/*************************************************************************/ /* rasterizer_scene_gles3.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "rasterizer_scene_gles3.h" #include "core/config/project_settings.h" #include "core/templates/sort_array.h" #include "servers/rendering/rendering_server_default.h" #include "storage/config.h" #ifdef GLES3_ENABLED void glTexStorage2DCustom(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLenum format, GLenum type) { #ifdef GLES_OVER_GL for (int i = 0; i < levels; i++) { glTexImage2D(target, i, internalformat, width, height, 0, format, type, nullptr); width = MAX(1, (width / 2)); height = MAX(1, (height / 2)); } #else glTexStorage2D(target, levels, internalformat, width, height); #endif } uint64_t RasterizerSceneGLES3::auto_exposure_counter = 2; RasterizerSceneGLES3 *RasterizerSceneGLES3::singleton = nullptr; RasterizerSceneGLES3 *RasterizerSceneGLES3::get_singleton() { return singleton; } RendererSceneRender::GeometryInstance *RasterizerSceneGLES3::geometry_instance_create(RID p_base) { RS::InstanceType type = storage->get_base_type(p_base); ERR_FAIL_COND_V(!((1 << type) & RS::INSTANCE_GEOMETRY_MASK), nullptr); GeometryInstanceGLES3 *ginstance = geometry_instance_alloc.alloc(); ginstance->data = memnew(GeometryInstanceGLES3::Data); ginstance->data->base = p_base; ginstance->data->base_type = type; _geometry_instance_mark_dirty(ginstance); return ginstance; } void RasterizerSceneGLES3::geometry_instance_set_skeleton(GeometryInstance *p_geometry_instance, RID p_skeleton) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->skeleton = p_skeleton; _geometry_instance_mark_dirty(ginstance); ginstance->data->dirty_dependencies = true; } void RasterizerSceneGLES3::geometry_instance_set_material_override(GeometryInstance *p_geometry_instance, RID p_override) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->material_override = p_override; _geometry_instance_mark_dirty(ginstance); ginstance->data->dirty_dependencies = true; } void RasterizerSceneGLES3::geometry_instance_set_material_overlay(GeometryInstance *p_geometry_instance, RID p_overlay) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->material_overlay = p_overlay; _geometry_instance_mark_dirty(ginstance); ginstance->data->dirty_dependencies = true; } void RasterizerSceneGLES3::geometry_instance_set_surface_materials(GeometryInstance *p_geometry_instance, const Vector &p_materials) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->surface_materials = p_materials; _geometry_instance_mark_dirty(ginstance); ginstance->data->dirty_dependencies = true; } void RasterizerSceneGLES3::geometry_instance_set_mesh_instance(GeometryInstance *p_geometry_instance, RID p_mesh_instance) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ERR_FAIL_COND(!ginstance); ginstance->mesh_instance = p_mesh_instance; _geometry_instance_mark_dirty(ginstance); } void RasterizerSceneGLES3::geometry_instance_set_transform(GeometryInstance *p_geometry_instance, const Transform3D &p_transform, const AABB &p_aabb, const AABB &p_transformed_aabb) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->transform = p_transform; ginstance->mirror = p_transform.basis.determinant() < 0; ginstance->data->aabb = p_aabb; ginstance->transformed_aabb = p_transformed_aabb; Vector3 model_scale_vec = p_transform.basis.get_scale_abs(); // handle non uniform scale here float max_scale = MAX(model_scale_vec.x, MAX(model_scale_vec.y, model_scale_vec.z)); float min_scale = MIN(model_scale_vec.x, MIN(model_scale_vec.y, model_scale_vec.z)); ginstance->non_uniform_scale = max_scale >= 0.0 && (min_scale / max_scale) < 0.9; ginstance->lod_model_scale = max_scale; } void RasterizerSceneGLES3::geometry_instance_set_layer_mask(GeometryInstance *p_geometry_instance, uint32_t p_layer_mask) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->layer_mask = p_layer_mask; } void RasterizerSceneGLES3::geometry_instance_set_lod_bias(GeometryInstance *p_geometry_instance, float p_lod_bias) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->lod_bias = p_lod_bias; } void RasterizerSceneGLES3::geometry_instance_set_transparency(GeometryInstance *p_geometry_instance, float p_transparency) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->force_alpha = CLAMP(1.0 - p_transparency, 0, 1); } void RasterizerSceneGLES3::geometry_instance_set_fade_range(GeometryInstance *p_geometry_instance, bool p_enable_near, float p_near_begin, float p_near_end, bool p_enable_far, float p_far_begin, float p_far_end) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->fade_near = p_enable_near; ginstance->fade_near_begin = p_near_begin; ginstance->fade_near_end = p_near_end; ginstance->fade_far = p_enable_far; ginstance->fade_far_begin = p_far_begin; ginstance->fade_far_end = p_far_end; } void RasterizerSceneGLES3::geometry_instance_set_parent_fade_alpha(GeometryInstance *p_geometry_instance, float p_alpha) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->parent_fade_alpha = p_alpha; } void RasterizerSceneGLES3::geometry_instance_set_use_baked_light(GeometryInstance *p_geometry_instance, bool p_enable) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->use_baked_light = p_enable; _geometry_instance_mark_dirty(ginstance); } void RasterizerSceneGLES3::geometry_instance_set_use_dynamic_gi(GeometryInstance *p_geometry_instance, bool p_enable) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->use_dynamic_gi = p_enable; _geometry_instance_mark_dirty(ginstance); } void RasterizerSceneGLES3::geometry_instance_set_use_lightmap(GeometryInstance *p_geometry_instance, RID p_lightmap_instance, const Rect2 &p_lightmap_uv_scale, int p_lightmap_slice_index) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); } void RasterizerSceneGLES3::geometry_instance_set_lightmap_capture(GeometryInstance *p_geometry_instance, const Color *p_sh9) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); } void RasterizerSceneGLES3::geometry_instance_set_instance_shader_parameters_offset(GeometryInstance *p_geometry_instance, int32_t p_offset) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->shader_parameters_offset = p_offset; _geometry_instance_mark_dirty(ginstance); } void RasterizerSceneGLES3::geometry_instance_set_cast_double_sided_shadows(GeometryInstance *p_geometry_instance, bool p_enable) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->cast_double_sided_shadows = p_enable; _geometry_instance_mark_dirty(ginstance); } uint32_t RasterizerSceneGLES3::geometry_instance_get_pair_mask() { return (1 << RS::INSTANCE_LIGHT); } void RasterizerSceneGLES3::geometry_instance_pair_light_instances(GeometryInstance *p_geometry_instance, const RID *p_light_instances, uint32_t p_light_instance_count) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); GLES3::Config *config = GLES3::Config::get_singleton(); ginstance->omni_light_count = 0; ginstance->spot_light_count = 0; ginstance->omni_lights.clear(); ginstance->spot_lights.clear(); for (uint32_t i = 0; i < p_light_instance_count; i++) { RS::LightType type = light_instance_get_type(p_light_instances[i]); switch (type) { case RS::LIGHT_OMNI: { if (ginstance->omni_light_count < (uint32_t)config->max_lights_per_object) { ginstance->omni_lights.push_back(p_light_instances[i]); ginstance->omni_light_count++; } } break; case RS::LIGHT_SPOT: { if (ginstance->spot_light_count < (uint32_t)config->max_lights_per_object) { ginstance->spot_lights.push_back(p_light_instances[i]); ginstance->spot_light_count++; } } break; default: break; } } } void RasterizerSceneGLES3::geometry_instance_pair_reflection_probe_instances(GeometryInstance *p_geometry_instance, const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count) { } void RasterizerSceneGLES3::geometry_instance_pair_decal_instances(GeometryInstance *p_geometry_instance, const RID *p_decal_instances, uint32_t p_decal_instance_count) { } void RasterizerSceneGLES3::geometry_instance_pair_voxel_gi_instances(GeometryInstance *p_geometry_instance, const RID *p_voxel_gi_instances, uint32_t p_voxel_gi_instance_count) { } void RasterizerSceneGLES3::geometry_instance_set_softshadow_projector_pairing(GeometryInstance *p_geometry_instance, bool p_softshadow, bool p_projector) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); } void RasterizerSceneGLES3::geometry_instance_free(GeometryInstance *p_geometry_instance) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); GeometryInstanceSurface *surf = ginstance->surface_caches; while (surf) { GeometryInstanceSurface *next = surf->next; geometry_instance_surface_alloc.free(surf); surf = next; } memdelete(ginstance->data); geometry_instance_alloc.free(ginstance); } void RasterizerSceneGLES3::_geometry_instance_mark_dirty(GeometryInstance *p_geometry_instance) { GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); if (ginstance->dirty_list_element.in_list()) { return; } //clear surface caches GeometryInstanceSurface *surf = ginstance->surface_caches; while (surf) { GeometryInstanceSurface *next = surf->next; geometry_instance_surface_alloc.free(surf); surf = next; } ginstance->surface_caches = nullptr; geometry_instance_dirty_list.add(&ginstance->dirty_list_element); } void RasterizerSceneGLES3::_update_dirty_geometry_instances() { while (geometry_instance_dirty_list.first()) { _geometry_instance_update(geometry_instance_dirty_list.first()->self()); } } void RasterizerSceneGLES3::_geometry_instance_dependency_changed(RendererStorage::DependencyChangedNotification p_notification, RendererStorage::DependencyTracker *p_tracker) { switch (p_notification) { case RendererStorage::DEPENDENCY_CHANGED_MATERIAL: case RendererStorage::DEPENDENCY_CHANGED_MESH: case RendererStorage::DEPENDENCY_CHANGED_PARTICLES: case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH: case RendererStorage::DEPENDENCY_CHANGED_SKELETON_DATA: { static_cast(singleton)->_geometry_instance_mark_dirty(static_cast(p_tracker->userdata)); } break; case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: { GeometryInstanceGLES3 *ginstance = static_cast(p_tracker->userdata); if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { ginstance->instance_count = GLES3::MeshStorage::get_singleton()->multimesh_get_instances_to_draw(ginstance->data->base); } } break; default: { //rest of notifications of no interest } break; } } void RasterizerSceneGLES3::_geometry_instance_dependency_deleted(const RID &p_dependency, RendererStorage::DependencyTracker *p_tracker) { static_cast(singleton)->_geometry_instance_mark_dirty(static_cast(p_tracker->userdata)); } void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture; bool has_base_alpha = ((p_material->shader_data->uses_alpha && !p_material->shader_data->uses_alpha_clip) || has_read_screen_alpha); bool has_blend_alpha = p_material->shader_data->uses_blend_alpha; bool has_alpha = has_base_alpha || has_blend_alpha; uint32_t flags = 0; if (p_material->shader_data->uses_screen_texture) { flags |= GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE; } if (p_material->shader_data->uses_depth_texture) { flags |= GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE; } if (p_material->shader_data->uses_normal_texture) { flags |= GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE; } if (ginstance->data->cast_double_sided_shadows) { flags |= GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS; } if (has_alpha || has_read_screen_alpha || p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) { //material is only meant for alpha pass flags |= GeometryInstanceSurface::FLAG_PASS_ALPHA; if (p_material->shader_data->uses_depth_pre_pass && !