/*************************************************************************/ /* body_2d_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2018 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2018 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "body_2d_sw.h" #include "area_2d_sw.h" #include "physics_2d_server_sw.h" #include "space_2d_sw.h" void Body2DSW::_update_inertia() { if (!user_inertia && get_space() && !inertia_update_list.in_list()) get_space()->body_add_to_inertia_update_list(&inertia_update_list); } void Body2DSW::update_inertias() { //update shapes and motions switch (mode) { case Physics2DServer::BODY_MODE_RIGID: { if (user_inertia) break; //update tensor for allshapes, not the best way but should be somehow OK. (inspired from bullet) real_t total_area = 0; for (int i = 0; i < get_shape_count(); i++) { total_area += get_shape_aabb(i).get_area(); } real_t _inertia = 0; for (int i = 0; i < get_shape_count(); i++) { const Shape2DSW *shape = get_shape(i); real_t area = get_shape_aabb(i).get_area(); real_t mass = area * this->mass / total_area; Transform2D mtx = get_shape_transform(i); Vector2 scale = mtx.get_scale(); _inertia += shape->get_moment_of_inertia(mass, scale) + mass * mtx.get_origin().length_squared(); //Rect2 ab = get_shape_aabb(i); //_inertia+=mass*ab.size.dot(ab.size)/12.0f; } if (_inertia != 0) _inv_inertia = 1.0 / _inertia; else _inv_inertia = 0.0; //wathever if (mass) _inv_mass = 1.0 / mass; else _inv_mass = 0; } break; case Physics2DServer::BODY_MODE_KINEMATIC: case Physics2DServer::BODY_MODE_STATIC: { _inv_inertia = 0; _inv_mass = 0; } break; case Physics2DServer::BODY_MODE_CHARACTER: { _inv_inertia = 0; _inv_mass = 1.0 / mass; } break; } //_update_inertia_tensor(); //_update_shapes(); } void Body2DSW::set_active(bool p_active) { if (active == p_active) return; active = p_active; if (!p_active) { if (get_space()) get_space()->body_remove_from_active_list(&active_list); } else { if (mode == Physics2DServer::BODY_MODE_STATIC) return; //static bodies can't become active if (get_space()) get_space()->body_add_to_active_list(&active_list); //still_time=0; } /* if (!space) return; for(int i=0;i<get_shape_count();i++) { Shape &s=shapes[i]; if (s.bpid>0) { get_space()->get_broadphase()->set_active(s.bpid,active); } } */ } void Body2DSW::set_param(Physics2DServer::BodyParameter p_param, real_t p_value) { switch (p_param) { case Physics2DServer::BODY_PARAM_BOUNCE: { bounce = p_value; } break; case Physics2DServer::BODY_PARAM_FRICTION: { friction = p_value; } break; case Physics2DServer::BODY_PARAM_MASS: { ERR_FAIL_COND(p_value <= 0); mass = p_value; _update_inertia(); } break; case Physics2DServer::BODY_PARAM_INERTIA: { if (p_value <= 0) { user_inertia = false; _update_inertia(); } else { user_inertia = true; _inv_inertia = 1.0 / p_value; } } break; case Physics2DServer::BODY_PARAM_GRAVITY_SCALE: { gravity_scale = p_value; } break; case Physics2DServer::BODY_PARAM_LINEAR_DAMP: { linear_damp = p_value; } break; case Physics2DServer::BODY_PARAM_ANGULAR_DAMP: { angular_damp = p_value; } break; default: {} } } real_t Body2DSW::get_param(Physics2DServer::BodyParameter p_param) const { switch (p_param) { case Physics2DServer::BODY_PARAM_BOUNCE: { return bounce; } break; case Physics2DServer::BODY_PARAM_FRICTION: { return friction; } break; case Physics2DServer::BODY_PARAM_MASS: { return mass; } break; case Physics2DServer::BODY_PARAM_INERTIA: { return _inv_inertia == 0 ? 