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos + vec2(0.0, -shadow_pixel_size.y), depth, 1.0)); return avg * (1.0 / 5.0); #endif #if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13) return textureProj(sampler2DShadow(shadow,shadow_sampler), vec4(pos, depth, 1.0)); #endif } #endif //USE_NO_SHADOWS void light_process_omni(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 albedo,float roughness, float metallic, float specular,float p_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED vec3 transmission, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha, #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = lights.data[idx].position - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length * lights.data[idx].inv_radius; vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy); float omni_attenuation = pow(max(1.0 - normalized_distance, 0.0), attenuation_energy.x); vec3 light_attenuation = vec3(omni_attenuation); vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular); color_specular.rgb*=attenuation_energy.y; #ifndef USE_NO_SHADOWS vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled); if (shadow_color_enabled.w > 0.5) { // there is a shadowmap vec4 splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)); float shadow_len = length(splane); splane = normalize(splane); vec4 clamp_rect = lights.data[idx].atlas_rect; if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len * lights.data[idx].inv_radius; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; splane.w = 1.0; //needed? i think it should be 1 already float shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane); light_attenuation *= mix(shadow_color_enabled.rgb, vec3(1.0), shadow); } #endif //USE_NO_SHADOWS light_compute(normal, normalize(light_rel_vec), eye_vec, color_specular.rgb, light_attenuation, albedo, roughness, metallic, specular,color_specular.a * p_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED transmission, #endif #ifdef LIGHT_RIM_USED rim * omni_attenuation, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha #endif diffuse_light, specular_light); } void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 albedo,float roughness, float metallic, float specular,float p_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED vec3 transmission, #endif #ifdef LIGHT_RIM_USED float rim, float rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED float clearcoat, float clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED vec3 binormal, vec3 tangent, float anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY inout float alpha #endif inout vec3 diffuse_light, inout vec3 specular_light) { vec3 light_rel_vec = lights.data[idx].position - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length * lights.data[idx].inv_radius; vec2 attenuation_energy = unpackHalf2x16(lights.data[idx].attenuation_energy); float spot_attenuation = pow(max(1.0 - normalized_distance, 0.001), attenuation_energy.x); vec3 spot_dir = lights.data[idx].direction; vec2 spot_att_angle = unpackHalf2x16(lights.data[idx].cone_attenuation_angle); float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y)); spot_attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x); vec3 light_attenuation = vec3(spot_attenuation); vec4 color_specular = unpackUnorm4x8(lights.data[idx].color_specular); color_specular.rgb*=attenuation_energy.y; /* if (lights.data[idx].atlas_rect!