/**************************************************************************/ /* metal_objects.mm */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ /**************************************************************************/ /* */ /* Portions of this code were derived from MoltenVK. */ /* */ /* Copyright (c) 2015-2023 The Brenwill Workshop Ltd. */ /* (http://www.brenwill.com) */ /* */ /* Licensed under the Apache License, Version 2.0 (the "License"); */ /* you may not use this file except in compliance with the License. */ /* You may obtain a copy of the License at */ /* */ /* http://www.apache.org/licenses/LICENSE-2.0 */ /* */ /* Unless required by applicable law or agreed to in writing, software */ /* distributed under the License is distributed on an "AS IS" BASIS, */ /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */ /* implied. See the License for the specific language governing */ /* permissions and limitations under the License. */ /**************************************************************************/ #import "metal_objects.h" #import "metal_utils.h" #import "pixel_formats.h" #import "rendering_device_driver_metal.h" #import void MDCommandBuffer::begin() { DEV_ASSERT(commandBuffer == nil); commandBuffer = queue.commandBuffer; } void MDCommandBuffer::end() { switch (type) { case MDCommandBufferStateType::None: return; case MDCommandBufferStateType::Render: return render_end_pass(); case MDCommandBufferStateType::Compute: return _end_compute_dispatch(); case MDCommandBufferStateType::Blit: return _end_blit(); } } void MDCommandBuffer::commit() { end(); [commandBuffer commit]; commandBuffer = nil; } void MDCommandBuffer::bind_pipeline(RDD::PipelineID p_pipeline) { MDPipeline *p = (MDPipeline *)(p_pipeline.id); // End current encoder if it is a compute encoder or blit encoder, // as they do not have a defined end boundary in the RDD like render. if (type == MDCommandBufferStateType::Compute) { _end_compute_dispatch(); } else if (type == MDCommandBufferStateType::Blit) { _end_blit(); } if (p->type == MDPipelineType::Render) { DEV_ASSERT(type == MDCommandBufferStateType::Render); MDRenderPipeline *rp = (MDRenderPipeline *)p; if (render.encoder == nil) { // This condition occurs when there are no attachments when calling render_next_subpass() // and is due to the SUPPORTS_FRAGMENT_SHADER_WITH_ONLY_SIDE_EFFECTS flag. render.desc.defaultRasterSampleCount = static_cast(rp->sample_count); // NOTE(sgc): This is to test rdar://FB13605547 and will be deleted once fix is confirmed. #if 0 if (render.pipeline->sample_count == 4) { static id tex = nil; static id res_tex = nil; static dispatch_once_t onceToken; dispatch_once(&onceToken, ^{ Size2i sz = render.frameBuffer->size; MTLTextureDescriptor *td = [MTLTextureDescriptor texture2DDescriptorWithPixelFormat:MTLPixelFormatRGBA8Unorm width:sz.width height:sz.height mipmapped:NO]; td.textureType = MTLTextureType2DMultisample; td.storageMode = MTLStorageModeMemoryless; td.usage = MTLTextureUsageRenderTarget; td.sampleCount = render.pipeline->sample_count; tex = [device_driver->get_device() newTextureWithDescriptor:td]; td.textureType = MTLTextureType2D; td.storageMode = MTLStorageModePrivate; td.usage = MTLTextureUsageShaderWrite; td.sampleCount = 1; res_tex = [device_driver->get_device() newTextureWithDescriptor:td]; }); render.desc.colorAttachments[0].texture = tex; render.desc.colorAttachments[0].loadAction = MTLLoadActionClear; render.desc.colorAttachments[0].storeAction = MTLStoreActionMultisampleResolve; render.desc.colorAttachments[0].resolveTexture = res_tex; } #endif render.encoder = [commandBuffer renderCommandEncoderWithDescriptor:render.desc]; } if (render.pipeline != rp) { render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_RASTER)); // Mark all uniforms as dirty, as variants of a shader pipeline may have a different entry