(p_material->shader_data->depth_draw == GLES3::SceneShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED)) { flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH; flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW; } } else { flags |= GeometryInstanceSurface::FLAG_PASS_OPAQUE; flags |= GeometryInstanceSurface::FLAG_PASS_DEPTH; flags |= GeometryInstanceSurface::FLAG_PASS_SHADOW; } GLES3::SceneMaterialData *material_shadow = nullptr; void *surface_shadow = nullptr; if (!p_material->shader_data->uses_particle_trails && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_pre_pass && !p_material->shader_data->uses_alpha_clip) { flags |= GeometryInstanceSurface::FLAG_USES_SHARED_SHADOW_MATERIAL; material_shadow = static_cast(GLES3::MaterialStorage::get_singleton()->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL)); RID shadow_mesh = mesh_storage->mesh_get_shadow_mesh(p_mesh); if (shadow_mesh.is_valid()) { surface_shadow = mesh_storage->mesh_get_surface(shadow_mesh, p_surface); } } else { material_shadow = p_material; } GeometryInstanceSurface *sdcache = geometry_instance_surface_alloc.alloc(); sdcache->flags = flags; sdcache->shader = p_material->shader_data; sdcache->material = p_material; sdcache->surface = mesh_storage->mesh_get_surface(p_mesh, p_surface); sdcache->primitive = mesh_storage->mesh_surface_get_primitive(sdcache->surface); sdcache->surface_index = p_surface; if (ginstance->data->dirty_dependencies) { storage->base_update_dependency(p_mesh, &ginstance->data->dependency_tracker); } //shadow sdcache->shader_shadow = material_shadow->shader_data; sdcache->material_shadow = material_shadow; sdcache->surface_shadow = surface_shadow ? surface_shadow : sdcache->surface; sdcache->owner = ginstance; sdcache->next = ginstance->surface_caches; ginstance->surface_caches = sdcache; //sortkey sdcache->sort.sort_key1 = 0; sdcache->sort.sort_key2 = 0; sdcache->sort.surface_index = p_surface; sdcache->sort.material_id_low = p_material_id & 0x0000FFFF; sdcache->sort.material_id_hi = p_material_id >> 16; sdcache->sort.shader_id = p_shader_id; sdcache->sort.geometry_id = p_mesh.get_local_index(); sdcache->sort.priority = p_material->priority; } void RasterizerSceneGLES3::_geometry_instance_add_surface_with_material_chain(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, GLES3::SceneMaterialData *p_material_data, RID p_mat_src, RID p_mesh) { GLES3::SceneMaterialData *material_data = p_material_data; GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, p_mat_src.get_local_index(), material_storage->material_get_shader_id(p_mat_src), p_mesh); while (material_data->next_pass.is_valid()) { RID next_pass = material_data->next_pass; material_data = static_cast(material_storage->material_get_data(next_pass, RS::SHADER_SPATIAL)); if (!material_data || !material_data->shader_data->valid) { break; } if (ginstance->data->dirty_dependencies) { material_storage->material_update_dependency(next_pass, &ginstance->data->dependency_tracker); } _geometry_instance_add_surface_with_material(ginstance, p_surface, material_data, next_pass.get_local_index(), material_storage->material_get_shader_id(next_pass), p_mesh); } } void RasterizerSceneGLES3::_geometry_instance_add_surface(GeometryInstanceGLES3 *ginstance, uint32_t p_surface, RID p_material, RID p_mesh) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); RID m_src; m_src = ginstance->data->material_override.is_valid() ? ginstance->data->material_override : p_material; GLES3::SceneMaterialData *material_data = nullptr; if (m_src.is_valid()) { material_data = static_cast(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL)); if (!material_data || !material_data->shader_data->valid) { material_data = nullptr; } } if (material_data) { if (ginstance->data->dirty_dependencies) { material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker); } } else { material_data = static_cast(material_storage->material_get_data(scene_globals.default_material, RS::SHADER_SPATIAL)); m_src = scene_globals.default_material; } ERR_FAIL_COND(!material_data); _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh); if (ginstance->data->material_overlay.is_valid()) { m_src = ginstance->data->material_overlay; material_data = static_cast(material_storage->material_get_data(m_src, RS::SHADER_SPATIAL)); if (material_data && material_data->shader_data->valid) { if (ginstance->data->dirty_dependencies) { material_storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker); } _geometry_instance_add_surface_with_material_chain(ginstance, p_surface, material_data, m_src, p_mesh); } } } void RasterizerSceneGLES3::_geometry_instance_update(GeometryInstance *p_geometry_instance) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); GeometryInstanceGLES3 *ginstance = static_cast(p_geometry_instance); if (ginstance->data->dirty_dependencies) { ginstance->data->dependency_tracker.update_begin(); } //add geometry for drawing switch (ginstance->data->base_type) { case RS::INSTANCE_MESH: { const RID *materials = nullptr; uint32_t surface_count; RID mesh = ginstance->data->base; materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { //if no materials, no surfaces. const RID *inst_materials = ginstance->data->surface_materials.ptr(); uint32_t surf_mat_count = ginstance->data->surface_materials.size(); for (uint32_t j = 0; j < surface_count; j++) { RID material = (j < surf_mat_count && inst_materials[j].is_valid()) ? inst_materials[j] : materials[j]; _geometry_instance_add_surface(ginstance, j, material, mesh); } } ginstance->instance_count = 1; } break; case RS::INSTANCE_MULTIMESH: { RID mesh = mesh_storage->multimesh_get_mesh(ginstance->data->base); if (mesh.is_valid()) { const RID *materials = nullptr; uint32_t surface_count; materials = mesh_storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { for (uint32_t j = 0; j < surface_count; j++) { _geometry_instance_add_surface(ginstance, j, materials[j], mesh); } } ginstance->instance_count = mesh_storage->multimesh_get_instances_to_draw(ginstance->data->base); } } break; case RS::INSTANCE_PARTICLES: { } break; default: { } } bool store_transform = true; ginstance->base_flags = 0; if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH; if (mesh_storage->multimesh_get_transform_format(ginstance->data->base) == RS::MULTIMESH_TRANSFORM_2D) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D; } if (mesh_storage->multimesh_uses_colors(ginstance->data->base)) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; } if (mesh_storage->multimesh_uses_custom_data(ginstance->data->base)) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; } //ginstance->transforms_uniform_set = mesh_storage->multimesh_get_3d_uniform_set(ginstance->data->base, scene_globals.default_shader_rd, TRANSFORMS_UNIFORM_SET); } else if (ginstance->data->base_type == RS::INSTANCE_PARTICLES) { } else if (ginstance->data->base_type == RS::INSTANCE_MESH) { } ginstance->store_transform_cache = store_transform; if (ginstance->data->dirty_dependencies) { ginstance->data->dependency_tracker.update_end(); ginstance->data->dirty_dependencies = false; } ginstance->dirty_list_element.remove_from_list(); } /* SHADOW ATLAS API */ RID RasterizerSceneGLES3::shadow_atlas_create() { return RID(); } void RasterizerSceneGLES3::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) { } void RasterizerSceneGLES3::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) { } bool RasterizerSceneGLES3::shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) { return false; } void RasterizerSceneGLES3::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) { } int RasterizerSceneGLES3::get_directional_light_shadow_size(RID p_light_intance) { return 0; } void RasterizerSceneGLES3::set_directional_shadow_count(int p_count) { } /* SKY API */ void RasterizerSceneGLES3::_free_sky_data(Sky *p_sky) { if (p_sky->radiance != 0) { glDeleteTextures(1, &p_sky->radiance); p_sky->radiance = 0; glDeleteFramebuffers(1, &p_sky->radiance_framebuffer); p_sky->radiance_framebuffer = 0; } } RID RasterizerSceneGLES3::sky_allocate() { return sky_owner.allocate_rid(); } void RasterizerSceneGLES3::sky_initialize(RID p_rid) { sky_owner.initialize_rid(p_rid); } void RasterizerSceneGLES3::sky_set_radiance_size(RID p_sky, int p_radiance_size) { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_COND(!sky); ERR_FAIL_COND_MSG(p_radiance_size < 32 || p_radiance_size > 2048, "Sky radiance size must be between 32 and 2048"); if (sky->radiance_size == p_radiance_size) { return; // No need to update } sky->radiance_size = p_radiance_size; _free_sky_data(sky); _invalidate_sky(sky); } void RasterizerSceneGLES3::sky_set_mode(RID p_sky, RS::SkyMode p_mode) { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_COND(!sky); if (sky->mode == p_mode) { return; } sky->mode = p_mode; _invalidate_sky(sky); } void RasterizerSceneGLES3::sky_set_material(RID p_sky, RID p_material) { Sky *sky = sky_owner.get_or_null(p_sky); ERR_FAIL_COND(!sky); if (sky->material == p_material) { return; } sky->material = p_material; _invalidate_sky(sky); } void RasterizerSceneGLES3::_invalidate_sky(Sky *p_sky) { if (!p_sky->dirty) { p_sky->dirty = true; p_sky->dirty_list = dirty_sky_list; dirty_sky_list = p_sky; } } void RasterizerSceneGLES3::_update_dirty_skys() { Sky *sky = dirty_sky_list; while (sky) { if (sky->radiance == 0) { sky->mipmap_count = Image::get_image_required_mipmaps(sky->radiance_size, sky->radiance_size, Image::FORMAT_RGBA8) + 1; // Left uninitialized, will attach a texture at render time glGenFramebuffers(1, &sky->radiance_framebuffer); GLenum internal_format = GL_RGB10_A2; glGenTextures(1, &sky->radiance); glBindTexture(GL_TEXTURE_CUBE_MAP, sky->radiance); #ifdef GLES_OVER_GL GLenum format = GL_RGBA; GLenum type = GL_UNSIGNED_INT_2_10_10_10_REV; //TODO, on low-end compare this to allocating each face of each mip individually // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml for (int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); #else glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size); #endif glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count); glGenTextures(1, &sky->raw_radiance); glBindTexture(GL_TEXTURE_CUBE_MAP, sky->raw_radiance); #ifdef GLES_OVER_GL //TODO, on low-end compare this to allocating each face of each mip individually // see: https://www.khronos.org/registry/OpenGL-Refpages/es3.0/html/glTexStorage2D.xhtml for (int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, sky->radiance_size, sky->radiance_size, 0, format, type, nullptr); } glGenerateMipmap(GL_TEXTURE_CUBE_MAP); #else glTexStorage2D(GL_TEXTURE_CUBE_MAP, sky->mipmap_count, internal_format, sky->radiance_size, sky->radiance_size); #endif glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAX_LEVEL, sky->mipmap_count); glBindTexture(GL_TEXTURE_CUBE_MAP, 0); } sky->reflection_dirty = true; sky->processing_layer = 0; Sky *next = sky->dirty_list; sky->dirty_list = nullptr; sky->dirty = false; sky = next; } dirty_sky_list = nullptr; } void RasterizerSceneGLES3::_setup_sky(Environment *p_env, RID p_render_buffers, const PagedArray &p_lights, const CameraMatrix &p_projection, const Transform3D &p_transform, const Size2i p_screen_size) { GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); ERR_FAIL_COND(!p_env); GLES3::SkyMaterialData *material = nullptr; Sky *sky = sky_owner.get_or_null(p_env->sky); RID sky_material; GLES3::SkyShaderData *shader_data = nullptr; if (sky) { sky_material = sky->material; if (sky_material.is_valid()) { material = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); if (!material || !material->shader_data->valid) { material = nullptr; } } if (!material) { sky_material = sky_globals.default_material; material = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } ERR_FAIL_COND(!material); shader_data = material->shader_data; ERR_FAIL_COND(!shader_data); if (shader_data->uses_time && time - sky->prev_time > 0.00001) { sky->prev_time = time; sky->reflection_dirty = true; RenderingServerDefault::redraw_request(); } if (material != sky->prev_material) { sky->prev_material = material; sky->reflection_dirty = true; } if (material->uniform_set_updated) { material->uniform_set_updated = false; sky->reflection_dirty = true; } if (!p_transform.origin.is_equal_approx(sky->prev_position) && shader_data->uses_position) { sky->prev_position = p_transform.origin; sky->reflection_dirty = true; } if (shader_data->uses_light) { sky_globals.directional_light_count = 0; for (int i = 0; i < (int)p_lights.size(); i++) { LightInstance *li = light_instance_owner.get_or_null(p_lights[i]); if (!li) { continue; } RID base = li->light; ERR_CONTINUE(base.is_null()); RS::LightType type = light_storage->light_get_type(base); if (type == RS::LIGHT_DIRECTIONAL && light_storage->light_directional_get_sky_mode(base) != RS::LIGHT_DIRECTIONAL_SKY_MODE_LIGHT_ONLY) { DirectionalLightData &sky_light_data = sky_globals.directional_lights[sky_globals.directional_light_count]; Transform3D light_transform = li->transform; Vector3 world_direction = light_transform.basis.xform(Vector3(0, 0, 1)).normalized(); sky_light_data.direction[0] = world_direction.x; sky_light_data.direction[1] = world_direction.y; sky_light_data.direction[2] = world_direction.z; float sign = light_storage->light_is_negative(base) ? -1 : 1; sky_light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY); Color linear_col = light_storage->light_get_color(base); sky_light_data.color[0] = linear_col.r; sky_light_data.color[1] = linear_col.g; sky_light_data.color[2] = linear_col.b; sky_light_data.enabled = true; float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); if (angular_diameter > 0.0) { angular_diameter = Math::tan(Math::deg2rad(angular_diameter)); } else { angular_diameter = 0.0; } sky_light_data.size = angular_diameter; sky_globals.directional_light_count++; if (sky_globals.directional_light_count >= sky_globals.max_directional_lights) { break; } } } // Check whether the directional_light_buffer changes bool light_data_dirty = false; // Light buffer is dirty if we have fewer or more lights // If we have fewer lights, make sure that old lights are disabled if (sky_globals.directional_light_count != sky_globals.last_frame_directional_light_count) { light_data_dirty = true; for (uint32_t i = sky_globals.directional_light_count; i < sky_globals.max_directional_lights; i++) { sky_globals.directional_lights[i].enabled = false; } } if (!light_data_dirty) { for (uint32_t i = 0; i < sky_globals.directional_light_count; i++) { if (sky_globals.directional_lights[i].direction[0] != sky_globals.last_frame_directional_lights[i].direction[0] || sky_globals.directional_lights[i].direction[1] != sky_globals.last_frame_directional_lights[i].direction[1] || sky_globals.directional_lights[i].direction[2] != sky_globals.last_frame_directional_lights[i].direction[2] || sky_globals.directional_lights[i].energy != sky_globals.last_frame_directional_lights[i].energy || sky_globals.directional_lights[i].color[0] != sky_globals.last_frame_directional_lights[i].color[0] || sky_globals.directional_lights[i].color[1] != sky_globals.last_frame_directional_lights[i].color[1] || sky_globals.directional_lights[i].color[2] != sky_globals.last_frame_directional_lights[i].color[2] || sky_globals.directional_lights[i].enabled != sky_globals.last_frame_directional_lights[i].enabled || sky_globals.directional_lights[i].size != sky_globals.last_frame_directional_lights[i].size) { light_data_dirty = true; break; } } } if (light_data_dirty) { glBindBufferBase(GL_UNIFORM_BUFFER, SKY_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, sky_globals.directional_light_buffer); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(DirectionalLightData) * sky_globals.directional_light_count, sky_globals.directional_lights); glBindBuffer(GL_UNIFORM_BUFFER, 0); DirectionalLightData *temp = sky_globals.last_frame_directional_lights; sky_globals.last_frame_directional_lights = sky_globals.directional_lights; sky_globals.directional_lights = temp; sky_globals.last_frame_directional_light_count = sky_globals.directional_light_count; sky->reflection_dirty = true; } } if (!sky->radiance) { _update_dirty_skys(); } } } void RasterizerSceneGLES3::_draw_sky(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); ERR_FAIL_COND(!p_env); Sky *sky = sky_owner.get_or_null(p_env->sky); ERR_FAIL_COND(!sky); GLES3::SkyMaterialData *material_data = nullptr; RID sky_material; RS::EnvironmentBG background = p_env->background; if (sky) { ERR_FAIL_COND(!sky); sky_material = sky->material; if (sky_material.is_valid()) { material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); if (!material_data || !material_data->shader_data->valid) { material_data = nullptr; } } if (!material_data) { sky_material = sky_globals.default_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) { sky_material = sky_globals.fog_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } ERR_FAIL_COND(!material_data); material_data->bind_uniforms(); GLES3::SkyShaderData *shader_data = material_data->shader_data; ERR_FAIL_COND(!shader_data); // Camera CameraMatrix camera; if (p_env->sky_custom_fov) { float near_plane = p_projection.get_z_near(); float far_plane = p_projection.get_z_far(); float aspect = p_projection.get_aspect(); camera.set_perspective(p_env->sky_custom_fov, aspect, near_plane, far_plane); } else { camera = p_projection; } Basis sky_transform = p_env->sky_orientation; sky_transform.invert(); sky_transform = p_transform.basis * sky_transform; GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_BACKGROUND); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, sky_transform, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, camera.matrix[2][0], camera.matrix[0][0], camera.matrix[2][1], camera.matrix[1][1], shader_data->version, SkyShaderGLES3::MODE_BACKGROUND); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_BACKGROUND); glBindVertexArray(sky_globals.screen_triangle_array); glDrawArrays(GL_TRIANGLES, 0, 3); } void RasterizerSceneGLES3::_update_sky_radiance(Environment *p_env, const CameraMatrix &p_projection, const Transform3D &p_transform) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); ERR_FAIL_COND(!p_env); Sky *sky = sky_owner.get_or_null(p_env->sky); ERR_FAIL_COND(!sky); GLES3::SkyMaterialData *material_data = nullptr; RID sky_material; RS::EnvironmentBG background = p_env->background; if (sky) { ERR_FAIL_COND(!sky); sky_material = sky->material; if (sky_material.is_valid()) { material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); if (!material_data || !material_data->shader_data->valid) { material_data = nullptr; } } if (!material_data) { sky_material = sky_globals.default_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } } else if (background == RS::ENV_BG_CLEAR_COLOR || background == RS::ENV_BG_COLOR) { sky_material = sky_globals.fog_material; material_data = static_cast(material_storage->material_get_data(sky_material, RS::SHADER_SKY)); } ERR_FAIL_COND(!material_data); material_data->bind_uniforms(); GLES3::SkyShaderData *shader_data = material_data->shader_data; ERR_FAIL_COND(!shader_data); bool update_single_frame = sky->mode == RS::SKY_MODE_REALTIME || sky->mode == RS::SKY_MODE_QUALITY; RS::SkyMode sky_mode = sky->mode; if (sky_mode == RS::SKY_MODE_AUTOMATIC) { if (shader_data->uses_time || shader_data->uses_position) { update_single_frame = true; sky_mode = RS::SKY_MODE_REALTIME; } else if (shader_data->uses_light || shader_data->ubo_size > 0) { update_single_frame = false; sky_mode = RS::SKY_MODE_INCREMENTAL; } else { update_single_frame = true; sky_mode = RS::SKY_MODE_QUALITY; } } if (sky->processing_layer == 0 && sky_mode == RS::SKY_MODE_INCREMENTAL) { // On the first frame after creating sky, rebuild in single frame update_single_frame = true; sky_mode = RS::SKY_MODE_QUALITY; } int max_processing_layer = sky->mipmap_count; // Update radiance cubemap if (sky->reflection_dirty && (sky->processing_layer >= max_processing_layer || update_single_frame)) { static const Vector3 view_normals[6] = { Vector3(+1, 0, 0), Vector3(-1, 0, 0), Vector3(0, +1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1) }; static const Vector3 view_up[6] = { Vector3(0, -1, 0), Vector3(0, -1, 0), Vector3(0, 0, +1), Vector3(0, 0, -1), Vector3(0, -1, 0), Vector3(0, -1, 0) }; CameraMatrix cm; cm.set_perspective(90, 1, 0.01, 10.0); CameraMatrix correction; correction.set_depth_correction(true); cm = correction * cm; GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_bind_shader(shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::POSITION, p_transform.origin, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::TIME, time, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::PROJECTION, cm.matrix[2][0], cm.matrix[0][0], cm.matrix[2][1], cm.matrix[1][1], shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); // Bind a vertex array or else OpenGL complains. We won't actually use it glBindVertexArray(sky_globals.screen_triangle_array); glViewport(0, 0, sky->radiance_size, sky->radiance_size); glBindFramebuffer(GL_FRAMEBUFFER, sky->radiance_framebuffer); for (int i = 0; i < 6; i++) { Basis local_view = Basis::looking_at(view_normals[i], view_up[i]); GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_set_uniform(SkyShaderGLES3::ORIENTATION, local_view, shader_data->version, SkyShaderGLES3::MODE_CUBEMAP); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, sky->raw_radiance, 0); glDrawArrays(GL_TRIANGLES, 0, 3); } if (update_single_frame) { for (int i = 0; i < max_processing_layer; i++) { _filter_sky_radiance(sky, i); } } else { _filter_sky_radiance(sky, 0); //Just copy over the first mipmap } sky->processing_layer = 1; sky->reflection_dirty = false; } else { if (sky_mode == RS::SKY_MODE_INCREMENTAL && sky->processing_layer < max_processing_layer) { _filter_sky_radiance(sky, sky->processing_layer); sky->processing_layer++; } } } void RasterizerSceneGLES3::_filter_sky_radiance(Sky *p_sky, int p_base_layer) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_CUBE_MAP, p_sky->raw_radiance); glBindFramebuffer(GL_FRAMEBUFFER, p_sky->radiance_framebuffer); CubemapFilterShaderGLES3::ShaderVariant mode = CubemapFilterShaderGLES3::MODE_DEFAULT; if (p_base_layer == 0) { glGenerateMipmap(GL_TEXTURE_CUBE_MAP); mode = CubemapFilterShaderGLES3::MODE_COPY; //Copy over base layer } glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, sky_globals.radical_inverse_vdc_cache_tex); int size = p_sky->radiance_size >> p_base_layer; glViewport(0, 0, size, size); glBindVertexArray(sky_globals.screen_triangle_array); material_storage->shaders.cubemap_filter_shader.version_bind_shader(scene_globals.cubemap_filter_shader_version, mode); material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::SAMPLE_COUNT, sky_globals.ggx_samples, scene_globals.cubemap_filter_shader_version, mode); material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::ROUGHNESS, float(p_base_layer) / (p_sky->mipmap_count - 1.0), scene_globals.cubemap_filter_shader_version, mode); material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::FACE_SIZE, float(size), scene_globals.cubemap_filter_shader_version, mode); for (int i = 0; i < 6; i++) { glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, p_sky->radiance, p_base_layer); #ifdef DEBUG_ENABLED GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); ERR_CONTINUE(status != GL_FRAMEBUFFER_COMPLETE); #endif material_storage->shaders.cubemap_filter_shader.version_set_uniform(CubemapFilterShaderGLES3::FACE_ID, i, scene_globals.cubemap_filter_shader_version, mode); glDrawArrays(GL_TRIANGLES, 0, 3); } glBindVertexArray(0); glViewport(0, 0, p_sky->screen_size.x, p_sky->screen_size.y); glBindFramebuffer(GL_FRAMEBUFFER, 0); } Ref RasterizerSceneGLES3::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) { return Ref(); } /* ENVIRONMENT API */ RID RasterizerSceneGLES3::environment_allocate() { return environment_owner.allocate_rid(); } void RasterizerSceneGLES3::environment_initialize(RID p_rid) { environment_owner.initialize_rid(p_rid); } void RasterizerSceneGLES3::environment_set_background(RID p_env, RS::EnvironmentBG p_bg) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->background = p_bg; } void RasterizerSceneGLES3::environment_set_sky(RID p_env, RID p_sky) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->sky = p_sky; } void RasterizerSceneGLES3::environment_set_sky_custom_fov(RID p_env, float p_scale) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->sky_custom_fov = p_scale; } void RasterizerSceneGLES3::environment_set_sky_orientation(RID p_env, const Basis &p_orientation) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->sky_orientation = p_orientation; } void RasterizerSceneGLES3::environment_set_bg_color(RID p_env, const Color &p_color) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->bg_color = p_color; } void RasterizerSceneGLES3::environment_set_bg_energy(RID p_env, float p_energy) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->bg_energy = p_energy; } void RasterizerSceneGLES3::environment_set_canvas_max_layer(RID p_env, int p_max_layer) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->canvas_max_layer = p_max_layer; } void RasterizerSceneGLES3::environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient, float p_energy, float p_sky_contribution, RS::EnvironmentReflectionSource p_reflection_source) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->ambient_light = p_color; env->ambient_source = p_ambient; env->ambient_light_energy = p_energy; env->ambient_sky_contribution = p_sky_contribution; env->reflection_source = p_reflection_source; } void RasterizerSceneGLES3::environment_set_glow(RID p_env, bool p_enable, Vector p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap, float p_glow_map_strength, RID p_glow_map) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); ERR_FAIL_COND_MSG(p_levels.size() != 7, "Size of array of glow levels must be 7"); env->glow_enabled = p_enable; env->glow_levels = p_levels; env->glow_intensity = p_intensity; env->glow_strength = p_strength; env->glow_mix = p_mix; env->glow_bloom = p_bloom_threshold; env->glow_blend_mode = p_blend_mode; env->glow_hdr_bleed_threshold = p_hdr_bleed_threshold; env->glow_hdr_bleed_scale = p_hdr_bleed_scale; env->glow_hdr_luminance_cap = p_hdr_luminance_cap; env->glow_map_strength = p_glow_map_strength; env->glow_map = p_glow_map; } void RasterizerSceneGLES3::environment_glow_set_use_bicubic_upscale(bool p_enable) { glow_bicubic_upscale = p_enable; } void RasterizerSceneGLES3::environment_glow_set_use_high_quality(bool p_enable) { glow_high_quality = p_enable; } void RasterizerSceneGLES3::environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->ssr_enabled = p_enable; env->ssr_max_steps = p_max_steps; env->ssr_fade_in = p_fade_int; env->ssr_fade_out = p_fade_out; env->ssr_depth_tolerance = p_depth_tolerance; } void RasterizerSceneGLES3::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) { } void RasterizerSceneGLES3::environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); } void RasterizerSceneGLES3::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { } void RasterizerSceneGLES3::environment_set_ssil(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_sharpness, float p_normal_rejection) { } void RasterizerSceneGLES3::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) { } void RasterizerSceneGLES3::environment_set_sdfgi(RID p_env, bool p_enable, int p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, float p_bounce_feedback, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) { } void RasterizerSceneGLES3::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) { } void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) { } void RasterizerSceneGLES3::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) { } void RasterizerSceneGLES3::environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->exposure = p_exposure; env->tone_mapper = p_tone_mapper; if (!env->auto_exposure && p_auto_exposure) { env->auto_exposure_version = ++auto_exposure_counter; } env->auto_exposure = p_auto_exposure; env->white = p_white; env->min_luminance = p_min_luminance; env->max_luminance = p_max_luminance; env->auto_exp_speed = p_auto_exp_speed; env->auto_exp_scale = p_auto_exp_scale; } void RasterizerSceneGLES3::environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->adjustments_enabled = p_enable; env->adjustments_brightness = p_brightness; env->adjustments_contrast = p_contrast; env->adjustments_saturation = p_saturation; env->use_1d_color_correction = p_use_1d_color_correction; env->color_correction = p_color_correction; } void RasterizerSceneGLES3::environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_aerial_perspective) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND(!env); env->fog_enabled = p_enable; env->fog_light_color = p_light_color; env->fog_light_energy = p_light_energy; env->fog_sun_scatter = p_sun_scatter; env->fog_density = p_density; env->fog_height = p_height; env->fog_height_density = p_height_density; env->fog_aerial_perspective = p_aerial_perspective; } void RasterizerSceneGLES3::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_albedo, const Color &p_emission, float p_emission_energy, float p_anisotropy, float p_length, float p_detail_spread, float p_gi_inject, bool p_temporal_reprojection, float p_temporal_reprojection_amount, float p_ambient_inject) { } void RasterizerSceneGLES3::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) { } void RasterizerSceneGLES3::environment_set_volumetric_fog_filter_active(bool p_enable) { } Ref RasterizerSceneGLES3::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND_V(!env, Ref()); return Ref(); } bool RasterizerSceneGLES3::is_environment(RID p_env) const { return environment_owner.owns(p_env); } RS::EnvironmentBG RasterizerSceneGLES3::environment_get_background(RID p_env) const { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND_V(!env, RS::ENV_BG_MAX); return env->background; } int RasterizerSceneGLES3::environment_get_canvas_max_layer(RID p_env) const { Environment *env = environment_owner.get_or_null(p_env); ERR_FAIL_COND_V(!env, 0); return env->canvas_max_layer; } RID RasterizerSceneGLES3::camera_effects_allocate() { return RID(); } void RasterizerSceneGLES3::camera_effects_initialize(RID p_rid) { } void RasterizerSceneGLES3::camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) { } void RasterizerSceneGLES3::camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) { } void RasterizerSceneGLES3::camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) { } void RasterizerSceneGLES3::camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) { } void RasterizerSceneGLES3::shadows_quality_set(RS::ShadowQuality p_quality) { } void RasterizerSceneGLES3::directional_shadow_quality_set(RS::ShadowQuality p_quality) { } RID RasterizerSceneGLES3::light_instance_create(RID p_light) { RID li = light_instance_owner.make_rid(LightInstance()); LightInstance *light_instance = light_instance_owner.get_or_null(li); light_instance->self = li; light_instance->light = p_light; light_instance->light_type = RSG::light_storage->light_get_type(p_light); return li; } void RasterizerSceneGLES3::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->transform = p_transform; } void RasterizerSceneGLES3::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) { LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND(!light_instance); light_instance->aabb = p_aabb; } void RasterizerSceneGLES3::light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) { } void RasterizerSceneGLES3::light_instance_mark_visible(RID p_light_instance) { } RID RasterizerSceneGLES3::fog_volume_instance_create(RID p_fog_volume) { return RID(); } void RasterizerSceneGLES3::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) { } void RasterizerSceneGLES3::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) { } RID RasterizerSceneGLES3::fog_volume_instance_get_volume(RID p_fog_volume_instance) const { return RID(); } Vector3 RasterizerSceneGLES3::fog_volume_instance_get_position(RID p_fog_volume_instance) const { return Vector3(); } RID RasterizerSceneGLES3::reflection_atlas_create() { return RID(); } int RasterizerSceneGLES3::reflection_atlas_get_size(RID p_ref_atlas) const { return 0; } void RasterizerSceneGLES3::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) { } RID RasterizerSceneGLES3::reflection_probe_instance_create(RID p_probe) { return RID(); } void RasterizerSceneGLES3::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) { } void RasterizerSceneGLES3::reflection_probe_release_atlas_index(RID p_instance) { } bool RasterizerSceneGLES3::reflection_probe_instance_needs_redraw(RID p_instance) { return false; } bool RasterizerSceneGLES3::reflection_probe_instance_has_reflection(RID p_instance) { return false; } bool RasterizerSceneGLES3::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) { return false; } bool RasterizerSceneGLES3::reflection_probe_instance_postprocess_step(RID p_instance) { return true; } RID RasterizerSceneGLES3::decal_instance_create(RID p_decal) { return RID(); } void RasterizerSceneGLES3::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) { } RID RasterizerSceneGLES3::lightmap_instance_create(RID p_lightmap) { return RID(); } void RasterizerSceneGLES3::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) { } RID RasterizerSceneGLES3::voxel_gi_instance_create(RID p_voxel_gi) { return RID(); } void RasterizerSceneGLES3::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) { } bool RasterizerSceneGLES3::voxel_gi_needs_update(RID p_probe) const { return false; } void RasterizerSceneGLES3::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects) { } void RasterizerSceneGLES3::voxel_gi_set_quality(RS::VoxelGIQuality) { } void RasterizerSceneGLES3::_fill_render_list(RenderListType p_render_list, const RenderDataGLES3 *p_render_data, PassMode p_pass_mode, bool p_append) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); if (p_render_list == RENDER_LIST_OPAQUE) { scene_state.used_screen_texture = false; scene_state.used_normal_texture = false; scene_state.used_depth_texture = false; } Plane near_plane; if (p_render_data->cam_orthogonal) { near_plane = Plane(-p_render_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->cam_transform.origin); near_plane.d += p_render_data->cam_projection.get_z_near(); } float z_max = p_render_data->cam_projection.get_z_far() - p_render_data->cam_projection.get_z_near(); RenderList *rl = &render_list[p_render_list]; // Parse any updates on our geometry, updates surface caches and such _update_dirty_geometry_instances(); if (!p_append) { rl->clear(); if (p_render_list == RENDER_LIST_OPAQUE) { render_list[RENDER_LIST_ALPHA].clear(); //opaque fills alpha too } } //fill list for (int i = 0; i < (int)p_render_data->instances->size(); i++) { GeometryInstanceGLES3 *inst = static_cast((*p_render_data->instances)[i]); if (p_render_data->cam_orthogonal) { Vector3 support_min = inst->transformed_aabb.get_support(-near_plane.normal); inst->depth = near_plane.distance_to(support_min); } else { Vector3 aabb_center = inst->transformed_aabb.position + (inst->transformed_aabb.size * 0.5); inst->depth = p_render_data->cam_transform.origin.distance_to(aabb_center); } uint32_t depth_layer = CLAMP(int(inst->depth * 16 / z_max), 0, 15); uint32_t flags = inst->base_flags; //fill flags if appropriate if (inst->non_uniform_scale) { flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE; } // Sets the index values for lookup in the shader // This has to be done after _setup_lights was called this frame // TODO, check shadow status of lights here, if using shadows, skip here and add below if (p_pass_mode == PASS_MODE_COLOR) { if (inst->omni_light_count) { inst->omni_light_gl_cache.resize(inst->omni_light_count); for (uint32_t j = 0; j < inst->omni_light_count; j++) { inst->omni_light_gl_cache[j] = light_instance_get_gl_id(inst->omni_lights[j]); } } if (inst->spot_light_count) { inst->spot_light_gl_cache.resize(inst->spot_light_count); for (uint32_t j = 0; j < inst->spot_light_count; j++) { inst->spot_light_gl_cache[j] = light_instance_get_gl_id(inst->spot_lights[j]); } } } inst->flags_cache = flags; GeometryInstanceSurface *surf = inst->surface_caches; while (surf) { // LOD if (p_render_data->screen_mesh_lod_threshold > 0.0 && mesh_storage->mesh_surface_has_lod(surf->surface)) { //lod Vector3 lod_support_min = inst->transformed_aabb.get_support(-p_render_data->lod_camera_plane.normal); Vector3 lod_support_max = inst->transformed_aabb.get_support(p_render_data->lod_camera_plane.normal); float distance_min = p_render_data->lod_camera_plane.distance_to(lod_support_min); float distance_max = p_render_data->lod_camera_plane.distance_to(lod_support_max); float distance = 0.0; if (distance_min * distance_max < 0.0) { //crossing plane distance = 0.0; } else if (distance_min >= 0.0) { distance = distance_min; } else if (distance_max <= 0.0) { distance = -distance_max; } if (p_render_data->cam_orthogonal) { distance = 1.0; } uint32_t indices; surf->lod_index = mesh_storage->mesh_surface_get_lod(surf->surface, inst->lod_model_scale * inst->lod_bias, distance * p_render_data->lod_distance_multiplier, p_render_data->screen_mesh_lod_threshold, &indices); /* if (p_render_data->render_info) { indices = _indices_to_primitives(surf->primitive, indices); if (p_render_list == RENDER_LIST_OPAQUE) { //opaque p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; } } */ } else { surf->lod_index = 0; /* if (p_render_data->render_info) { uint32_t to_draw = mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface); to_draw = _indices_to_primitives(surf->primitive, to_draw); to_draw *= inst->instance_count; if (p_render_list == RENDER_LIST_OPAQUE) { //opaque p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface); } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += mesh_storage->mesh_surface_get_vertices_drawn_count(surf->surface); } } */ } // ADD Element if (p_pass_mode == PASS_MODE_COLOR) { #ifdef DEBUG_ENABLED bool force_alpha = unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW); #else bool force_alpha = false; #endif if (!force_alpha && (surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { rl->add_element(surf); } if (force_alpha || (surf->flags & GeometryInstanceSurface::FLAG_PASS_ALPHA)) { render_list[RENDER_LIST_ALPHA].add_element(surf); } if (surf->flags & GeometryInstanceSurface::FLAG_USES_SCREEN_TEXTURE) { scene_state.used_screen_texture = true; } if (surf->flags & GeometryInstanceSurface::FLAG_USES_NORMAL_TEXTURE) { scene_state.used_normal_texture = true; } if (surf->flags & GeometryInstanceSurface::FLAG_USES_DEPTH_TEXTURE) { scene_state.used_depth_texture = true; } /* Add elements here if there are shadows */ } else if (p_pass_mode == PASS_MODE_SHADOW) { if (surf->flags & GeometryInstanceSurface::FLAG_PASS_SHADOW) { rl->add_element(surf); } } else { if (surf->flags & (GeometryInstanceSurface::FLAG_PASS_DEPTH | GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { rl->add_element(surf); } } surf->sort.depth_layer = depth_layer; surf = surf->next; } } } // Needs to be called after _setup_lights so that directional_light_count is accurate. void RasterizerSceneGLES3::_setup_environment(const RenderDataGLES3 *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_pancake_shadows) { CameraMatrix correction; correction.set_depth_correction(p_flip_y); CameraMatrix projection = correction * p_render_data->cam_projection; //store camera into ubo RasterizerStorageGLES3::store_camera(projection, scene_state.ubo.projection_matrix); RasterizerStorageGLES3::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix); RasterizerStorageGLES3::store_transform(p_render_data->cam_transform, scene_state.ubo.inv_view_matrix); RasterizerStorageGLES3::store_transform(p_render_data->inv_cam_transform, scene_state.ubo.view_matrix); scene_state.ubo.directional_light_count = p_render_data->directional_light_count; scene_state.ubo.z_far = p_render_data->z_far; scene_state.ubo.z_near = p_render_data->z_near; scene_state.ubo.viewport_size[0] = p_screen_size.x; scene_state.ubo.viewport_size[1] = p_screen_size.y; Size2 screen_pixel_size = Vector2(1.0, 1.0) / Size2(p_screen_size); scene_state.ubo.screen_pixel_size[0] = screen_pixel_size.x; scene_state.ubo.screen_pixel_size[1] = screen_pixel_size.y; //time global variables scene_state.ubo.time = time; if (is_environment(p_render_data->environment)) { Environment *env = environment_owner.get_or_null(p_render_data->environment); RS::EnvironmentBG env_bg = env->background; RS::EnvironmentAmbientSource ambient_src = env->ambient_source; float bg_energy = env->bg_energy; scene_state.ubo.ambient_light_color_energy[3] = bg_energy; scene_state.ubo.ambient_color_sky_mix = env->ambient_sky_contribution; //ambient if (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && (env_bg == RS::ENV_BG_CLEAR_COLOR || env_bg == RS::ENV_BG_COLOR)) { Color color = env_bg == RS::ENV_BG_CLEAR_COLOR ? p_default_bg_color : env->bg_color; color = color.srgb_to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy; scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy; scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy; scene_state.ubo.use_ambient_light = true; scene_state.ubo.use_ambient_cubemap = false; } else { float energy = env->ambient_light_energy; Color color = env->ambient_light; color = color.srgb_to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * energy; scene_state.ubo.ambient_light_color_energy[1] = color.g * energy; scene_state.ubo.ambient_light_color_energy[2] = color.b * energy; Basis sky_transform = env->sky_orientation; sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis; RasterizerStorageGLES3::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform); scene_state.ubo.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY; scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR; } //specular RS::EnvironmentReflectionSource ref_src = env->reflection_source; if ((ref_src == RS::ENV_REFLECTION_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ref_src == RS::ENV_REFLECTION_SOURCE_SKY) { scene_state.ubo.use_reflection_cubemap = true; } else { scene_state.ubo.use_reflection_cubemap = false; } scene_state.ubo.fog_enabled = env->fog_enabled; scene_state.ubo.fog_density = env->fog_density; scene_state.ubo.fog_height = env->fog_height; scene_state.ubo.fog_height_density = env->fog_height_density; scene_state.ubo.fog_aerial_perspective = env->fog_aerial_perspective; Color fog_color = env->fog_light_color.srgb_to_linear(); float fog_energy = env->fog_light_energy; scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy; scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy; scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy; scene_state.ubo.fog_sun_scatter = env->fog_sun_scatter; } else { } if (scene_state.ubo_buffer == 0) { glGenBuffers(1, &scene_state.ubo_buffer); } glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DATA_UNIFORM_LOCATION, scene_state.ubo_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::UBO), &scene_state.ubo, GL_STREAM_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); } // Puts lights into Uniform Buffers. Needs to be called before _fill_list as this caches the index of each light in the Uniform Buffer void RasterizerSceneGLES3::_setup_lights(const RenderDataGLES3 *p_render_data, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_omni_light_count, uint32_t &r_spot_light_count) { GLES3::LightStorage *light_storage = GLES3::LightStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); const Transform3D inverse_transform = p_render_data->inv_cam_transform; const PagedArray &lights = *p_render_data->lights; r_directional_light_count = 0; r_omni_light_count = 0; r_spot_light_count = 0; int num_lights = lights.size(); for (int i = 0; i < num_lights; i++) { LightInstance *li = light_instance_owner.get_or_null(lights[i]); if (!li) { continue; } RID base = li->light; ERR_CONTINUE(base.is_null()); RS::LightType type = light_storage->light_get_type(base); switch (type) { case RS::LIGHT_DIRECTIONAL: { if (r_directional_light_count >= RendererSceneRender::MAX_DIRECTIONAL_LIGHTS || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) { continue; } DirectionalLightData &light_data = scene_state.directional_lights[r_directional_light_count]; Transform3D light_transform = li->transform; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float sign = light_storage->light_is_negative(base) ? -1 : 1; light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI; Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); light_data.color[0] = linear_col.r; light_data.color[1] = linear_col.g; light_data.color[2] = linear_col.b; float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = 1.0 - Math::cos(Math::deg2rad(size)); //angle to cosine offset light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR); r_directional_light_count++; } break; case RS::LIGHT_OMNI: { if (r_omni_light_count >= (uint32_t)config->max_renderable_lights) { continue; } const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin); if (light_storage->light_is_distance_fade_enabled(li->light)) { const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); const float fade_length = light_storage->light_get_distance_fade_length(li->light); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { // Out of range, don't draw this light to improve performance. continue; } } } li->gl_id = r_omni_light_count; scene_state.omni_light_sort[r_omni_light_count].instance = li; scene_state.omni_light_sort[r_omni_light_count].depth = distance; r_omni_light_count++; } break; case RS::LIGHT_SPOT: { if (r_spot_light_count >= (uint32_t)config->max_renderable_lights) { continue; } const real_t distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin); if (light_storage->light_is_distance_fade_enabled(li->light)) { const float fade_begin = light_storage->light_get_distance_fade_begin(li->light); const float fade_length = light_storage->light_get_distance_fade_length(li->light); if (distance > fade_begin) { if (distance > fade_begin + fade_length) { // Out of range, don't draw this light to improve performance. continue; } } } li->gl_id = r_spot_light_count; scene_state.spot_light_sort[r_spot_light_count].instance = li; scene_state.spot_light_sort[r_spot_light_count].depth = distance; r_spot_light_count++; } break; } } if (r_omni_light_count) { SortArray> sorter; sorter.sort(scene_state.omni_light_sort, r_omni_light_count); } if (r_spot_light_count) { SortArray> sorter; sorter.sort(scene_state.spot_light_sort, r_spot_light_count); } for (uint32_t i = 0; i < (r_omni_light_count + r_spot_light_count); i++) { uint32_t index = (i < r_omni_light_count) ? i : i - (r_omni_light_count); LightData &light_data = (i < r_omni_light_count) ? scene_state.omni_lights[index] : scene_state.spot_lights[index]; //RS::LightType type = (i < omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT; LightInstance *li = (i < r_omni_light_count) ? scene_state.omni_light_sort[index].instance : scene_state.spot_light_sort[index].instance; RID base = li->light; Transform3D light_transform = li->transform; Vector3 pos = inverse_transform.xform(light_transform.origin); light_data.position[0] = pos.x; light_data.position[1] = pos.y; light_data.position[2] = pos.z; float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE)); light_data.inv_radius = 1.0 / radius; Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized(); light_data.direction[0] = direction.x; light_data.direction[1] = direction.y; light_data.direction[2] = direction.z; float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE); light_data.size = size; float sign = light_storage->light_is_negative(base) ? -1 : 1; Color linear_col = light_storage->light_get_color(base).srgb_to_linear(); // Reuse fade begin, fade length and distance for shadow LOD determination later. float fade_begin = 0.0; float fade_length = 0.0; real_t distance = 0.0; float fade = 1.0; if (light_storage->light_is_distance_fade_enabled(li->light)) { fade_begin = light_storage->light_get_distance_fade_begin(li->light); fade_length = light_storage->light_get_distance_fade_length(li->light); distance = p_render_data->cam_transform.origin.distance_to(li->transform.origin); if (distance > fade_begin) { // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player. fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length); } } float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * Math_PI * fade; light_data.color[0] = linear_col.r * energy; light_data.color[1] = linear_col.g * energy; light_data.color[2] = linear_col.b * energy; light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION); light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION); float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE); light_data.cos_spot_angle = Math::cos(Math::deg2rad(spot_angle)); light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0; light_data.shadow_enabled = false; } // TODO, to avoid stalls, should rotate between 3 buffers based on frame index. // TODO, consider mapping the buffer as in 2D if (r_omni_light_count) { glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_OMNILIGHT_UNIFORM_LOCATION, scene_state.omni_light_buffer); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_omni_light_count, scene_state.omni_lights); } if (r_spot_light_count) { glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_SPOTLIGHT_UNIFORM_LOCATION, scene_state.spot_light_buffer); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(LightData) * r_spot_light_count, scene_state.spot_lights); } if (r_directional_light_count) { glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_DIRECTIONAL_LIGHT_UNIFORM_LOCATION, scene_state.directional_light_buffer); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(DirectionalLightData) * r_directional_light_count, scene_state.directional_lights); } glBindBuffer(GL_UNIFORM_BUFFER, 0); } void RasterizerSceneGLES3::render_scene(RID p_render_buffers, const CameraData *p_camera_data, const PagedArray &p_instances, const PagedArray &p_lights, const PagedArray &p_reflection_probes, const PagedArray &p_voxel_gi_instances, const PagedArray &p_decals, const PagedArray &p_lightmaps, const PagedArray &p_fog_volumes, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RendererScene::RenderInfo *r_render_info) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); RENDER_TIMESTAMP("Setup 3D Scene"); RenderBuffers *rb = nullptr; if (p_render_buffers.is_valid()) { rb = render_buffers_owner.get_or_null(p_render_buffers); ERR_FAIL_COND(!rb); } // Assign render data // Use the format from rendererRD RenderDataGLES3 render_data; { render_data.render_buffers = p_render_buffers; render_data.transparent_bg = rb->is_transparent; // Our first camera is used by default render_data.cam_transform = p_camera_data->main_transform; render_data.inv_cam_transform = render_data.cam_transform.affine_inverse(); render_data.cam_projection = p_camera_data->main_projection; render_data.view_projection[0] = p_camera_data->main_projection; render_data.cam_orthogonal = p_camera_data->is_orthogonal; render_data.view_count = p_camera_data->view_count; for (uint32_t v = 0; v < p_camera_data->view_count; v++) { render_data.view_projection[v] = p_camera_data->view_projection[v]; } render_data.z_near = p_camera_data->main_projection.get_z_near(); render_data.z_far = p_camera_data->main_projection.get_z_far(); render_data.instances = &p_instances; render_data.lights = &p_lights; render_data.reflection_probes = &p_reflection_probes; render_data.environment = p_environment; render_data.camera_effects = p_camera_effects; render_data.reflection_probe = p_reflection_probe; render_data.reflection_probe_pass = p_reflection_probe_pass; // this should be the same for all cameras.. render_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier(); render_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_column(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin()); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { render_data.screen_mesh_lod_threshold = 0.0; } else { render_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold; } render_data.render_info = r_render_info; } PagedArray empty; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { render_data.lights = ∅ render_data.reflection_probes = ∅ } bool reverse_cull = false; /////////// // Fill Light lists here ////////// GLuint global_buffer = GLES3::MaterialStorage::get_singleton()->global_variables_get_uniform_buffer(); glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_GLOBALS_UNIFORM_LOCATION, global_buffer); Color clear_color; if (p_render_buffers.is_valid()) { clear_color = texture_storage->render_target_get_clear_request_color(rb->render_target); } else { clear_color = storage->get_default_clear_color(); } Environment *env = environment_owner.get_or_null(p_environment); bool fb_cleared = false; Size2i screen_size; screen_size.x = rb->width; screen_size.y = rb->height; bool use_wireframe = get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME; SceneState::TonemapUBO tonemap_ubo; if (env) { tonemap_ubo.exposure = env->exposure; tonemap_ubo.white = env->white; tonemap_ubo.tonemapper = int32_t(env->tone_mapper); } if (scene_state.tonemap_buffer == 0) { // Only create if using 3D glGenBuffers(1, &scene_state.tonemap_buffer); } glBindBufferBase(GL_UNIFORM_BUFFER, SCENE_TONEMAP_UNIFORM_LOCATION, scene_state.tonemap_buffer); glBufferData(GL_UNIFORM_BUFFER, sizeof(SceneState::TonemapUBO), &tonemap_ubo, GL_STREAM_DRAW); _setup_lights(&render_data, false, render_data.directional_light_count, render_data.omni_light_count, render_data.spot_light_count); _setup_environment(&render_data, render_data.reflection_probe.is_valid(), screen_size, !render_data.reflection_probe.is_valid(), clear_color, false); _fill_render_list(RENDER_LIST_OPAQUE, &render_data, PASS_MODE_COLOR); render_list[RENDER_LIST_OPAQUE].sort_by_key(); render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority(); bool draw_sky = false; bool draw_sky_fog_only = false; bool keep_color = false; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black } else if (env) { RS::EnvironmentBG bg_mode = env->background; float bg_energy = env->bg_energy; switch (bg_mode) { case RS::ENV_BG_CLEAR_COLOR: { clear_color.r *= bg_energy; clear_color.g *= bg_energy; clear_color.b *= bg_energy; if (env->fog_enabled) { draw_sky_fog_only = true; GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color)); } } break; case RS::ENV_BG_COLOR: { clear_color = env->bg_color; clear_color.r *= bg_energy; clear_color.g *= bg_energy; clear_color.b *= bg_energy; if (env->fog_enabled) { draw_sky_fog_only = true; GLES3::MaterialStorage::get_singleton()->material_set_param(sky_globals.fog_material, "clear_color", Variant(clear_color)); } } break; case RS::ENV_BG_SKY: { draw_sky = true; } break; case RS::ENV_BG_CANVAS: { keep_color = true; } break; case RS::ENV_BG_KEEP: { keep_color = true; } break; case RS::ENV_BG_CAMERA_FEED: { } break; default: { } } // setup sky if used for ambient, reflections, or background if (draw_sky || draw_sky_fog_only || env->reflection_source == RS::ENV_REFLECTION_SOURCE_SKY || env->ambient_source == RS::ENV_AMBIENT_SOURCE_SKY) { RENDER_TIMESTAMP("Setup Sky"); CameraMatrix projection = render_data.cam_projection; if (render_data.reflection_probe.is_valid()) { CameraMatrix correction; correction.set_depth_correction(true); projection = correction * render_data.cam_projection; } _setup_sky(env, p_render_buffers, *render_data.lights, projection, render_data.cam_transform, screen_size); if (env->sky.is_valid()) { if (env->reflection_source == RS::ENV_REFLECTION_SOURCE_SKY || env->ambient_source == RS::ENV_AMBIENT_SOURCE_SKY || (env->reflection_source == RS::ENV_REFLECTION_SOURCE_BG && env->background == RS::ENV_BG_SKY)) { _update_sky_radiance(env, projection, render_data.cam_transform); } } else { // do not try to draw sky if invalid draw_sky = false; } } } glBindFramebuffer(GL_FRAMEBUFFER, rb->framebuffer); glViewport(0, 0, rb->width, rb->height); // Do depth prepass if it's explicitly enabled bool use_depth_prepass = config->use_depth_prepass; // Don't do depth prepass we are rendering overdraw use_depth_prepass = use_depth_prepass && get_debug_draw_mode() != RS::VIEWPORT_DEBUG_DRAW_OVERDRAW; if (use_depth_prepass) { RENDER_TIMESTAMP("Depth Prepass"); //pre z pass glDisable(GL_BLEND); glDepthMask(GL_TRUE); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glDisable(GL_SCISSOR_TEST); glCullFace(GL_BACK); glEnable(GL_CULL_FACE); scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; glColorMask(0, 0, 0, 0); glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, 0, use_wireframe); _render_list_template(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size()); glColorMask(1, 1, 1, 1); fb_cleared = true; scene_state.used_depth_prepass = true; } else { scene_state.used_depth_prepass = false; } glBlendEquation(GL_FUNC_ADD); if (render_data.transparent_bg) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); glEnable(GL_BLEND); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); glDisable(GL_BLEND); } scene_state.current_blend_mode = GLES3::SceneShaderData::BLEND_MODE_MIX; glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glDepthMask(GL_TRUE); scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED; scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE; if (!fb_cleared) { glClearDepth(1.0f); glClear(GL_DEPTH_BUFFER_BIT); } if (!keep_color) { glClearBufferfv(GL_COLOR, 0, clear_color.components); } RENDER_TIMESTAMP("Render Opaque Pass"); uint32_t spec_constant_base_flags = 0; { // Specialization Constants that apply for entire rendering pass. if (render_data.directional_light_count == 0) { spec_constant_base_flags |= 1 << SPEC_CONSTANT_DISABLE_DIRECTIONAL_LIGHTS; } if (!env || (env && !env->fog_enabled)) { spec_constant_base_flags |= 1 << SPEC_CONSTANT_DISABLE_FOG; } } // Render Opaque Objects. RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe); _render_list_template(&render_list_params, &render_data, 0, render_list[RENDER_LIST_OPAQUE].elements.size()); if (draw_sky) { RENDER_TIMESTAMP("Render Sky"); if (scene_state.current_depth_test != GLES3::SceneShaderData::DEPTH_TEST_ENABLED) { glEnable(GL_DEPTH_TEST); scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED; } glEnable(GL_DEPTH_TEST); glDepthMask(GL_FALSE); glDisable(GL_BLEND); glEnable(GL_CULL_FACE); glCullFace(GL_BACK); scene_state.current_depth_test = GLES3::SceneShaderData::DEPTH_TEST_ENABLED; scene_state.current_depth_draw = GLES3::SceneShaderData::DEPTH_DRAW_DISABLED; scene_state.cull_mode = GLES3::SceneShaderData::CULL_BACK; _draw_sky(env, render_data.cam_projection, render_data.cam_transform); } RENDER_TIMESTAMP("Render 3D Transparent Pass"); glEnable(GL_BLEND); //Render transparent pass RenderListParameters render_list_params_alpha(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, spec_constant_base_flags, use_wireframe); _render_list_template(&render_list_params_alpha, &render_data, 0, render_list[RENDER_LIST_ALPHA].elements.size(), true); if (p_render_buffers.is_valid()) { _render_buffers_debug_draw(p_render_buffers, p_shadow_atlas, p_occluder_debug_tex); } glDisable(GL_BLEND); texture_storage->render_target_disable_clear_request(rb->render_target); } template void RasterizerSceneGLES3::_render_list_template(RenderListParameters *p_params, const RenderDataGLES3 *p_render_data, uint32_t p_from_element, uint32_t p_to_element, bool p_alpha_pass) { GLES3::MeshStorage *mesh_storage = GLES3::MeshStorage::get_singleton(); GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); GLuint prev_vertex_array_gl = 0; GLuint prev_index_array_gl = 0; GLES3::SceneMaterialData *prev_material_data = nullptr; GLES3::SceneShaderData *prev_shader = nullptr; GeometryInstanceGLES3 *prev_inst = nullptr; SceneShaderGLES3::ShaderVariant shader_variant = SceneShaderGLES3::MODE_COLOR; // Assigned to silence wrong -Wmaybe-initialized. switch (p_pass_mode) { case PASS_MODE_COLOR: case PASS_MODE_COLOR_TRANSPARENT: { } break; case PASS_MODE_COLOR_ADDITIVE: { shader_variant = SceneShaderGLES3::MODE_ADDITIVE; } break; case PASS_MODE_SHADOW: case PASS_MODE_DEPTH: { shader_variant = SceneShaderGLES3::MODE_DEPTH; } break; } if (p_pass_mode == PASS_MODE_COLOR || p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { Environment *env = environment_owner.get_or_null(p_render_data->environment); glActiveTexture(GL_TEXTURE0 + config->max_texture_image_units - 2); GLuint texture_to_bind = texture_storage->get_texture(texture_storage->texture_gl_get_default(GLES3::DEFAULT_GL_TEXTURE_CUBEMAP_BLACK))->tex_id; if (env) { Sky *sky = sky_owner.get_or_null(env->sky); if (sky && sky->radiance != 0) { texture_to_bind = sky->radiance; // base_spec_constant |= USE_RADIANCE_MAP; } glBindTexture(GL_TEXTURE_CUBE_MAP, texture_to_bind); } } for (uint32_t i = p_from_element; i < p_to_element; i++) { const GeometryInstanceSurface *surf = p_params->elements[i]; GeometryInstanceGLES3 *inst = surf->owner; if (p_pass_mode == PASS_MODE_COLOR && !