#ifndef RID_OWNER_H #define RID_OWNER_H #include "core/print_string.h" #include "core/rid.h" #include "core/spin_lock.h" #include class RID_AllocBase { static volatile uint64_t base_id; protected: static RID _make_from_id(uint64_t p_id) { RID rid; rid._id = p_id; return rid; } static uint64_t _gen_id() { return atomic_increment(&base_id); } static RID _gen_rid() { return _make_from_id(_gen_id()); } public: virtual ~RID_AllocBase() {} }; template class RID_Alloc : public RID_AllocBase { T **chunks; uint32_t **free_list_chunks; uint32_t **validator_chunks; uint32_t elements_in_chunk; uint32_t max_alloc; uint32_t alloc_count; const char *description; SpinLock spin_lock; public: RID make_rid(const T &p_value) { if (THREAD_SAFE) { spin_lock.lock(); } if (alloc_count == max_alloc) { //allocate a new chunk uint32_t chunk_count = alloc_count == 0 ? 0 : (max_alloc / elements_in_chunk); //grow chunks chunks = (T **)memrealloc(chunks, sizeof(T *) * (chunk_count + 1)); chunks[chunk_count] = (T *)memalloc(sizeof(T) * elements_in_chunk); //but don't initialize //grow validators validator_chunks = (uint32_t **)memrealloc(validator_chunks, sizeof(uint32_t *) * (chunk_count + 1)); validator_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk); //grow free lists free_list_chunks = (uint32_t **)memrealloc(free_list_chunks, sizeof(uint32_t *) * (chunk_count + 1)); free_list_chunks[chunk_count] = (uint32_t *)memalloc(sizeof(uint32_t) * elements_in_chunk); //initialize for (uint32_t i = 0; i < elements_in_chunk; i++) { //dont initialize chunk validator_chunks[chunk_count][i] = 0xFFFFFFFF; free_list_chunks[chunk_count][i] = alloc_count + i; } max_alloc += elements_in_chunk; } uint32_t free_index = free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk]; uint32_t free_chunk = free_index / elements_in_chunk; uint32_t free_element = free_index % elements_in_chunk; T *ptr = &chunks[free_chunk][free_element]; memnew_placement(ptr, T(p_value)); uint32_t validator = (uint32_t)(_gen_id() % 0xFFFFFFFF); uint64_t id = validator; id <<= 32; id |= free_index; validator_chunks[free_chunk][free_element] = validator; alloc_count++; if (THREAD_SAFE) { spin_lock.unlock(); } return _make_from_id(id); } _FORCE_INLINE_ T *getornull(const RID &p_rid) { if (THREAD_SAFE) { spin_lock.lock(); } uint64_t id = p_rid.get_id(); uint32_t idx = uint32_t(id & 0xFFFFFFFF); if (unlikely(idx >= max_alloc)) { return NULL; } uint32_t idx_chunk = idx / elements_in_chunk; uint32_t idx_element = idx % elements_in_chunk; uint32_t validator = uint32_t(id >> 32); if (validator_chunks[idx_chunk][idx_element] != validator) { return NULL; } T *ptr = &chunks[idx_chunk][idx_element]; if (THREAD_SAFE) { spin_lock.unlock(); } return ptr; } _FORCE_INLINE_ bool owns(const RID &p_rid) { if (THREAD_SAFE) { spin_lock.lock(); } uint64_t id = p_rid.get_id(); uint32_t idx = uint32_t(id & 0xFFFFFFFF); if (unlikely(idx >= max_alloc)) { if (THREAD_SAFE) { spin_lock.unlock(); } return false; } uint32_t idx_chunk = idx / elements_in_chunk; uint32_t idx_element = idx % elements_in_chunk; uint32_t validator = uint32_t(id >> 32); bool owned = validator_chunks[idx_chunk][idx_element] == validator; if (THREAD_SAFE) { spin_lock.unlock(); } return owned; } _FORCE_INLINE_ void free(const RID &p_rid) { if (THREAD_SAFE) { spin_lock.lock(); } uint64_t id = p_rid.get_id(); uint32_t idx = uint32_t(id & 0xFFFFFFFF); ERR_FAIL_COND(idx >= max_alloc); uint32_t idx_chunk = idx / elements_in_chunk; uint32_t idx_element = idx % elements_in_chunk; uint32_t validator = uint32_t(id >> 32); ERR_FAIL_COND(validator_chunks[idx_chunk][idx_element] != validator); chunks[idx_chunk][idx_element].