0 : 1.0 / _inv_inertia; } break; case Physics2DServer::BODY_PARAM_GRAVITY_SCALE: { return gravity_scale; } break; case Physics2DServer::BODY_PARAM_LINEAR_DAMP: { return linear_damp; } break; case Physics2DServer::BODY_PARAM_ANGULAR_DAMP: { return angular_damp; } break; default: {} } return 0; } void Body2DSW::set_mode(Physics2DServer::BodyMode p_mode) { Physics2DServer::BodyMode prev = mode; mode = p_mode; switch (p_mode) { //CLEAR UP EVERYTHING IN CASE IT NOT WORKS! case Physics2DServer::BODY_MODE_STATIC: case Physics2DServer::BODY_MODE_KINEMATIC: { _set_inv_transform(get_transform().affine_inverse()); _inv_mass = 0; _set_static(p_mode == Physics2DServer::BODY_MODE_STATIC); set_active(p_mode == Physics2DServer::BODY_MODE_KINEMATIC && contacts.size()); linear_velocity = Vector2(); angular_velocity = 0; if (mode == Physics2DServer::BODY_MODE_KINEMATIC && prev != mode) { first_time_kinematic = true; } } break; case Physics2DServer::BODY_MODE_RIGID: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; _set_static(false); } break; case Physics2DServer::BODY_MODE_CHARACTER: { _inv_mass = mass > 0 ? (1.0 / mass) : 0; _set_static(false); } break; } _update_inertia(); /* if (get_space()) _update_queries(); */ } Physics2DServer::BodyMode Body2DSW::get_mode() const { return mode; } void Body2DSW::_shapes_changed() { _update_inertia(); wakeup_neighbours(); } void Body2DSW::set_state(Physics2DServer::BodyState p_state, const Variant &p_variant) { switch (p_state) { case Physics2DServer::BODY_STATE_TRANSFORM: { if (mode == Physics2DServer::BODY_MODE_KINEMATIC) { new_transform = p_variant; //wakeup_neighbours(); set_active(true); if (first_time_kinematic) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); first_time_kinematic = false; } } else if (mode == Physics2DServer::BODY_MODE_STATIC) { _set_transform(p_variant); _set_inv_transform(get_transform().affine_inverse()); wakeup_neighbours(); } else { Transform2D t = p_variant; t.orthonormalize(); new_transform = get_transform(); //used as old to compute motion if (t == new_transform) break; _set_transform(t); _set_inv_transform(get_transform().inverse()); } wakeup(); } break; case Physics2DServer::BODY_STATE_LINEAR_VELOCITY: { /* if (mode==Physics2DServer::BODY_MODE_STATIC) break; */ linear_velocity = p_variant; wakeup(); } break; case Physics2DServer::BODY_STATE_ANGULAR_VELOCITY: { /* if (mode!=Physics2DServer::BODY_MODE_RIGID) break; */ angular_velocity = p_variant; wakeup(); } break; case Physics2DServer::BODY_STATE_SLEEPING: { //? if (mode == Physics2DServer::BODY_MODE_STATIC || mode == Physics2DServer::BODY_MODE_KINEMATIC) break; bool do_sleep = p_variant; if (do_sleep) { linear_velocity = Vector2(); //biased_linear_velocity=Vector3(); angular_velocity = 0; //biased_angular_velocity=Vector3(); set_active(false); } else { if (mode != Physics2DServer::BODY_MODE_STATIC) set_active(true); } } break; case Physics2DServer::BODY_STATE_CAN_SLEEP: { can_sleep = p_variant; if (mode == Physics2DServer::BODY_MODE_RIGID && !active && !can_sleep) set_active(true); } break; } } Variant Body2DSW::get_state(Physics2DServer::BodyState p_state) const { switch (p_state) { case Physics2DServer::BODY_STATE_TRANSFORM: { return get_transform(); } break; case Physics2DServer::BODY_STATE_LINEAR_VELOCITY: { return linear_velocity; } break; case Physics2DServer::BODY_STATE_ANGULAR_VELOCITY: { return angular_velocity; } break; case Physics2DServer::BODY_STATE_SLEEPING: { return !is_active(); } break; case Physics2DServer::BODY_STATE_CAN_SLEEP: { return can_sleep; } break; } return Variant(); } void Body2DSW::set_space(Space2DSW *p_space) { if (get_space()) { wakeup_neighbours(); if (inertia_update_list.in_list()) get_space()->body_remove_from_inertia_update_list(&inertia_update_list); if (active_list.in_list()) get_space()->body_remove_from_active_list(&active_list); if (direct_state_query_list.in_list()) get_space()->body_remove_from_state_query_list(&direct_state_query_list); } _set_space(p_space); if (get_space()) { _update_inertia(); if (active) get_space()->body_add_to_active_list(&active_list); /* _update_queries(); if (is_active()) { active=false; set_active(true); } */ } first_integration = false; } void Body2DSW::_compute_area_gravity_and_dampenings(const Area2DSW *p_area) { if (p_area->is_gravity_point()) { if (p_area->get_gravity_distance_scale() > 0) { Vector2 v = p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin(); gravity += v.normalized() * (p_area->get_gravity() / Math::pow(v.length() * p_area->get_gravity_distance_scale() + 1, 2)); } else { gravity += (p_area->get_transform().xform(p_area->get_gravity_vector()) - get_transform().get_origin()).normalized() * p_area->get_gravity(); } } else { gravity += p_area->get_gravity_vector() * p_area->get_gravity(); } area_linear_damp += p_area->get_linear_damp(); area_angular_damp += p_area->get_angular_damp(); } void Body2DSW::integrate_forces(real_t p_step) { if (mode == Physics2DServer::BODY_MODE_STATIC) return; Area2DSW *def_area = get_space()->get_default_area(); // Area2DSW *damp_area = def_area; ERR_FAIL_COND(!def_area); int ac = areas.size(); bool stopped = false; gravity = Vector2(0, 0); area_angular_damp = 0; area_linear_damp = 0; if (ac) { areas.sort(); const AreaCMP *aa = &areas[0]; // damp_area = aa[ac-1].area; for (int i = ac - 1; i >= 0 && !stopped; i--) { Physics2DServer::AreaSpaceOverrideMode mode = aa[i].area->get_space_override_mode(); switch (mode) { case Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE: case Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE: { _compute_area_gravity_and_dampenings(aa[i].area); stopped = mode == Physics2DServer::AREA_SPACE_OVERRIDE_COMBINE_REPLACE; } break; case Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE: case Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE_COMBINE: { gravity = Vector2(0, 0); area_angular_damp = 0; area_linear_damp = 0; _compute_area_gravity_and_dampenings(aa[i].area); stopped = mode == Physics2DServer::AREA_SPACE_OVERRIDE_REPLACE; } break; default: {} } } } if (!stopped) { _compute_area_gravity_and_dampenings(def_area); } gravity *= gravity_scale; // If less than 0, override dampenings with that of the Body2D if (angular_damp >= 0) area_angular_damp = angular_damp; /* else area_angular_damp=damp_area->get_angular_damp(); */ if (linear_damp >= 0) area_linear_damp = linear_damp; /* else area_linear_damp=damp_area->get_linear_damp(); */ Vector2 motion; bool do_motion = false; if (mode == Physics2DServer::BODY_MODE_KINEMATIC) { //compute motion, angular and etc. velocities from prev transform motion = new_transform.get_origin() - get_transform().get_origin(); linear_velocity = motion / p_step; real_t rot = new_transform.get_rotation() - get_transform().get_rotation(); angular_velocity = rot / p_step; do_motion = true; /* for(int i=0;i<get_shape_count();i++) { set_shape_kinematic_advance(i,Vector2()); set_shape_kinematic_retreat(i,0); } */ } else { if (!omit_force_integration && !first_integration) { //overridden by direct state query Vector2 force = gravity * mass; force += applied_force; real_t torque = applied_torque; real_t damp = 1.0 - p_step * area_linear_damp; if (damp < 0) // reached zero in the given time damp = 0; real_t angular_damp = 1.0 - p_step * area_angular_damp; if (angular_damp < 0) // reached zero in the given time angular_damp = 0; linear_velocity *= damp; angular_velocity *= angular_damp; linear_velocity += _inv_mass * force * p_step; angular_velocity += _inv_inertia * torque * p_step; } if (continuous_cd_mode != Physics2DServer::CCD_MODE_DISABLED) { motion = new_transform.get_origin() - get_transform().get_origin(); //linear_velocity*p_step; do_motion = true; } } //motion=linear_velocity*p_step; first_integration = false; biased_angular_velocity = 0; biased_linear_velocity = Vector2(); if (do_motion) { //shapes temporarily extend for raycast _update_shapes_with_motion(motion); } // damp_area=NULL; // clear the area, so it is set in the next frame def_area = NULL; // clear the area, so it is set in the next frame contact_count = 0; } void Body2DSW::integrate_velocities(real_t p_step) { if (mode == Physics2DServer::BODY_MODE_STATIC) return; if (fi_callback) get_space()->body_add_to_state_query_list(&direct_state_query_list); if (mode == Physics2DServer::BODY_MODE_KINEMATIC) { _set_transform(new_transform, false); _set_inv_transform(new_transform.affine_inverse()); if (contacts.size() == 0 && linear_velocity == Vector2() && angular_velocity == 0) set_active(false); //stopped moving, deactivate return; } real_t total_angular_velocity = angular_velocity + biased_angular_velocity; Vector2 total_linear_velocity = linear_velocity + biased_linear_velocity; real_t angle = get_transform().get_rotation() + total_angular_velocity * p_step; Vector2 pos = get_transform().get_origin() + total_linear_velocity * p_step; _set_transform(Transform2D(angle, pos), continuous_cd_mode == Physics2DServer::CCD_MODE_DISABLED); _set_inv_transform(get_transform().inverse()); if (continuous_cd_mode != Physics2DServer::CCD_MODE_DISABLED) new_transform = get_transform(); //_update_inertia_tensor(); } void Body2DSW::wakeup_neighbours() { for (Map<Constraint2DSW *, int>::Element *E = constraint_map.front(); E; E = E->next()) { const Constraint2DSW *c = E->key(); Body2DSW **n = c->get_body_ptr(); int bc = c->get_body_count(); for (int i = 0; i < bc; i++) { if (i == E->get()) continue; Body2DSW *b = n[i]; if (b->mode != Physics2DServer::BODY_MODE_RIGID) continue; if (!b->is_active()) b->set_active(true); } } } void Body2DSW::call_queries() { if (fi_callback) { Physics2DDirectBodyStateSW *dbs = Physics2DDirectBodyStateSW::singleton; dbs->body = this; Variant v = dbs; const Variant *vp[2] = { &v, &fi_callback->callback_udata }; Object *obj = ObjectDB::get_instance(fi_callback->id); if (!obj) { set_force_integration_callback(0, StringName()); } else { Variant::CallError ce; if (fi_callback->callback_udata.get_type()) { obj->call(fi_callback->method, vp, 2, ce); } else { obj->call(fi_callback->method, vp, 1, ce); } } } } bool Body2DSW::sleep_test(real_t p_step) { if (mode == Physics2DServer::BODY_MODE_STATIC || mode == Physics2DServer::BODY_MODE_KINEMATIC) return true; // else if (mode == Physics2DServer::BODY_MODE_CHARACTER) return !active; // characters and kinematic bodies don't sleep unless asked to sleep else if (!can_sleep) return false; if (Math::abs(angular_velocity) < get_space()->get_body_angular_velocity_sleep_threshold() && Math::abs(linear_velocity.length_squared()) < get_space()->get_body_linear_velocity_sleep_threshold() * get_space()->get_body_linear_velocity_sleep_threshold()) { still_time += p_step; return still_time > get_space()->get_body_time_to_sleep(); } else { still_time = 0; //maybe this should be set to 0 on set_active? return false; } } void Body2DSW::set_force_integration_callback(ObjectID p_id, const StringName &p_method, const Variant &p_udata) { if (fi_callback) { memdelete(fi_callback); fi_callback = NULL; } if (p_id != 0) { fi_callback = memnew(ForceIntegrationCallback); fi_callback->id = p_id; fi_callback->method = p_method; fi_callback->callback_udata = p_udata; } } Body2DSW::Body2DSW() : CollisionObject2DSW(TYPE_BODY), active_list(this), inertia_update_list(this), direct_state_query_list(this) { mode = Physics2DServer::BODY_MODE_RIGID; active = true; angular_velocity = 0; biased_angular_velocity = 0; mass = 1; user_inertia = false; _inv_inertia = 0; _inv_mass = 1; bounce = 0; friction = 1; omit_force_integration = false; applied_torque = 0; island_step = 0; island_next = NULL; island_list_next = NULL; _set_static(false); first_time_kinematic = false; linear_damp = -1; angular_damp = -1; area_angular_damp = 0; area_linear_damp = 0; contact_count = 0; gravity_scale = 1.0; first_integration = false; still_time = 0; continuous_cd_mode = Physics2DServer::CCD_MODE_DISABLED; can_sleep = false; fi_callback = NULL; } Body2DSW::~Body2DSW() { if (fi_callback) memdelete(fi_callback); } Physics2DDirectBodyStateSW *Physics2DDirectBodyStateSW::singleton = NULL; Physics2DDirectSpaceState *Physics2DDirectBodyStateSW::get_space_state() { return body->get_space()->get_direct_state(); } Variant Physics2DDirectBodyStateSW::get_contact_collider_shape_metadata(int p_contact_idx) const { ERR_FAIL_INDEX_V(p_contact_idx, body->contact_count, Variant()); if (!Physics2DServerSW::singletonsw->body_owner.owns(body->contacts[p_contact_idx].collider)) { return Variant(); } Body2DSW *other = Physics2DServerSW::singletonsw->body_owner.get(body->contacts[p_contact_idx].collider); int sidx = body->contacts[p_contact_idx].collider_shape; if (sidx < 0 || sidx >= other->get_shape_count()) { return Variant(); } return other->get_shape_metadata(sidx); }