(surf->flags & GeometryInstanceSurface::FLAG_PASS_OPAQUE)) { continue; // Objects with "Depth-prepass" transparency are included in both render lists, but should only be rendered in the transparent pass } if (inst->instance_count == 0) { continue; } //uint32_t base_spec_constants = p_params->spec_constant_base_flags; GLES3::SceneShaderData *shader; GLES3::SceneMaterialData *material_data; void *mesh_surface; if (p_pass_mode == PASS_MODE_SHADOW) { shader = surf->shader_shadow; material_data = surf->material_shadow; mesh_surface = surf->surface_shadow; } else { shader = surf->shader; material_data = surf->material; mesh_surface = surf->surface; } if (!mesh_surface) { continue; } if (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT) { if (scene_state.current_depth_test != shader->depth_test) { if (shader->depth_test == GLES3::SceneShaderData::DEPTH_TEST_DISABLED) { glDisable(GL_DEPTH_TEST); } else { glEnable(GL_DEPTH_TEST); } scene_state.current_depth_test = shader->depth_test; } } if (scene_state.current_depth_draw != shader->depth_draw) { switch (shader->depth_draw) { case GLES3::SceneShaderData::DEPTH_DRAW_OPAQUE: { glDepthMask(p_pass_mode == PASS_MODE_COLOR); } break; case GLES3::SceneShaderData::DEPTH_DRAW_ALWAYS: { glDepthMask(GL_TRUE); } break; case GLES3::SceneShaderData::DEPTH_DRAW_DISABLED: { glDepthMask(GL_FALSE); } break; } scene_state.current_depth_draw = shader->depth_draw; } if (p_pass_mode == PASS_MODE_COLOR_TRANSPARENT || p_pass_mode == PASS_MODE_COLOR_ADDITIVE) { GLES3::SceneShaderData::BlendMode desired_blend_mode; if (p_pass_mode == PASS_MODE_COLOR_ADDITIVE) { desired_blend_mode = GLES3::SceneShaderData::BLEND_MODE_ADD; } else { desired_blend_mode = shader->blend_mode; } if (desired_blend_mode != scene_state.current_blend_mode) { switch (desired_blend_mode) { case GLES3::SceneShaderData::BLEND_MODE_MIX: { glBlendEquation(GL_FUNC_ADD); if (p_render_data->transparent_bg) { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else { glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO, GL_ONE); } } break; case GLES3::SceneShaderData::BLEND_MODE_ADD: { glBlendEquation(GL_FUNC_ADD); glBlendFunc(p_pass_mode == PASS_MODE_COLOR_TRANSPARENT ? GL_SRC_ALPHA : GL_ONE, GL_ONE); } break; case GLES3::SceneShaderData::BLEND_MODE_SUB: { glBlendEquation(GL_FUNC_REVERSE_SUBTRACT); glBlendFunc(GL_SRC_ALPHA, GL_ONE); } break; case GLES3::SceneShaderData::BLEND_MODE_MUL: { glBlendEquation(GL_FUNC_ADD); if (p_render_data->transparent_bg) { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_DST_ALPHA, GL_ZERO); } else { glBlendFuncSeparate(GL_DST_COLOR, GL_ZERO, GL_ZERO, GL_ONE); } } break; case GLES3::SceneShaderData::BLEND_MODE_ALPHA_TO_COVERAGE: { // Do nothing for now. } break; } scene_state.current_blend_mode = desired_blend_mode; } } //find cull variant GLES3::SceneShaderData::Cull cull_mode = shader->cull_mode; if ((surf->flags & GeometryInstanceSurface::FLAG_USES_DOUBLE_SIDED_SHADOWS)) { cull_mode = GLES3::SceneShaderData::CULL_DISABLED; } else { bool mirror = inst->mirror; if (p_params->reverse_cull) { mirror = !mirror; } if (cull_mode == GLES3::SceneShaderData::CULL_FRONT && mirror) { cull_mode = GLES3::SceneShaderData::CULL_BACK; } else if (cull_mode == GLES3::SceneShaderData::CULL_BACK && mirror) { cull_mode = GLES3::SceneShaderData::CULL_FRONT; } } if (scene_state.cull_mode != cull_mode) { if (cull_mode == GLES3::SceneShaderData::CULL_DISABLED) { glDisable(GL_CULL_FACE); } else { if (scene_state.cull_mode == GLES3::SceneShaderData::CULL_DISABLED) { // Last time was disabled, so enable and set proper face. glEnable(GL_CULL_FACE); } glCullFace(cull_mode == GLES3::SceneShaderData::CULL_FRONT ? GL_FRONT : GL_BACK); } scene_state.cull_mode = cull_mode; } RS::PrimitiveType primitive = surf->primitive; static const GLenum prim[5] = { GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES, GL_TRIANGLE_STRIP }; GLenum primitive_gl = prim[int(primitive)]; GLuint vertex_array_gl = 0; GLuint index_array_gl = 0; //skeleton and blend shape if (surf->owner->mesh_instance.is_valid()) { mesh_storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, shader->vertex_input_mask, vertex_array_gl); } else { mesh_storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, shader->vertex_input_mask, vertex_array_gl); } index_array_gl = mesh_storage->mesh_surface_get_index_buffer(mesh_surface, surf->lod_index); if (prev_vertex_array_gl != vertex_array_gl) { glBindVertexArray(vertex_array_gl); prev_vertex_array_gl = vertex_array_gl; } bool use_index_buffer = false; if (prev_index_array_gl != index_array_gl) { if (index_array_gl != 0) { // Bind index each time so we can use LODs glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, index_array_gl); use_index_buffer = true; } prev_index_array_gl = index_array_gl; } Transform3D world_transform; if (inst->store_transform_cache) { world_transform = inst->transform; } if (prev_material_data != material_data) { material_data->bind_uniforms(); prev_material_data = material_data; } if (prev_shader != shader) { material_storage->shaders.scene_shader.version_bind_shader(shader->version, shader_variant); float opaque_prepass_threshold = 0.0; if (p_pass_mode == PASS_MODE_DEPTH) { opaque_prepass_threshold = 0.99; } else if (p_pass_mode == PASS_MODE_SHADOW) { opaque_prepass_threshold = 0.1; } material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OPAQUE_PREPASS_THRESHOLD, opaque_prepass_threshold, shader->version, shader_variant); prev_shader = shader; } if (prev_inst != inst) { // Rebind the light indices. material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::OMNI_LIGHT_COUNT, inst->omni_light_count, shader->version, shader_variant); material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::SPOT_LIGHT_COUNT, inst->spot_light_count, shader->version, shader_variant); if (inst->omni_light_count) { glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::OMNI_LIGHT_INDICES, shader->version, shader_variant), inst->omni_light_count, inst->omni_light_gl_cache.ptr()); } if (inst->spot_light_count) { glUniform1uiv(material_storage->shaders.scene_shader.version_get_uniform(SceneShaderGLES3::SPOT_LIGHT_INDICES, shader->version, shader_variant), inst->spot_light_count, inst->spot_light_gl_cache.ptr()); } prev_inst = inst; } material_storage->shaders.scene_shader.version_set_uniform(SceneShaderGLES3::WORLD_TRANSFORM, world_transform, shader->version, shader_variant); if (use_index_buffer) { glDrawElements(primitive_gl, mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface), mesh_storage->mesh_surface_get_index_type(mesh_surface), 0); } else { glDrawArrays(primitive_gl, 0, mesh_storage->mesh_surface_get_vertices_drawn_count(mesh_surface)); } } } void RasterizerSceneGLES3::render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) { } void RasterizerSceneGLES3::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray &p_instances) { } void RasterizerSceneGLES3::set_time(double p_time, double p_step) { time = p_time; time_step = p_step; } void RasterizerSceneGLES3::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) { debug_draw = p_debug_draw; } RID RasterizerSceneGLES3::render_buffers_create() { RenderBuffers rb; return render_buffers_owner.make_rid(rb); } /* BACK FBO */ /* For MSAA */ /* #ifndef JAVASCRIPT_ENABLED if (rt->msaa >= RS::VIEWPORT_MSAA_2X && rt->msaa <= RS::VIEWPORT_MSAA_8X) { rt->multisample_active = true; static const int msaa_value[] = { 0, 2, 4, 8, 16 }; int msaa = msaa_value[rt->msaa]; int max_samples = 0; glGetIntegerv(GL_MAX_SAMPLES, &max_samples); if (msaa > max_samples) { WARN_PRINT("MSAA must be <= GL_MAX_SAMPLES, falling-back to GL_MAX_SAMPLES = " + itos(max_samples)); msaa = max_samples; } //regular fbo glGenFramebuffers(1, &rt->multisample_fbo); bind_framebuffer(rt->multisample_fbo); glGenRenderbuffers(1, &rt->multisample_depth); glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_depth); glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, config.depth_buffer_internalformat, rt->size.x, rt->size.y); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rt->multisample_depth); glGenRenderbuffers(1, &rt->multisample_color); glBindRenderbuffer(GL_RENDERBUFFER, rt->multisample_color); glRenderbufferStorageMultisample(GL_RENDERBUFFER, msaa, color_internal_format, rt->size.x, rt->size.y); glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, rt->multisample_color); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { // Delete allocated resources and default to no MSAA WARN_PRINT_ONCE("Cannot allocate back framebuffer for MSAA"); printf("err status: %x\n", status); rt->multisample_active = false; glDeleteFramebuffers(1, &rt->multisample_fbo); rt->multisample_fbo = 0; glDeleteRenderbuffers(1, &rt->multisample_depth); rt->multisample_depth = 0; glDeleteRenderbuffers(1, &rt->multisample_color); rt->multisample_color = 0; } glBindRenderbuffer(GL_RENDERBUFFER, 0); bind_framebuffer(0); } else #endif // JAVASCRIPT_ENABLED { rt->multisample_active = false; } */ // copy texscreen buffers // if (!(rt->flags[RendererStorage::RENDER_TARGET_NO_SAMPLING])) { /* if (false) { glGenTextures(1, &rt->copy_screen_effect.color); glBindTexture(GL_TEXTURE_2D, rt->copy_screen_effect.color); if (rt->flags[RendererStorage::RENDER_TARGET_TRANSPARENT]) { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, rt->size.x, rt->size.y, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, rt->size.x, rt->size.y, 0, GL_RGB, GL_UNSIGNED_BYTE, nullptr); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glGenFramebuffers(1, &rt->copy_screen_effect.fbo); bind_framebuffer(rt->copy_screen_effect.fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->copy_screen_effect.color, 0); glClearColor(0, 0, 0, 0); glClear(GL_COLOR_BUFFER_BIT); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { _clear_render_target(rt); ERR_FAIL_COND(status != GL_FRAMEBUFFER_COMPLETE); } } */ void RasterizerSceneGLES3::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_internal_width, int p_internal_height, int p_width, int p_height, float p_fsr_sharpness, float p_fsr_mipmap_bias, RS::ViewportMSAA p_msaa, RS::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding, uint32_t p_view_count) { GLES3::TextureStorage *texture_storage = GLES3::TextureStorage::get_singleton(); RenderBuffers *rb = render_buffers_owner.get_or_null(p_render_buffers); ERR_FAIL_COND(!rb); //rb->internal_width = p_internal_width; // ignore for now //rb->internal_height = p_internal_height; rb->width = p_width; rb->height = p_height; //rb->fsr_sharpness = p_fsr_sharpness; rb->render_target = p_render_target; //rb->msaa = p_msaa; //rb->screen_space_aa = p_screen_space_aa; //rb->use_debanding = p_use_debanding; //rb->view_count = p_view_count; _free_render_buffer_data(rb); GLES3::RenderTarget *rt = texture_storage->get_render_target(p_render_target); rb->is_transparent = rt->flags[RendererTextureStorage::RENDER_TARGET_TRANSPARENT]; // framebuffer glGenFramebuffers(1, &rb->framebuffer); glBindFramebuffer(GL_FRAMEBUFFER, rb->framebuffer); glBindTexture(GL_TEXTURE_2D, rt->color); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, rt->color, 