~T(); validator_chunks[idx_chunk][idx_element] = 0xFFFFFFFF; // go invalid alloc_count--; free_list_chunks[alloc_count / elements_in_chunk][alloc_count % elements_in_chunk] = idx; if (THREAD_SAFE) { spin_lock.unlock(); } } _FORCE_INLINE_ uint32_t get_rid_count() const { return alloc_count; } _FORCE_INLINE_ T *get_rid_by_index(uint32_t p_index) { ERR_FAIL_INDEX_V(p_index, alloc_count, NULL); if (THREAD_SAFE) { spin_lock.lock(); } uint64_t idx = free_list_chunks[p_index / elements_in_chunk][p_index % elements_in_chunk]; T *ptr = &chunks[idx / elements_in_chunk][idx % elements_in_chunk]; if (THREAD_SAFE) { spin_lock.unlock(); } return ptr; } void get_owned_list(List *p_owned) { for (size_t i = 0; i < alloc_count; i++) { uint64_t idx = free_list_chunks[i / elements_in_chunk][i % elements_in_chunk]; uint64_t validator = validator_chunks[idx / elements_in_chunk][idx % elements_in_chunk]; p_owned->push_back(_make_from_id((validator << 32) | idx)); } } void set_description(const char *p_descrption) { description = p_descrption; } RID_Alloc(uint32_t p_target_chunk_byte_size = 4096) { chunks = NULL; free_list_chunks = NULL; validator_chunks = NULL; elements_in_chunk = sizeof(T) > p_target_chunk_byte_size ? 1 : (p_target_chunk_byte_size / sizeof(T)); max_alloc = 0; alloc_count = 0; description = NULL; } ~RID_Alloc() { if (alloc_count) { if (description) { print_error("ERROR: " + itos(alloc_count) + " RID allocations of type '" + description + "' were leaked at exit."); } else { print_error("ERROR: " + itos(alloc_count) + " RID allocations of type '" + typeid(T).name() + "' were leaked at exit."); } for (uint32_t i = 0; i < alloc_count; i++) { uint64_t idx = free_list_chunks[i / elements_in_chunk][i % elements_in_chunk]; chunks[idx / elements_in_chunk][idx % elements_in_chunk].~T(); } } uint32_t chunk_count = max_alloc / elements_in_chunk; for (uint32_t i = 0; i < chunk_count; i++) { memfree(chunks[i]); memfree(validator_chunks[i]); memfree(free_list_chunks[i]); } if (chunks) { memfree(chunks); memfree(free_list_chunks); memfree(validator_chunks); } } }; template class RID_PtrOwner { RID_Alloc alloc; public: _FORCE_INLINE_ RID make_rid(T *p_ptr) { return alloc.make_rid(p_ptr); } _FORCE_INLINE_ T *getornull(const RID &p_rid) { T **ptr = alloc.getornull(p_rid); if (unlikely(!ptr)) { return NULL; } return *ptr; } _FORCE_INLINE_ bool owns(const RID &p_rid) { return alloc.owns(p_rid); } _FORCE_INLINE_ void free(const RID &p_rid) { alloc.free(p_rid); } _FORCE_INLINE_ void get_owned_list(List *p_owned) { return alloc.get_owned_list(p_owned); } void set_description(const char *p_descrption) { alloc.set_description(p_descrption); } RID_PtrOwner(uint32_t p_target_chunk_byte_size = 4096) : alloc(p_target_chunk_byte_size) {} }; template class RID_Owner { RID_Alloc alloc; public: _FORCE_INLINE_ RID make_rid(const T &p_ptr) { return alloc.make_rid(p_ptr); } _FORCE_INLINE_ T *getornull(const RID &p_rid) { return alloc.getornull(p_rid); } _FORCE_INLINE_ bool owns(const RID &p_rid) { return alloc.owns(p_rid); } _FORCE_INLINE_ void free(const RID &p_rid) { alloc.free(p_rid); } _FORCE_INLINE_ uint32_t get_rid_count() const { return alloc.get_rid_count(); } _FORCE_INLINE_ T *get_rid_by_index(uint32_t p_index) { return alloc.get_rid_by_index(p_index); } _FORCE_INLINE_ void get_owned_list(List *p_owned) { return alloc.get_owned_list(p_owned); } void set_description(const char *p_descrption) { alloc.set_description(p_descrption); } RID_Owner(uint32_t p_target_chunk_byte_size = 4096) : alloc(p_target_chunk_byte_size) {} }; #endif // RID_OWNER_H