=vec4(0.0)) { //use projector texture } */ #ifndef USE_NO_SHADOWS vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[idx].shadow_color_enabled); if (shadow_color_enabled.w > 0.5) { //there is a shadowmap vec4 splane = (lights.data[idx].shadow_matrix * vec4(vertex, 1.0)); splane /= splane.w; float shadow = sample_shadow(shadow_atlas, scene_data.shadow_atlas_pixel_size, splane); light_attenuation *= mix(shadow_color_enabled.rgb, vec3(1.0), shadow); } #endif //USE_NO_SHADOWS light_compute(normal, normalize(light_rel_vec), eye_vec, color_specular.rgb, light_attenuation, albedo, roughness, metallic, specular,color_specular.a * p_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED transmission, #endif #ifdef LIGHT_RIM_USED rim * spot_attenuation, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } void reflection_process(uint ref_index, vec3 vertex, vec3 normal,float roughness,vec3 ambient_light,vec3 specular_light,inout vec4 ambient_accum, inout vec4 reflection_accum) { vec3 box_extents = reflections.data[ref_index].box_extents; vec3 local_pos = (reflections.data[ref_index].local_matrix * vec4(vertex, 1.0)).xyz; if (any(greaterThan(abs(local_pos), box_extents))) { //out of the reflection box return; } vec3 ref_vec = normalize(reflect(vertex, normal)); vec3 inner_pos = abs(local_pos / box_extents); float blend = max(inner_pos.x, max(inner_pos.y, inner_pos.z)); //make blend more rounded blend = mix(length(inner_pos), blend, blend); blend *= blend; blend = max(0.0, 1.0 - blend); if (reflections.data[ref_index].params.x > 0.0) { // compute reflection vec3 local_ref_vec = (reflections.data[ref_index].local_matrix * vec4(ref_vec, 0.0)).xyz; if (reflections.data[ref_index].params.w > 0.5) { //box project vec3 nrdir = normalize(local_ref_vec); vec3 rbmax = (box_extents - local_pos) / nrdir; vec3 rbmin = (-box_extents - local_pos) / nrdir; vec3 rbminmax = mix(rbmin, rbmax, greaterThan(nrdir, vec3(0.0, 0.0, 0.0))); float fa = min(min(rbminmax.x, rbminmax.y), rbminmax.z); vec3 posonbox = local_pos + nrdir * fa; local_ref_vec = posonbox - reflections.data[ref_index].box_offset; } vec4 reflection; reflection.rgb = textureLod(samplerCubeArray(reflection_atlas,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_ref_vec,reflections.data[ref_index].index), roughness * MAX_ROUGHNESS_LOD).rgb; if (reflections.data[ref_index].params.z < 0.5) { reflection.rgb = mix(specular_light, reflection.rgb, blend); } reflection.rgb *= reflections.data[ref_index].params.x; reflection.a = blend; reflection.rgb *= reflection.a; reflection_accum += reflection; } #if !defined(USE_LIGHTMAP) && !defined(USE_VOXEL_CONE_TRACING) if (reflections.data[ref_index].ambient.a > 0.0) { //compute ambient using skybox vec3 local_amb_vec = (reflections.data[ref_index].local_matrix * vec4(normal, 0.0)).xyz; vec4 ambient_out; ambient_out.rgb = textureLod(samplerCubeArray(reflection_atlas,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(local_amb_vec,reflections.data[ref_index].index), MAX_ROUGHNESS_LOD).rgb; ambient_out.a = blend; ambient_out.rgb = mix(reflections.data[ref_index].ambient.rgb, ambient_out.rgb, reflections.data[ref_index].ambient.a); if (reflections.data[ref_index].params.z < 0.5) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } else { vec4 ambient_out; ambient_out.a = blend; ambient_out.rgb = reflections.data[ref_index].ambient.rgb; if (reflections.data[ref_index].params.z < 0.5) { ambient_out.rgb = mix(ambient_light, ambient_out.rgb, blend); } ambient_out.rgb *= ambient_out.a; ambient_accum += ambient_out; } #endif //USE_LIGHTMAP or VCT } #ifdef USE_VOXEL_CONE_TRACING //standard voxel cone trace vec4 voxel_cone_trace(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { float dist = p_bias; vec4 color = vec4(0.0); while (dist < max_distance && color.a < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); vec3 uvw_pos = (pos + dist * direction) * cell_size; float half_diameter = diameter * 0.5; //check if outside, then break if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { break; } vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2(diameter)); float a = (1.0 - color.a); color += a * scolor; dist += half_diameter; } return color; } #ifndef GI_PROBE_HIGH_QUALITY //faster version for 45 degrees #ifdef GI_PROBE_USE_ANISOTROPY vec4 voxel_cone_trace_anisotropic_45_degrees(texture3D