/* clang-format off */ #[modes] mode_background = mode_half_res = #define USE_HALF_RES_PASS mode_quarter_res = #define USE_QUARTER_RES_PASS mode_cubemap = #define USE_CUBEMAP_PASS mode_cubemap_half_res = #define USE_CUBEMAP_PASS \n#define USE_HALF_RES_PASS mode_cubemap_quarter_res = #define USE_CUBEMAP_PASS \n#define USE_QUARTER_RES_PASS #[specializations] USE_MULTIVIEW = false USE_INVERTED_Y = true #[vertex] layout(location = 0) in vec2 vertex_attrib; out vec2 uv_interp; /* clang-format on */ void main() { #ifdef USE_INVERTED_Y uv_interp = vertex_attrib; #else // We're doing clockwise culling so flip the order uv_interp = vec2(vertex_attrib.x, vertex_attrib.y * -1.0); #endif gl_Position = vec4(uv_interp, 1.0, 1.0); } /* clang-format off */ #[fragment] #define M_PI 3.14159265359 #include "tonemap_inc.glsl" in vec2 uv_interp; /* clang-format on */ uniform samplerCube radiance; //texunit:-1 #ifdef USE_CUBEMAP_PASS uniform samplerCube half_res; //texunit:-2 uniform samplerCube quarter_res; //texunit:-3 #elif defined(USE_MULTIVIEW) uniform sampler2DArray half_res; //texunit:-2 uniform sampler2DArray quarter_res; //texunit:-3 #else uniform sampler2D half_res; //texunit:-2 uniform sampler2D quarter_res; //texunit:-3 #endif layout(std140) uniform GlobalShaderUniformData { //ubo:1 vec4 global_shader_uniforms[MAX_GLOBAL_SHADER_UNIFORMS]; }; struct DirectionalLightData { vec4 direction_energy; vec4 color_size; bool enabled; }; layout(std140) uniform DirectionalLights { //ubo:4 DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS]; } directional_lights; /* clang-format off */ #ifdef MATERIAL_UNIFORMS_USED layout(std140) uniform MaterialUniforms{ //ubo:3 #MATERIAL_UNIFORMS }; #endif /* clang-format on */ #GLOBALS #ifdef USE_CUBEMAP_PASS #define AT_CUBEMAP_PASS true #else #define AT_CUBEMAP_PASS false #endif #ifdef USE_HALF_RES_PASS #define AT_HALF_RES_PASS true #else #define AT_HALF_RES_PASS false #endif #ifdef USE_QUARTER_RES_PASS #define AT_QUARTER_RES_PASS true #else #define AT_QUARTER_RES_PASS false #endif // mat4 is a waste of space, but we don't have an easy way to set a mat3 uniform for now uniform mat4 orientation; uniform vec4 projection; uniform vec3 position; uniform float time; uniform float luminance_multiplier; uniform float fog_aerial_perspective; uniform vec3 fog_light_color; uniform float fog_sun_scatter; uniform bool fog_enabled; uniform float fog_density; uniform float z_far; uniform uint directional_light_count; #ifdef USE_MULTIVIEW layout(std140) uniform MultiviewData { // ubo:5 highp mat4 projection_matrix_view[MAX_VIEWS]; highp mat4 inv_projection_matrix_view[MAX_VIEWS]; highp vec4 eye_offset[MAX_VIEWS]; } multiview_data; #endif layout(location = 0) out vec4 frag_color; #ifdef USE_DEBANDING // https://www.iryoku.com/next-generation-post-processing-in-call-of-duty-advanced-warfare vec3 interleaved_gradient_noise(vec2 pos) { const vec3 magic = vec3(0.06711056f, 0.00583715f, 52.9829189f); float res = fract(magic.z * fract(dot(pos, magic.xy))) * 2.0 - 1.0; return vec3(res, -res, res) / 255.0; } #endif void main() { vec3 cube_normal; #ifdef USE_MULTIVIEW // In multiview our projection matrices will contain positional and rotational offsets that we need to properly unproject. vec4 unproject = vec4(uv_interp.x, uv_interp.y, 1.0, 1.0); vec4 unprojected = multiview_data.inv_projection_matrix_view[ViewIndex] * unproject; cube_normal = unprojected.xyz / unprojected.w; cube_normal += multiview_data.eye_offset[ViewIndex].xyz; #else cube_normal.z = -1.0; cube_normal.x = (uv_interp.x + projection.x) / projection.y; cube_normal.y = (-uv_interp.y - projection.z) / projection.w; #endif cube_normal = mat3(orientation) * cube_normal; cube_normal = normalize(cube_normal); vec2 uv = gl_FragCoord.xy; // uv_interp * 0.5 + 0.5; vec2 panorama_coords = vec2(atan(cube_normal.x, -cube_normal.z), acos(cube_normal.y)); if (panorama_coords.x < 0.0) { panorama_coords.x += M_PI * 2.0; } panorama_coords /= vec2(M_PI * 2.0, M_PI); vec3 color = vec3(0.0, 0.0, 0.0); float alpha = 1.0; // Only available to subpasses vec4 half_res_color = vec4(1.0); vec4 quarter_res_color = vec4(1.0); vec4 custom_fog = vec4(0.0); #ifdef USE_CUBEMAP_PASS #ifdef USES_HALF_RES_COLOR half_res_color = texture(samplerCube(half_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal); #endif #ifdef USES_QUARTER_RES_COLOR quarter_res_color = texture(samplerCube(quarter_res, material_samplers[SAMPLER_LINEAR_WITH_MIPMAPS_CLAMP]), cube_normal); #endif #else #ifdef USES_HALF_RES_COLOR #ifdef USE_MULTIVIEW half_res_color = textureLod(sampler2DArray(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), vec3(uv, ViewIndex), 0.0); #else half_res_color = textureLod(sampler2D(half_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0); #endif #endif #ifdef USES_QUARTER_RES_COLOR #ifdef USE_MULTIVIEW quarter_res_color = textureLod(sampler2DArray(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), vec3(uv, ViewIndex), 0.0); #else quarter_res_color = textureLod(sampler2D(quarter_res, material_samplers[SAMPLER_LINEAR_CLAMP]), uv, 0.0); #endif #endif #endif { #CODE : SKY } color *= luminance_multiplier; // Convert to Linear for tonemapping so color matches scene shader better color = srgb_to_linear(color); color *= exposure; color = apply_tonemapping(color, white); color = linear_to_srgb(color); #ifdef USE_BCS color = apply_bcs(color, bcs); #endif #ifdef USE_COLOR_CORRECTION color = apply_color_correction(color, color_correction); #endif frag_color.rgb = color; frag_color.a = alpha; #ifdef USE_DEBANDING frag_color.rgb += interleaved_gradient_noise(gl_FragCoord.xy) * luminance_multiplier; #endif }