point ABI, // due to setting force_active_argument_buffer_resources = true for spirv_cross::CompilerMSL::Options. // As a result, uniform sets with the same layout will generate redundant binding warnings when // capturing a Metal frame in Xcode. // // If we don't mark as dirty, then some bindings will generate a validation error. render.mark_uniforms_dirty(); if (render.pipeline != nullptr && render.pipeline->depth_stencil != rp->depth_stencil) { render.dirty.set_flag(RenderState::DIRTY_DEPTH); } render.pipeline = rp; } } else if (p->type == MDPipelineType::Compute) { DEV_ASSERT(type == MDCommandBufferStateType::None); type = MDCommandBufferStateType::Compute; compute.pipeline = (MDComputePipeline *)p; compute.encoder = commandBuffer.computeCommandEncoder; [compute.encoder setComputePipelineState:compute.pipeline->state]; } } id MDCommandBuffer::blit_command_encoder() { switch (type) { case MDCommandBufferStateType::None: break; case MDCommandBufferStateType::Render: render_end_pass(); break; case MDCommandBufferStateType::Compute: _end_compute_dispatch(); break; case MDCommandBufferStateType::Blit: return blit.encoder; } type = MDCommandBufferStateType::Blit; blit.encoder = commandBuffer.blitCommandEncoder; return blit.encoder; } void MDCommandBuffer::encodeRenderCommandEncoderWithDescriptor(MTLRenderPassDescriptor *p_desc, NSString *p_label) { switch (type) { case MDCommandBufferStateType::None: break; case MDCommandBufferStateType::Render: render_end_pass(); break; case MDCommandBufferStateType::Compute: _end_compute_dispatch(); break; case MDCommandBufferStateType::Blit: _end_blit(); break; } id enc = [commandBuffer renderCommandEncoderWithDescriptor:p_desc]; if (p_label != nil) { [enc pushDebugGroup:p_label]; [enc popDebugGroup]; } [enc endEncoding]; } #pragma mark - Render Commands void MDCommandBuffer::render_bind_uniform_set(RDD::UniformSetID p_uniform_set, RDD::ShaderID p_shader, uint32_t p_set_index) { DEV_ASSERT(type == MDCommandBufferStateType::Render); MDUniformSet *set = (MDUniformSet *)(p_uniform_set.id); if (render.uniform_sets.size() <= set->index) { uint32_t s = render.uniform_sets.size(); render.uniform_sets.resize(set->index + 1); // Set intermediate values to null. std::fill(&render.uniform_sets[s], &render.uniform_sets[set->index] + 1, nullptr); } if (render.uniform_sets[set->index] != set) { render.dirty.set_flag(RenderState::DIRTY_UNIFORMS); render.uniform_set_mask |= 1ULL << set->index; render.uniform_sets[set->index] = set; } } void MDCommandBuffer::render_clear_attachments(VectorView p_attachment_clears, VectorView p_rects) { DEV_ASSERT(type == MDCommandBufferStateType::Render); uint32_t vertex_count = p_rects.size() * 6; simd::float4 vertices[vertex_count]; simd::float4 clear_colors[ClearAttKey::ATTACHMENT_COUNT]; Size2i size = render.frameBuffer->size; Rect2i render_area = render.clip_to_render_area({ { 0, 0 }, size }); size = Size2i(render_area.position.x + render_area.size.width, render_area.position.y + render_area.size.height); _populate_vertices(vertices, size, p_rects); ClearAttKey key; key.sample_count = render.pass->get_sample_count(); float depth_value = 0; uint32_t stencil_value = 0; for (uint32_t i = 0; i < p_attachment_clears.size(); i++) { RDD::AttachmentClear const &attClear = p_attachment_clears[i]; uint32_t attachment_index; if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { attachment_index = attClear.color_attachment; } else { attachment_index = render.pass->subpasses[render.current_subpass].depth_stencil_reference.attachment; } MDAttachment const &mda = render.pass->attachments[attachment_index]; if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_COLOR_BIT)) { key.set_color_format(attachment_index, mda.format); clear_colors[attachment_index] = { attClear.value.color.r, attClear.value.color.g, attClear.value.color.b, attClear.value.color.a }; } if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT)) { key.set_depth_format(mda.format); depth_value = attClear.value.depth; } if (attClear.aspect.has_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT)) { key.set_stencil_format(mda.format); stencil_value = attClear.value.stencil; } } clear_colors[ClearAttKey::DEPTH_INDEX] = { depth_value, depth_value, depth_value, depth_value }; id enc = render.encoder; MDResourceCache &cache = device_driver->get_resource_cache(); [enc pushDebugGroup:@"ClearAttachments"]; [enc setRenderPipelineState:cache.get_clear_render_pipeline_state(key, nil)]; [enc setDepthStencilState:cache.get_depth_stencil_state( key.is_depth_enabled(), key.is_stencil_enabled())]; [enc setStencilReferenceValue:stencil_value]; [enc setCullMode:MTLCullModeNone]; [enc setTriangleFillMode:MTLTriangleFillModeFill]; [enc setDepthBias:0 slopeScale:0 clamp:0]; [enc setViewport:{ 0, 0, (double)size.width, (double)size.height, 0.0, 1.0 }]; [enc setScissorRect:{ 0, 0, (NSUInteger)size.width, (NSUInteger)size.height }]; [enc setVertexBytes:clear_colors length:sizeof(clear_colors) atIndex:0]; [enc setFragmentBytes:clear_colors length:sizeof(clear_colors) atIndex:0]; [enc setVertexBytes:vertices length:vertex_count * sizeof(vertices[0]) atIndex:device_driver->get_metal_buffer_index_for_vertex_attribute_binding(VERT_CONTENT_BUFFER_INDEX)]; [enc drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:vertex_count]; [enc popDebugGroup]; render.dirty.set_flag((RenderState::DirtyFlag)(RenderState::DIRTY_PIPELINE | RenderState::DIRTY_DEPTH | RenderState::DIRTY_RASTER)); render.mark_uniforms_dirty({ 0 }); // Mark index 0 dirty, if there is already a binding for index 0. render.mark_viewport_dirty(); render.mark_scissors_dirty(); render.mark_vertex_dirty(); } void MDCommandBuffer::_render_set_dirty_state() { _render_bind_uniform_sets(); if (render.dirty.has_flag(RenderState::DIRTY_PIPELINE)) { [render.encoder setRenderPipelineState:render.pipeline->state]; } if (render.dirty.has_flag(RenderState::DIRTY_VIEWPORT)) { [render.encoder setViewports:render.viewports.ptr() count:render.viewports.size()]; } if (render.dirty.has_flag(RenderState::DIRTY_DEPTH)) { [render.encoder setDepthStencilState:render.pipeline->depth_stencil]; } if (render.dirty.has_flag(RenderState::DIRTY_RASTER)) { render.pipeline->raster_state.apply(render.encoder); } if (render.dirty.has_flag(RenderState::DIRTY_SCISSOR) && !render.scissors.is_empty()) { size_t len = render.scissors.size(); MTLScissorRect rects[len]; for (size_t i = 0; i < len; i++) { rects[i] = render.clip_to_render_area(render.scissors[i]); } [render.encoder setScissorRects:rects count:len]; } if (render.dirty.has_flag(RenderState::DIRTY_BLEND) && render.blend_constants.has_value()) { [render.encoder setBlendColorRed:render.blend_constants->r green:render.blend_constants->g blue:render.blend_constants->b alpha:render.blend_constants->a]; } if (render.dirty.has_flag(RenderState::DIRTY_VERTEX)) { uint32_t p_binding_count = render.vertex_buffers.size(); uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1); [render.encoder setVertexBuffers:render.vertex_buffers.ptr() offsets:render.vertex_offsets.ptr() withRange:NSMakeRange(first, p_binding_count)]; } render.dirty.clear(); } void MDCommandBuffer::render_set_viewport(VectorView p_viewports) { render.viewports.resize(p_viewports.size()); for (uint32_t i = 0; i < p_viewports.size(); i += 1) { Rect2i const &vp = p_viewports[i]; render.viewports[i] = { .originX = static_cast(vp.position.x), .originY = static_cast(vp.position.y), .width = static_cast(vp.size.width), .height = static_cast(vp.size.height), .znear = 0.0, .zfar = 1.0, }; } render.dirty.set_flag(RenderState::DIRTY_VIEWPORT); } void MDCommandBuffer::render_set_scissor(VectorView p_scissors) { render.scissors.resize(p_scissors.size()); for (uint32_t i = 0; i < p_scissors.size(); i += 1) { Rect2i const &vp = p_scissors[i]; render.scissors[i] = { .x = static_cast(vp.position.x), .y = static_cast(vp.position.y), .width = static_cast(vp.size.width), .height = static_cast(vp.size.height), }; } render.dirty.set_flag(RenderState::DIRTY_SCISSOR); } void MDCommandBuffer::render_set_blend_constants(const Color &p_constants) { DEV_ASSERT(type == MDCommandBufferStateType::Render); if (render.blend_constants != p_constants) { render.blend_constants = p_constants; render.dirty.set_flag(RenderState::DIRTY_BLEND); } } void MDCommandBuffer::_render_bind_uniform_sets() { DEV_ASSERT(type == MDCommandBufferStateType::Render); if (!render.dirty.has_flag(RenderState::DIRTY_UNIFORMS)) { return; } render.dirty.clear_flag(RenderState::DIRTY_UNIFORMS); uint64_t set_uniforms = render.uniform_set_mask; render.uniform_set_mask = 0; id enc = render.encoder; MDRenderShader *shader = render.pipeline->shader; id device = enc.device; while (set_uniforms != 0) { // Find the index of the next set bit. int index = __builtin_ctzll(set_uniforms); // Clear the set bit. set_uniforms &= ~(1ULL << index); MDUniformSet *set = render.uniform_sets[index]; if (set == nullptr || set->index >= (uint32_t)shader->sets.size()) { continue; } UniformSet const &set_info = shader->sets[set->index]; BoundUniformSet &bus = set->boundUniformSetForShader(shader, device); for (KeyValue, StageResourceUsage> const &keyval : bus.bound_resources) { MTLResourceUsage usage = resource_usage_for_stage(keyval.value, RDD::ShaderStage::SHADER_STAGE_VERTEX); if (usage != 0) { [enc useResource:keyval.key usage:usage stages:MTLRenderStageVertex]; } usage = resource_usage_for_stage(keyval.value, RDD::ShaderStage::SHADER_STAGE_FRAGMENT); if (usage != 0) { [enc useResource:keyval.key usage:usage stages:MTLRenderStageFragment]; } } // Set the buffer for the vertex stage. { uint32_t const *offset = set_info.offsets.getptr(RDD::SHADER_STAGE_VERTEX); if (offset) { [enc setVertexBuffer:bus.buffer offset:*offset atIndex:set->index]; } } // Set the buffer for the fragment stage. { uint32_t const *offset = set_info.offsets.getptr(RDD::SHADER_STAGE_FRAGMENT); if (offset) { [enc setFragmentBuffer:bus.buffer offset:*offset atIndex:set->index]; } } } } void MDCommandBuffer::_populate_vertices(simd::float4 *p_vertices, Size2i p_fb_size, VectorView p_rects) { uint32_t idx = 0; for (uint32_t i = 0; i < p_rects.size(); i++) { Rect2i const &rect = p_rects[i]; idx = _populate_vertices(p_vertices, idx, rect, p_fb_size); } } uint32_t MDCommandBuffer::_populate_vertices(simd::float4 *p_vertices, uint32_t p_index, Rect2i const &p_rect, Size2i p_fb_size) { // Determine the positions of the four edges of the // clear rectangle as a fraction of the attachment size. float leftPos = (float)(p_rect.position.x) / (float)p_fb_size.width; float rightPos = (float)(p_rect.size.width) / (float)p_fb_size.width + leftPos; float bottomPos = (float)(p_rect.position.y) / (float)p_fb_size.height; float topPos = (float)(p_rect.size.height) / (float)p_fb_size.height + bottomPos; // Transform to clip-space coordinates, which are bounded by (-1.0 < p < 1.0) in clip-space. leftPos = (leftPos * 2.0f) - 1.0f; rightPos = (rightPos * 2.0f) - 1.0f; bottomPos = (bottomPos * 2.0f) - 1.0f; topPos = (topPos * 2.0f) - 1.0f; simd::float4 vtx; uint32_t idx = p_index; vtx.z = 0.0; vtx.w = (float)1; // Top left vertex - First triangle. vtx.y = topPos; vtx.x = leftPos; p_vertices[idx++] = vtx; // Bottom left vertex. vtx.y = bottomPos; vtx.x = leftPos; p_vertices[idx++] = vtx; // Bottom right vertex. vtx.y = bottomPos; vtx.x = rightPos; p_vertices[idx++] = vtx; // Bottom right vertex - Second triangle. p_vertices[idx++] = vtx; // Top right vertex. vtx.y = topPos; vtx.x = rightPos; p_vertices[idx++] = vtx; // Top left vertex. vtx.y = topPos; vtx.x = leftPos; p_vertices[idx++] = vtx; return