probe,texture3D aniso_pos,texture3D aniso_neg,vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias) { float dist = p_bias; vec4 color = vec4(0.0); float radius = max(0.5, tan_half_angle * dist); float lod_level = log2(radius*2.0); while (dist < max_distance && color.a < 0.95) { vec3 uvw_pos = (pos + dist * direction) * cell_size; //check if outside, then break if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + radius * cell_size)) ) ) { break; } vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level); vec3 aniso_neg = textureLod(sampler3D(aniso_neg,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb; vec3 aniso_pos = textureLod(sampler3D(aniso_pos,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level).rgb; scolor.rgb*=dot(max(vec3(0.0),(normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-normal * aniso_neg)),vec3(1.0)); lod_level+=1.0; float a = (1.0 - color.a); scolor *= a; color += scolor; dist += radius; radius = max(0.5, tan_half_angle * dist); } return color; } #else vec4 voxel_cone_trace_45_degrees(texture3D probe, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias ) { float dist = p_bias; vec4 color = vec4(0.0); float radius = max(0.5, tan_half_angle * dist); float lod_level = log2(radius*2.0); while (dist < max_distance && color.a < 0.95) { vec3 uvw_pos = (pos + dist * direction) * cell_size; //check if outside, then break if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + radius * cell_size)) ) ) { break; } vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, lod_level); lod_level+=1.0; float a = (1.0 - color.a); scolor *= a; color += scolor; dist += radius; radius = max(0.5, tan_half_angle * dist); } return color; } #endif #elif defined(GI_PROBE_USE_ANISOTROPY) //standard voxel cone trace vec4 voxel_cone_trace_anisotropic(texture3D probe,texture3D aniso_pos,texture3D aniso_neg,vec3 normal, vec3 cell_size, vec3 pos, vec3 direction, float tan_half_angle, float max_distance, float p_bias ) { float dist = p_bias; vec4 color = vec4(0.0); while (dist < max_distance && color.a < 0.95) { float diameter = max(1.0, 2.0 * tan_half_angle * dist); vec3 uvw_pos = (pos + dist * direction) * cell_size; float half_diameter = diameter * 0.5; //check if outside, then break if ( any(greaterThan(abs(uvw_pos - 0.5),vec3(0.5f + half_diameter * cell_size)) ) ) { break; } float log2_diameter = log2(diameter); vec4 scolor = textureLod(sampler3D(probe,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter); vec3 aniso_neg = textureLod(sampler3D(aniso_neg,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb; vec3 aniso_pos = textureLod(sampler3D(aniso_pos,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), uvw_pos, log2_diameter).rgb; scolor.rgb*=dot(max(vec3(0.0),(normal * aniso_pos)),vec3(1.0)) + dot(max(vec3(0.0),(-normal * aniso_neg)),vec3(1.0)); float a = (1.0 - color.a); scolor *= a; color += scolor; dist += half_diameter; } return color; } #endif void gi_probe_compute(uint index, vec3 position, vec3 normal,vec3 ref_vec, mat3 normal_xform, float roughness,vec3 ambient, vec3 environment, inout vec4 out_spec, inout vec4 out_diff) { position = (gi_probes.data[index].xform * vec4(position, 1.0)).xyz; ref_vec = normalize((gi_probes.data[index].xform * vec4(ref_vec, 0.0)).xyz); normal = normalize((gi_probes.data[index].xform * vec4(normal, 0.0)).xyz); position += normal * gi_probes.data[index].normal_bias; //this causes corrupted pixels, i have no idea why.. if (any(bvec2(any(lessThan(position, vec3(0.0))), any(greaterThan(position, gi_probes.data[index].bounds))))) { return; } vec3 blendv = abs(position / gi_probes.data[index].bounds * 2.0 - 1.0); float blend = clamp(1.0 - max(blendv.x, max(blendv.y, blendv.z)), 0.0, 1.0); //float blend=1.0; float max_distance = length(gi_probes.data[index].bounds); vec3 cell_size = 1.0 / gi_probes.data[index].bounds; //radiance #ifdef GI_PROBE_HIGH_QUALITY #define MAX_CONE_DIRS 6 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0.0, 0.0, 1.0), vec3(0.866025, 0.0, 0.5), vec3(0.267617, 0.823639, 0.5), vec3(-0.700629, 0.509037, 0.5), vec3(-0.700629, -0.509037, 0.5), vec3(0.267617, -0.823639, 0.5)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.15, 0.15, 0.15, 0.15, 0.15); float cone_angle_tan = 0.577; #elif defined(GI_PROBE_LOW_QUALITY) #define MAX_CONE_DIRS 1 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0.0, 0.0, 1.0)); float cone_weights[MAX_CONE_DIRS] = float[](1.0); float cone_angle_tan = 4; //~76 degrees #else // MEDIUM QUALITY #define MAX_CONE_DIRS 4 vec3 cone_dirs[MAX_CONE_DIRS] = vec3[]( vec3(0.707107, 0.0, 0.707107), vec3(0.0, 0.707107, 0.707107), vec3(-0.707107, 0.0, 0.707107), vec3(0.0, -0.707107, 0.707107)); float cone_weights[MAX_CONE_DIRS] = float[](0.25, 0.25, 0.25, 0.25); float cone_angle_tan = 0.98269; #endif vec3 light = vec3(0.0); for (int i = 0; i < MAX_CONE_DIRS; i++) { vec3 dir = normalize((gi_probes.data[index].xform * vec4(normal_xform * cone_dirs[i], 0.0)).xyz); #if defined(GI_PROBE_HIGH_QUALITY) || defined(GI_PROBE_LOW_QUALITY) #ifdef GI_PROBE_USE_ANISOTROPY vec4 cone_light = voxel_cone_trace_anisotropic(gi_probe_textures[gi_probes.data[index].texture_slot],gi_probe_textures[gi_probes.data[index].texture_slot+1],gi_probe_textures[gi_probes.data[index].texture_slot+2],normalize(mix(dir,normal,gi_probes.data[index].anisotropy_strength)),cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); #else vec4 cone_light = voxel_cone_trace(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); #endif // GI_PROBE_USE_ANISOTROPY #else #ifdef GI_PROBE_USE_ANISOTROPY vec4 cone_light = voxel_cone_trace_anisotropic_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot],gi_probe_textures[gi_probes.data[index].texture_slot+1],gi_probe_textures[gi_probes.data[index].texture_slot+2],normalize(mix(dir,normal,gi_probes.data[index].anisotropy_strength)),cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); #else vec4 cone_light = voxel_cone_trace_45_degrees(gi_probe_textures[gi_probes.data[index].texture_slot], cell_size, position, dir, cone_angle_tan, max_distance, gi_probes.data[index].bias); #endif // GI_PROBE_USE_ANISOTROPY #endif if (gi_probes.data[index].blend_ambient) { cone_light.rgb = mix(ambient, cone_light.rgb, min(1.0, cone_light.a / 0.95)); } light+=cone_weights[i] * cone_light.rgb; } light *= gi_probes.data[index].dynamic_range; if (gi_probes.data[index].ambient_occlusion > 0.01) { float ao = 0.0; for (int i=0;i<5;i++) { vec3 ofs = (position + normal * float(1< 0.0) discard; #endif //lay out everything, whathever is unused is optimized away anyway vec3 vertex = vertex_interp; vec3 view = -normalize(vertex_interp); vec3 albedo = vec3(1.0); vec3 transmission = vec3(0.0); float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); #if defined(AO_USED) float ao = 1.0; float ao_light_affect = 0.0; #endif float alpha = 1.0; #if defined(ALPHA_SCISSOR_USED) float alpha_scissor = 0.5; #endif #if defined(TANGENT_USED) || defined(NORMALMAP_USED) || defined(LIGHT_ANISOTROPY_USED) vec3 binormal = normalize(binormal_interp); vec3 tangent = normalize(tangent_interp); #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif vec3 normal = normalize(normal_interp); #if defined(DO_SIDE_CHECK) if (!gl_FrontFacing) { normal = -normal; } #endif #if defined(UV_USED) vec2 uv = uv_interp; #endif #if defined(UV2_USED) || defined(USE_LIGHTMAP) vec2 uv2 = uv2_interp; #endif #if defined(COLOR_USED) vec4 color = color_interp; #endif #if defined(NORMALMAP_USED) vec3 normalmap = vec3(0.5); #endif float normaldepth = 1.0; #if defined(SCREEN_UV_USED) vec2 screen_uv = gl_FragCoord.xy * scene_data.screen_pixel_size; #endif float sss_strength = 0.0; { /* clang-format off */ FRAGMENT_SHADER_CODE /* clang-format on */ } #if !defined(USE_SHADOW_TO_OPACITY) #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // !USE_SHADOW_TO_OPACITY #if defined(NORMALMAP_USED) normalmap.xy = normalmap.xy * 2.0 - 1.0; normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); //always ignore Z, as it can be RG packed, Z may be pos/neg, etc. normal = normalize(mix(normal, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)); #endif #if defined(LIGHT_ANISOTROPY_USED) if (anisotropy > 0.01) { //rotation matrix mat3 rot = mat3(tangent, binormal, normal); //make local to space tangent = normalize(rot * vec3(anisotropy_flow.x, anisotropy_flow.y, 0.0)); binormal = normalize(rot * vec3(-anisotropy_flow.y, anisotropy_flow.x, 0.0)); } #endif #ifdef ENABLE_CLIP_ALPHA if (albedo.a < 0.99) { //used for doublepass and shadowmapping discard; } #endif /////////////////////// LIGHTING ////////////////////////////// //apply energy conservation vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3( 0.0, 0.0, 0.0); #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) if (scene_data.use_reflection_cubemap){ vec3 ref_vec = reflect(-view, normal); ref_vec = scene_data.radiance_inverse_xform * ref_vec; #ifdef USE_RADIANCE_CUBEMAP_ARRAY float lod,blend; blend = modf(roughness * MAX_ROUGHNESS_LOD, lod); specular_light = texture(samplerCubeArray(radiance_cubemap,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod)).rgb; specular_light = mix(specular_light,texture(samplerCubeArray(radiance_cubemap,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ref_vec, lod+1)).rgb,blend); #else specular_light = textureLod(samplerCube(radiance_cubemap,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ref_vec, roughness * MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY specular_light *= scene_data.ambient_light_color_energy.a; } #ifndef USE_LIGHTMAP //lightmap overrides everything if (scene_data.use_ambient_light){ ambient_light = scene_data.ambient_light_color_energy.rgb; if (scene_data.use_ambient_cubemap) { vec3 ambient_dir = scene_data.radiance_inverse_xform * normal; #ifdef USE_RADIANCE_CUBEMAP_ARRAY vec3 cubemap_ambient = texture(samplerCubeArray(radiance_cubemap,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), vec4(ambient_dir, MAX_ROUGHNESS_LOD)).rgb; #else vec3 cubemap_ambient = textureLod(samplerCube(radiance_cubemap,material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), ambient_dir, MAX_ROUGHNESS_LOD).rgb; #endif //USE_RADIANCE_CUBEMAP_ARRAY ambient_light = mix( ambient_light, cubemap_ambient * scene_data.ambient_light_color_energy.a, scene_data.ambient_color_sky_mix ); } } #endif // USE_LIGHTMAP #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) //radiance float specular_blob_intensity = 1.0; #if defined(SPECULAR_TOON) specular_blob_intensity *= specular * 2.0; #endif #if !defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) //gi probes //lightmap //lightmap capture #ifdef USE_VOXEL_CONE_TRACING { // process giprobes uint index1 = instances.data[instance_index].gi_offset&0xFFFF; if (index1!=0xFFFF) { vec3 ref_vec = normalize(reflect(normalize(vertex), normal)); //find arbitrary tangent and bitangent, then build a matrix vec3 v0 = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 1.0, 0.0); vec3 tangent = normalize(cross(v0, normal)); vec3 bitangent = normalize(cross(tangent, normal)); mat3 normal_mat = mat3(tangent, bitangent, normal); vec4 amb_accum = vec4(0.0); vec4 spec_accum = vec4(0.0); gi_probe_compute(index1, vertex, normal, ref_vec,normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum); uint index2 = instances.data[instance_index].gi_offset>>16; if (index2!