0); glGenTextures(1, &rb->depth_texture); glBindTexture(GL_TEXTURE_2D, rb->depth_texture); glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, rt->size.x, rt->size.y, 0, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, rb->depth_texture, 0); GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); glBindTexture(GL_TEXTURE_2D, 0); glBindFramebuffer(GL_FRAMEBUFFER, texture_storage->system_fbo); if (status != GL_FRAMEBUFFER_COMPLETE) { _free_render_buffer_data(rb); WARN_PRINT("Could not create 3D renderbuffer, status: " + texture_storage->get_framebuffer_error(status)); return; } } void RasterizerSceneGLES3::_free_render_buffer_data(RenderBuffers *rb) { if (rb->depth_texture) { glDeleteTextures(1, &rb->depth_texture); rb->depth_texture = 0; } if (rb->framebuffer) { glDeleteFramebuffers(1, &rb->framebuffer); rb->framebuffer = 0; } } //clear render buffers /* if (rt->copy_screen_effect.color) { glDeleteFramebuffers(1, &rt->copy_screen_effect.fbo); rt->copy_screen_effect.fbo = 0; glDeleteTextures(1, &rt->copy_screen_effect.color); rt->copy_screen_effect.color = 0; } if (rt->multisample_active) { glDeleteFramebuffers(1, &rt->multisample_fbo); rt->multisample_fbo = 0; glDeleteRenderbuffers(1, &rt->multisample_depth); rt->multisample_depth = 0; glDeleteRenderbuffers(1, &rt->multisample_color); rt->multisample_color = 0; } */ void RasterizerSceneGLES3::_render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) { } void RasterizerSceneGLES3::gi_set_use_half_resolution(bool p_enable) { } void RasterizerSceneGLES3::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_curve) { } bool RasterizerSceneGLES3::screen_space_roughness_limiter_is_active() const { return false; } void RasterizerSceneGLES3::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) { } void RasterizerSceneGLES3::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) { } TypedArray RasterizerSceneGLES3::bake_render_uv2(RID p_base, const Vector &p_material_overrides, const Size2i &p_image_size) { return TypedArray(); } bool RasterizerSceneGLES3::free(RID p_rid) { if (environment_owner.owns(p_rid)) { environment_owner.free(p_rid); } else if (sky_owner.owns(p_rid)) { Sky *sky = sky_owner.get_or_null(p_rid); ERR_FAIL_COND_V(!sky, false); _free_sky_data(sky); sky_owner.free(p_rid); } else if (render_buffers_owner.owns(p_rid)) { RenderBuffers *rb = render_buffers_owner.get_or_null(p_rid); ERR_FAIL_COND_V(!rb, false); _free_render_buffer_data(rb); render_buffers_owner.free(p_rid); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.get_or_null(p_rid); ERR_FAIL_COND_V(!light_instance, false); light_instance_owner.free(p_rid); } else { return false; } return true; } void RasterizerSceneGLES3::update() { _update_dirty_skys(); } void RasterizerSceneGLES3::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) { } void RasterizerSceneGLES3::decals_set_filter(RS::DecalFilter p_filter) { } void RasterizerSceneGLES3::light_projectors_set_filter(RS::LightProjectorFilter p_filter) { } RasterizerSceneGLES3::RasterizerSceneGLES3(RasterizerStorageGLES3 *p_storage) { GLES3::MaterialStorage *material_storage = GLES3::MaterialStorage::get_singleton(); GLES3::Config *config = GLES3::Config::get_singleton(); storage = p_storage; { // Setup Lights config->max_renderable_lights = MIN(config->max_renderable_lights, config->max_uniform_buffer_size / (int)sizeof(RasterizerSceneGLES3::LightData)); config->max_lights_per_object = MIN(config->max_lights_per_object, config->max_renderable_lights); uint32_t light_buffer_size = config->max_renderable_lights * sizeof(LightData); scene_state.omni_lights = memnew_arr(LightData, config->max_renderable_lights); scene_state.omni_light_sort = memnew_arr(InstanceSort, config->max_renderable_lights); glGenBuffers(1, &scene_state.omni_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.omni_light_buffer); glBufferData(GL_UNIFORM_BUFFER, light_buffer_size, nullptr, GL_STREAM_DRAW); scene_state.spot_lights = memnew_arr(LightData, config->max_renderable_lights); scene_state.spot_light_sort = memnew_arr(InstanceSort, config->max_renderable_lights); glGenBuffers(1, &scene_state.spot_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.spot_light_buffer); glBufferData(GL_UNIFORM_BUFFER, light_buffer_size, nullptr, GL_STREAM_DRAW); uint32_t directional_light_buffer_size = MAX_DIRECTIONAL_LIGHTS * sizeof(DirectionalLightData); scene_state.directional_lights = memnew_arr(DirectionalLightData, MAX_DIRECTIONAL_LIGHTS); glGenBuffers(1, &scene_state.directional_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, scene_state.directional_light_buffer); glBufferData(GL_UNIFORM_BUFFER, directional_light_buffer_size, nullptr, GL_STREAM_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); } { sky_globals.max_directional_lights = 4; uint32_t directional_light_buffer_size = sky_globals.max_directional_lights * sizeof(DirectionalLightData); sky_globals.directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights); sky_globals.last_frame_directional_lights = memnew_arr(DirectionalLightData, sky_globals.max_directional_lights); sky_globals.last_frame_directional_light_count = sky_globals.max_directional_lights + 1; glGenBuffers(1, &sky_globals.directional_light_buffer); glBindBuffer(GL_UNIFORM_BUFFER, sky_globals.directional_light_buffer); glBufferData(GL_UNIFORM_BUFFER, directional_light_buffer_size, nullptr, GL_STREAM_DRAW); glBindBuffer(GL_UNIFORM_BUFFER, 0); } { String global_defines; global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now global_defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(config->max_renderable_lights) + "\n"; global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(MAX_DIRECTIONAL_LIGHTS) + "\n"; global_defines += "\n#define MAX_FORWARD_LIGHTS " + itos(config->max_lights_per_object) + "\n"; material_storage->shaders.scene_shader.initialize(global_defines); scene_globals.shader_default_version = material_storage->shaders.scene_shader.version_create(); material_storage->shaders.scene_shader.version_bind_shader(scene_globals.shader_default_version, SceneShaderGLES3::MODE_COLOR); } { //default material and shader scene_globals.default_shader = material_storage->shader_allocate(); material_storage->shader_initialize(scene_globals.default_shader); material_storage->shader_set_code(scene_globals.default_shader, R"( // Default 3D material shader (clustered). shader_type spatial; void vertex() { ROUGHNESS = 0.8; } void fragment() { ALBEDO = vec3(0.6); ROUGHNESS = 0.8; METALLIC = 0.2; } )"); scene_globals.default_material = material_storage->material_allocate(); material_storage->material_initialize(scene_globals.default_material); material_storage->material_set_shader(scene_globals.default_material, scene_globals.default_shader); } { // Initialize Sky stuff sky_globals.roughness_layers = GLOBAL_GET("rendering/reflections/sky_reflections/roughness_layers"); sky_globals.ggx_samples = GLOBAL_GET("rendering/reflections/sky_reflections/ggx_samples"); String global_defines; global_defines += "#define MAX_GLOBAL_VARIABLES 256\n"; // TODO: this is arbitrary for now global_defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(sky_globals.max_directional_lights) + "\n"; material_storage->shaders.sky_shader.initialize(global_defines); sky_globals.shader_default_version = material_storage->shaders.sky_shader.version_create(); material_storage->shaders.sky_shader.version_bind_shader(sky_globals.shader_default_version, SkyShaderGLES3::MODE_BACKGROUND); material_storage->shaders.cubemap_filter_shader.initialize(); scene_globals.cubemap_filter_shader_version = material_storage->shaders.cubemap_filter_shader.version_create(); material_storage->shaders.cubemap_filter_shader.version_bind_shader(scene_globals.cubemap_filter_shader_version, CubemapFilterShaderGLES3::MODE_DEFAULT); } { sky_globals.default_shader = material_storage->shader_allocate(); material_storage->shader_initialize(sky_globals.default_shader); material_storage->shader_set_code(sky_globals.default_shader, R"( // Default sky shader. shader_type sky; void sky() { COLOR = vec3(0.0); } )"); sky_globals.default_material = material_storage->material_allocate(); material_storage->material_initialize(sky_globals.default_material); material_storage->material_set_shader(sky_globals.default_material, sky_globals.default_shader); } { sky_globals.fog_shader = material_storage->shader_allocate(); material_storage->shader_initialize(sky_globals.fog_shader); material_storage->shader_set_code(sky_globals.fog_shader, R"( // Default clear color sky shader. shader_type sky; uniform vec4 clear_color; void sky() { COLOR = clear_color.rgb; } )"); sky_globals.fog_material = material_storage->material_allocate(); material_storage->material_initialize(sky_globals.fog_material); material_storage->material_set_shader(sky_globals.fog_material, sky_globals.fog_shader); } { glGenBuffers(1, &sky_globals.screen_triangle); glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle); const float qv[6] = { -1.0f, -1.0f, 3.0f, -1.0f, -1.0f, 3.0f, }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 6, qv, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glGenVertexArrays(1, &sky_globals.screen_triangle_array); glBindVertexArray(sky_globals.screen_triangle_array); glBindBuffer(GL_ARRAY_BUFFER, sky_globals.screen_triangle); glVertexAttribPointer(RS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, nullptr); glEnableVertexAttribArray(RS::ARRAY_VERTEX); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } // Radical inverse vdc cache texture used for cubemap filtering. { glGenTextures(1, &sky_globals.radical_inverse_vdc_cache_tex); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, sky_globals.radical_inverse_vdc_cache_tex); uint8_t radical_inverse[512]; for (uint32_t i = 0; i < 512; i++) { uint32_t bits = i; bits = (bits << 16) | (bits >> 16); bits = ((bits & 0x55555555) << 1) | ((bits & 0xAAAAAAAA) >> 1); bits = ((bits & 0x33333333) << 2) | ((bits & 0xCCCCCCCC) >> 2); bits = ((bits & 0x0F0F0F0F) << 4) | ((bits & 0xF0F0F0F0) >> 4); bits = ((bits & 0x00FF00FF) << 8) | ((bits & 0xFF00FF00) >> 8); float value = float(bits) * 2.3283064365386963e-10; radical_inverse[i] = uint8_t(CLAMP(value * 255.0, 0, 255)); } glTexImage2D(GL_TEXTURE_2D, 0, GL_RED, 512, 1, 0, GL_RED, GL_UNSIGNED_BYTE, radical_inverse); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); //need this for proper sampling glBindTexture(GL_TEXTURE_2D, 0); } #ifdef GLES_OVER_GL glEnable(_EXT_TEXTURE_CUBE_MAP_SEAMLESS); #endif } RasterizerSceneGLES3::~RasterizerSceneGLES3() { glDeleteBuffers(1, &scene_state.directional_light_buffer); glDeleteBuffers(1, &scene_state.omni_light_buffer); glDeleteBuffers(1, &scene_state.spot_light_buffer); memdelete_arr(scene_state.directional_lights); memdelete_arr(scene_state.omni_lights); memdelete_arr(scene_state.spot_lights); memdelete_arr(scene_state.omni_light_sort); memdelete_arr(scene_state.spot_light_sort); // Scene Shader GLES3::MaterialStorage::get_singleton()->shaders.scene_shader.version_free(scene_globals.shader_default_version); GLES3::MaterialStorage::get_singleton()->shaders.cubemap_filter_shader.version_free(scene_globals.cubemap_filter_shader_version); storage->free(scene_globals.default_material); storage->free(scene_globals.default_shader); // Sky Shader GLES3::MaterialStorage::get_singleton()->shaders.sky_shader.version_free(sky_globals.shader_default_version); storage->free(sky_globals.default_material); storage->free(sky_globals.default_shader); storage->free(sky_globals.fog_material); storage->free(sky_globals.fog_shader); glDeleteBuffers(1, &sky_globals.screen_triangle); glDeleteVertexArrays(1, &sky_globals.screen_triangle_array); glDeleteTextures(1, &sky_globals.radical_inverse_vdc_cache_tex); glDeleteBuffers(1, &sky_globals.directional_light_buffer); memdelete_arr(sky_globals.directional_lights); memdelete_arr(sky_globals.last_frame_directional_lights); } #endif // GLES3_ENABLED