idx; } void MDCommandBuffer::render_begin_pass(RDD::RenderPassID p_render_pass, RDD::FramebufferID p_frameBuffer, RDD::CommandBufferType p_cmd_buffer_type, const Rect2i &p_rect, VectorView p_clear_values) { DEV_ASSERT(commandBuffer != nil); end(); MDRenderPass *pass = (MDRenderPass *)(p_render_pass.id); MDFrameBuffer *fb = (MDFrameBuffer *)(p_frameBuffer.id); type = MDCommandBufferStateType::Render; render.pass = pass; render.current_subpass = UINT32_MAX; render.render_area = p_rect; render.clear_values.resize(p_clear_values.size()); for (uint32_t i = 0; i < p_clear_values.size(); i++) { render.clear_values[i] = p_clear_values[i]; } render.is_rendering_entire_area = (p_rect.position == Point2i(0, 0)) && p_rect.size == fb->size; render.frameBuffer = fb; render_next_subpass(); } void MDCommandBuffer::_end_render_pass() { MDFrameBuffer const &fb_info = *render.frameBuffer; MDRenderPass const &pass_info = *render.pass; MDSubpass const &subpass = pass_info.subpasses[render.current_subpass]; PixelFormats &pf = device_driver->get_pixel_formats(); for (uint32_t i = 0; i < subpass.resolve_references.size(); i++) { uint32_t color_index = subpass.color_references[i].attachment; uint32_t resolve_index = subpass.resolve_references[i].attachment; DEV_ASSERT((color_index == RDD::AttachmentReference::UNUSED) == (resolve_index == RDD::AttachmentReference::UNUSED)); if (color_index == RDD::AttachmentReference::UNUSED || !fb_info.textures[color_index]) { continue; } id resolve_tex = fb_info.textures[resolve_index]; CRASH_COND_MSG(!flags::all(pf.getCapabilities(resolve_tex.pixelFormat), kMTLFmtCapsResolve), "not implemented: unresolvable texture types"); // see: https://github.com/KhronosGroup/MoltenVK/blob/d20d13fe2735adb845636a81522df1b9d89c0fba/MoltenVK/MoltenVK/GPUObjects/MVKRenderPass.mm#L407 } [render.encoder endEncoding]; render.encoder = nil; } void MDCommandBuffer::_render_clear_render_area() { MDRenderPass const &pass = *render.pass; MDSubpass const &subpass = pass.subpasses[render.current_subpass]; // First determine attachments that should be cleared. LocalVector clears; clears.reserve(subpass.color_references.size() + /* possible depth stencil clear */ 1); for (uint32_t i = 0; i < subpass.color_references.size(); i++) { uint32_t idx = subpass.color_references[i].attachment; if (idx != RDD::AttachmentReference::UNUSED && pass.attachments[idx].shouldClear(subpass, false)) { clears.push_back({ .aspect = RDD::TEXTURE_ASPECT_COLOR_BIT, .color_attachment = idx, .value = render.clear_values[idx] }); } } uint32_t ds_index = subpass.depth_stencil_reference.attachment; MDAttachment const &attachment = pass.attachments[ds_index]; bool shouldClearDepth = (ds_index != RDD::AttachmentReference::UNUSED && attachment.shouldClear(subpass, false)); bool shouldClearStencil = (ds_index != RDD::AttachmentReference::UNUSED && attachment.shouldClear(subpass, true)); if (shouldClearDepth || shouldClearStencil) { BitField bits; if (shouldClearDepth && attachment.type & MDAttachmentType::Depth) { bits.set_flag(RDD::TEXTURE_ASPECT_DEPTH_BIT); } if (shouldClearStencil && attachment.type & MDAttachmentType::Stencil) { bits.set_flag(RDD::TEXTURE_ASPECT_STENCIL_BIT); } clears.push_back({ .aspect = bits, .color_attachment = ds_index, .value = render.clear_values[ds_index] }); } if (clears.is_empty()) { return; } render_clear_attachments(clears, { render.render_area }); } void MDCommandBuffer::render_next_subpass() { DEV_ASSERT(commandBuffer != nil); if (render.current_subpass == UINT32_MAX) { render.current_subpass = 0; } else { _end_render_pass(); render.current_subpass++; } MDFrameBuffer const &fb = *render.frameBuffer; MDRenderPass const &pass = *render.pass; MDSubpass const &subpass = pass.subpasses[render.current_subpass]; MTLRenderPassDescriptor *desc = MTLRenderPassDescriptor.renderPassDescriptor; PixelFormats &pf = device_driver->get_pixel_formats(); uint32_t attachmentCount = 0; for (uint32_t i = 0; i < subpass.color_references.size(); i++) { uint32_t idx = subpass.color_references[i].attachment; if (idx == RDD::AttachmentReference::UNUSED) { continue; } attachmentCount += 1; MTLRenderPassColorAttachmentDescriptor *ca = desc.colorAttachments[i]; uint32_t resolveIdx = subpass.resolve_references.is_empty() ? RDD::AttachmentReference::UNUSED : subpass.resolve_references[i].attachment; bool has_resolve = resolveIdx != RDD::AttachmentReference::UNUSED; bool can_resolve = true; if (resolveIdx != RDD::AttachmentReference::UNUSED) { id resolve_tex = fb.textures[resolveIdx]; can_resolve = flags::all(pf.getCapabilities(resolve_tex.pixelFormat), kMTLFmtCapsResolve); if (can_resolve) { ca.resolveTexture = resolve_tex; } else { CRASH_NOW_MSG("unimplemented: using a texture format that is not supported for resolve"); } } MDAttachment const &attachment = pass.attachments[idx]; id tex = fb.textures[idx]; if ((attachment.type & MDAttachmentType::Color)) { if (attachment.configureDescriptor(ca, pf, subpass, tex, render.is_rendering_entire_area, has_resolve, can_resolve, false)) { Color clearColor = render.clear_values[idx].color; ca.clearColor = MTLClearColorMake(clearColor.r, clearColor.g, clearColor.b, clearColor.a); } } } if (subpass.depth_stencil_reference.attachment != RDD::AttachmentReference::UNUSED) { attachmentCount += 1; uint32_t idx = subpass.depth_stencil_reference.attachment; MDAttachment const &attachment = pass.attachments[idx]; id tex = fb.textures[idx]; if (attachment.type & MDAttachmentType::Depth) { MTLRenderPassDepthAttachmentDescriptor *da = desc.depthAttachment; if (attachment.configureDescriptor(da, pf, subpass, tex, render.is_rendering_entire_area, false, false, false)) { da.clearDepth = render.clear_values[idx].depth; } } if (attachment.type & MDAttachmentType::Stencil) { MTLRenderPassStencilAttachmentDescriptor *sa = desc.stencilAttachment; if (attachment.configureDescriptor(sa, pf, subpass, tex, render.is_rendering_entire_area, false, false, true)) { sa.clearStencil = render.clear_values[idx].stencil; } } } desc.renderTargetWidth = MAX((NSUInteger)MIN(render.render_area.position.x + render.render_area.size.width, fb.size.width), 1u); desc.renderTargetHeight = MAX((NSUInteger)MIN(render.render_area.position.y + render.render_area.size.height, fb.size.height), 1u); if (attachmentCount == 0) { // If there are no attachments, delay the creation of the encoder, // so we can use a matching sample count for the pipeline, by setting // the defaultRasterSampleCount from the pipeline's sample count. render.desc = desc; } else { render.encoder = [commandBuffer renderCommandEncoderWithDescriptor:desc]; if (!render.is_rendering_entire_area) { _render_clear_render_area(); } // With a new encoder, all state is dirty. render.dirty.set_flag(RenderState::DIRTY_ALL); } } void MDCommandBuffer::render_draw(uint32_t p_vertex_count, uint32_t p_instance_count, uint32_t p_base_vertex, uint32_t p_first_instance) { DEV_ASSERT(type == MDCommandBufferStateType::Render); _render_set_dirty_state(); DEV_ASSERT(render.dirty == 0); id enc = render.encoder; [enc drawPrimitives:render.pipeline->raster_state.render_primitive vertexStart:p_base_vertex vertexCount:p_vertex_count instanceCount:p_instance_count baseInstance:p_first_instance]; } void MDCommandBuffer::render_bind_vertex_buffers(uint32_t p_binding_count, const RDD::BufferID *p_buffers, const uint64_t *p_offsets) { DEV_ASSERT(type == MDCommandBufferStateType::Render); render.vertex_buffers.resize(p_binding_count); render.vertex_offsets.resize(p_binding_count); // Reverse the buffers, as their bindings are assigned in descending order. for (uint32_t i = 0; i < p_binding_count; i += 1) { render.vertex_buffers[i] = rid::get(p_buffers[p_binding_count - i - 1]); render.vertex_offsets[i] = p_offsets[p_binding_count - i - 1]; } if (render.encoder) { uint32_t first = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(p_binding_count - 1); [render.encoder setVertexBuffers:render.vertex_buffers.ptr() offsets:render.vertex_offsets.ptr() withRange:NSMakeRange(first, p_binding_count)]; } else { render.dirty.set_flag(RenderState::DIRTY_VERTEX); } } void MDCommandBuffer::render_bind_index_buffer(RDD::BufferID p_buffer, RDD::IndexBufferFormat p_format, uint64_t p_offset) { DEV_ASSERT(type == MDCommandBufferStateType::Render); render.index_buffer = rid::get(p_buffer); render.index_type = p_format == RDD::IndexBufferFormat::INDEX_BUFFER_FORMAT_UINT16 ? MTLIndexTypeUInt16 : MTLIndexTypeUInt32; render.index_offset = p_offset; } void MDCommandBuffer::render_draw_indexed(uint32_t p_index_count, uint32_t p_instance_count, uint32_t p_first_index, int32_t p_vertex_offset, uint32_t p_first_instance) { DEV_ASSERT(type == MDCommandBufferStateType::Render); _render_set_dirty_state(); id enc = render.encoder; uint32_t index_offset = render.index_offset; index_offset += p_first_index * (render.index_type == MTLIndexTypeUInt16 ? sizeof(uint16_t) : sizeof(uint32_t)); [enc drawIndexedPrimitives:render.pipeline->raster_state.render_primitive indexCount:p_index_count indexType:render.index_type indexBuffer:render.index_buffer indexBufferOffset:index_offset instanceCount:p_instance_count baseVertex:p_vertex_offset baseInstance:p_first_instance]; } void MDCommandBuffer::render_draw_indexed_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { DEV_ASSERT(type == MDCommandBufferStateType::Render); _render_set_dirty_state(); id enc = render.encoder; id indirect_buffer = rid::get(p_indirect_buffer); NSUInteger indirect_offset = p_offset; for (uint32_t i = 0; i < p_draw_count; i++) { [enc drawIndexedPrimitives:render.pipeline->raster_state.render_primitive indexType:render.index_type indexBuffer:render.index_buffer indexBufferOffset:0 indirectBuffer:indirect_buffer indirectBufferOffset:indirect_offset]; indirect_offset += p_stride; } } void MDCommandBuffer::render_draw_indexed_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { ERR_FAIL_MSG("not implemented"); } void MDCommandBuffer::render_draw_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset, uint32_t p_draw_count, uint32_t p_stride) { DEV_ASSERT(type == MDCommandBufferStateType::Render); _render_set_dirty_state(); id enc = render.encoder; id indirect_buffer = rid::get(p_indirect_buffer); NSUInteger indirect_offset = p_offset; for (uint32_t i = 0; i < p_draw_count; i++) { [enc drawPrimitives:render.pipeline->raster_state.render_primitive indirectBuffer:indirect_buffer indirectBufferOffset:indirect_offset]; indirect_offset += p_stride; } } void MDCommandBuffer::render_draw_indirect_count(RDD::BufferID p_indirect_buffer, uint64_t p_offset, RDD::BufferID p_count_buffer, uint64_t p_count_buffer_offset, uint32_t p_max_draw_count, uint32_t p_stride) { ERR_FAIL_MSG("not implemented"); } void MDCommandBuffer::render_end_pass() { DEV_ASSERT(type == MDCommandBufferStateType::Render); [render.encoder endEncoding]; render.reset(); type = MDCommandBufferStateType::None; } #pragma mark - Compute void MDCommandBuffer::compute_bind_uniform_set(RDD::UniformSetID p_uniform_set, RDD::ShaderID p_shader, uint32_t p_set_index) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); id enc = compute.encoder; id device = enc.device; MDShader *shader = (MDShader *)(p_shader.id); UniformSet const &set_info = shader->sets[p_set_index]; MDUniformSet *set = (MDUniformSet *)(p_uniform_set.id); BoundUniformSet &bus = set->boundUniformSetForShader(shader, device); for (KeyValue, StageResourceUsage> &keyval : bus.bound_resources) { MTLResourceUsage usage = resource_usage_for_stage(keyval.value, RDD::ShaderStage::SHADER_STAGE_COMPUTE); if (usage != 0) { [enc useResource:keyval.key