=0xFFFF) { gi_probe_compute(index2, vertex, normal, ref_vec,normal_mat, roughness * roughness, ambient_light, specular_light, spec_accum, amb_accum); } if (amb_accum.a > 0.0) { amb_accum.rgb /= amb_accum.a; } if (spec_accum.a > 0.0) { spec_accum.rgb /= spec_accum.a; } specular_light = spec_accum.rgb; ambient_light = amb_accum.rgb; } } #endif { // process reflections vec4 reflection_accum = vec4(0.0, 0.0, 0.0, 0.0); vec4 ambient_accum = vec4(0.0, 0.0, 0.0, 0.0); uint reflection_probe_count = instances.data[instance_index].flags & INSTANCE_FLAGS_FORWARD_MASK; for (uint i = 0; i < reflection_probe_count; i++) { uint ref_index = instances.data[instance_index].reflection_probe_indices[i>>1]; if (bool(i&1)) { ref_index>>=16; } else { ref_index&=0xFFFF; } reflection_process(ref_index,vertex,normal,roughness,ambient_light,specular_light,ambient_accum,reflection_accum); } if (reflection_accum.a > 0.0) { specular_light = reflection_accum.rgb / reflection_accum.a; } #if !defined(USE_LIGHTMAP) if (ambient_accum.a > 0.0) { ambient_light = ambient_accum.rgb / ambient_accum.a; } #endif } { #if defined(DIFFUSE_TOON) //simplify for toon, as specular_light *= specular * metallic * albedo * 2.0; #else // scales the specular reflections, needs to be be computed before lighting happens, // but after environment, GI, and reflection probes are added // Environment brdf approximation (Lazarov 2013) // see https://www.unrealengine.com/en-US/blog/physically-based-shading-on-mobile const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, view), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 env = vec2(-1.04, 1.04) * a004 + r.zw; vec3 f0 = F0(metallic, specular, albedo); specular_light *= env.x * f0 + env.y; #endif } { //directional light for (uint i = 0; i < scene_data.directional_light_count; i++) { if (!bool(directional_lights.data[i].mask&instances.data[instance_index].layer_mask)) { continue; //not masked } vec3 light_attenuation = vec3(1.0); if (directional_lights.data[i].shadow_enabled) { float depth_z = -vertex.z; vec4 pssm_coord; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { pssm_coord = (directional_lights.data[i].shadow_matrix1 * vec4(vertex, 1.0)); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { pssm_coord = (directional_lights.data[i].shadow_matrix2 * vec4(vertex, 1.0)); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { pssm_coord = (directional_lights.data[i].shadow_matrix3 * vec4(vertex, 1.0)); } else { pssm_coord = (directional_lights.data[i].shadow_matrix4 * vec4(vertex, 1.0)); } pssm_coord/=pssm_coord.w; float shadow = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord); if (directional_lights.data[i].blend_splits) { float pssm_blend; if (depth_z < directional_lights.data[i].shadow_split_offsets.x) { pssm_coord = (directional_lights.data[i].shadow_matrix2 * vec4(vertex, 1.0)); pssm_blend = smoothstep(0.0, directional_lights.data[i].shadow_split_offsets.x, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) { pssm_coord = (directional_lights.data[i].shadow_matrix3 * vec4(vertex, 1.0)); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.x, directional_lights.data[i].shadow_split_offsets.y, depth_z); } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) { pssm_coord = (directional_lights.data[i].shadow_matrix4 * vec4(vertex, 1.0)); pssm_blend = smoothstep(directional_lights.data[i].shadow_split_offsets.y, directional_lights.data[i].shadow_split_offsets.z, depth_z); } else { pssm_blend = 0.0; //if no blend, same coord will be used (divide by z will result in same value, and already cached) } pssm_coord/=pssm_coord.w; float shadow2 = sample_shadow(directional_shadow_atlas, scene_data.directional_shadow_pixel_size, pssm_coord); shadow = mix(shadow,shadow2,pssm_blend); } shadow = mix(shadow,1.0,smoothstep(directional_lights.data[i].fade_from,directional_lights.data[i].fade_to,vertex.z)); //done with negative values for performance light_attenuation = mix(directional_lights.data[i].shadow_color, vec3(1.0), shadow); } light_compute(normal, directional_lights.data[i].direction, normalize(view), directional_lights.data[i].color * directional_lights.data[i].energy, light_attenuation, albedo, roughness, metallic, specular,directional_lights.data[i].specular * specular_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED transmission, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED binormal, tangent, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha #endif diffuse_light, specular_light); } } { //omni lights uint omni_light_count = (instances.data[instance_index].flags >> INSTANCE_FLAGS_FORWARD_OMNI_LIGHT_SHIFT) & INSTANCE_FLAGS_FORWARD_MASK; for (uint i = 0; i < omni_light_count; i++) { uint light_index = instances.data[instance_index].omni_light_indices[i>>1]; if (bool(i&1)) { light_index>>=16; } else { light_index&=0xFFFF; } //this is done on CPU, so no need to do it here //if (!bool(lights.data[light_index].mask&instances.data[instance_index].layer_mask)) { // continue; //not masked //} light_process_omni(light_index, vertex, view, normal, albedo, roughness, metallic, specular,specular_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED transmission, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } { //spot lights uint spot_light_count = (instances.data[instance_index].flags >> INSTANCE_FLAGS_FORWARD_SPOT_LIGHT_SHIFT) & INSTANCE_FLAGS_FORWARD_MASK; for (uint i = 0; i < spot_light_count; i++) { uint light_index = instances.data[instance_index].spot_light_indices[i>>1]; if (bool(i&1)) { light_index>>=16; } else { light_index&=0xFFFF; } //this is done on CPU, so no need to do it here //if (!bool(lights.data[light_index].mask&instances.data[instance_index].layer_mask)) { // continue; //not masked //} light_process_spot(light_index, vertex, view, normal, albedo, roughness, metallic, specular,specular_blob_intensity, #ifdef LIGHT_TRANSMISSION_USED transmission, #endif #ifdef LIGHT_RIM_USED rim, rim_tint, #endif #ifdef LIGHT_CLEARCOAT_USED clearcoat, clearcoat_gloss, #endif #ifdef LIGHT_ANISOTROPY_USED tangent, binormal, anisotropy, #endif #ifdef USE_SHADOW_TO_OPACITY alpha, #endif diffuse_light, specular_light); } } #ifdef USE_SHADOW_TO_OPACITY alpha = min(alpha, clamp(length(ambient_light), 0.0, 1.0)); #if defined(ALPHA_SCISSOR_USED) if (alpha < alpha_scissor) { discard; } #endif // ALPHA_SCISSOR_USED #ifdef USE_OPAQUE_PREPASS if (alpha < opaque_prepass_threshold) { discard; } #endif // USE_OPAQUE_PREPASS #endif // USE_SHADOW_TO_OPACITY #endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED) #ifdef MODE_RENDER_DEPTH #ifdef MODE_RENDER_MATERIAL albedo_output_buffer.rgb = albedo; albedo_output_buffer.a = alpha; normal_output_buffer.rgb = normal * 0.5 + 0.5; normal_output_buffer.a = 0.0; depth_output_buffer.r = -vertex.z; #if defined(AO_USED) orm_output_buffer.r = ao; #else orm_output_buffer.r = 0.0; #endif orm_output_buffer.g = roughness; orm_output_buffer.b = metallic; orm_output_buffer.a = sss_strength; emission_output_buffer.rgb = emission; emission_output_buffer.a = 0.0; #endif //nothing happens, so a tree-ssa optimizer will result in no fragment shader :) #else specular_light *= scene_data.reflection_multiplier; ambient_light *= albedo; //ambient must be multiplied by albedo at the end #if defined(AO_USED) ambient_light *= ao; ao_light_affect = mix(1.0, ao, ao_light_affect); specular_light *= ao_light_affect; diffuse_light *= ao_light_affect; #endif // base color remapping diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point ambient_light *= 1.0 - metallic; //fog #ifdef MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED diffuse_buffer = vec4(albedo.rgb, 0.0); specular_buffer = vec4(0.0); #else diffuse_buffer = vec4(emission + diffuse_light + ambient_light, sss_strength); specular_buffer = vec4(specular_light, metallic); #endif #else //MODE_MULTIPLE_RENDER_TARGETS #ifdef MODE_UNSHADED frag_color = vec4(albedo, alpha); #else frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha); //frag_color = vec4(1.0); #endif //USE_NO_SHADING #endif //MODE_MULTIPLE_RENDER_TARGETS #endif //MODE_RENDER_DEPTH }