usage:usage]; } } uint32_t const *offset = set_info.offsets.getptr(RDD::SHADER_STAGE_COMPUTE); if (offset) { [enc setBuffer:bus.buffer offset:*offset atIndex:p_set_index]; } } void MDCommandBuffer::compute_dispatch(uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); MTLRegion region = MTLRegionMake3D(0, 0, 0, p_x_groups, p_y_groups, p_z_groups); id enc = compute.encoder; [enc dispatchThreadgroups:region.size threadsPerThreadgroup:compute.pipeline->compute_state.local]; } void MDCommandBuffer::compute_dispatch_indirect(RDD::BufferID p_indirect_buffer, uint64_t p_offset) { DEV_ASSERT(type == MDCommandBufferStateType::Compute); id indirectBuffer = rid::get(p_indirect_buffer); id enc = compute.encoder; [enc dispatchThreadgroupsWithIndirectBuffer:indirectBuffer indirectBufferOffset:p_offset threadsPerThreadgroup:compute.pipeline->compute_state.local]; } void MDCommandBuffer::_end_compute_dispatch() { DEV_ASSERT(type == MDCommandBufferStateType::Compute); [compute.encoder endEncoding]; compute.reset(); type = MDCommandBufferStateType::None; } void MDCommandBuffer::_end_blit() { DEV_ASSERT(type == MDCommandBufferStateType::Blit); [blit.encoder endEncoding]; blit.reset(); type = MDCommandBufferStateType::None; } MDComputeShader::MDComputeShader(CharString p_name, Vector p_sets, MDLibrary *p_kernel) : MDShader(p_name, p_sets), kernel(p_kernel) { } void MDComputeShader::encode_push_constant_data(VectorView p_data, MDCommandBuffer *p_cb) { DEV_ASSERT(p_cb->type == MDCommandBufferStateType::Compute); if (push_constants.binding == (uint32_t)-1) { return; } id enc = p_cb->compute.encoder; void const *ptr = p_data.ptr(); size_t length = p_data.size() * sizeof(uint32_t); [enc setBytes:ptr length:length atIndex:push_constants.binding]; } MDRenderShader::MDRenderShader(CharString p_name, Vector p_sets, MDLibrary *_Nonnull p_vert, MDLibrary *_Nonnull p_frag) : MDShader(p_name, p_sets), vert(p_vert), frag(p_frag) { } void MDRenderShader::encode_push_constant_data(VectorView p_data, MDCommandBuffer *p_cb) { DEV_ASSERT(p_cb->type == MDCommandBufferStateType::Render); id enc = p_cb->render.encoder; void const *ptr = p_data.ptr(); size_t length = p_data.size() * sizeof(uint32_t); if (push_constants.vert.binding > -1) { [enc setVertexBytes:ptr length:length atIndex:push_constants.vert.binding]; } if (push_constants.frag.binding > -1) { [enc setFragmentBytes:ptr length:length atIndex:push_constants.frag.binding]; } } BoundUniformSet &MDUniformSet::boundUniformSetForShader(MDShader *p_shader, id p_device) { BoundUniformSet *sus = bound_uniforms.getptr(p_shader); if (sus != nullptr) { return *sus; } UniformSet const &set = p_shader->sets[index]; HashMap, StageResourceUsage> bound_resources; auto add_usage = [&bound_resources](id __unsafe_unretained res, RDD::ShaderStage stage, MTLResourceUsage usage) { StageResourceUsage *sru = bound_resources.getptr(res); if (sru == nullptr) { bound_resources.insert(res, stage_resource_usage(stage, usage)); } else { *sru |= stage_resource_usage(stage, usage); } }; id enc_buffer = nil; if (set.buffer_size > 0) { MTLResourceOptions options = MTLResourceStorageModeShared | MTLResourceHazardTrackingModeTracked; enc_buffer = [p_device newBufferWithLength:set.buffer_size options:options]; for (KeyValue> const &kv : set.encoders) { RDD::ShaderStage const stage = kv.key; ShaderStageUsage const stage_usage = ShaderStageUsage(1 << stage); id const enc = kv.value; [enc setArgumentBuffer:enc_buffer offset:set.offsets[stage]]; for (uint32_t i = 0; i < uniforms.size(); i++) { RDD::BoundUniform const &uniform = uniforms[i]; UniformInfo ui = set.uniforms[i]; BindingInfo *bi = ui.bindings.getptr(stage); if (bi == nullptr) { // No binding for this stage. continue; } if ((ui.active_stages & stage_usage) == 0) { // Not active for this state, so don't bind anything. continue; } switch (uniform.type) { case RDD::UNIFORM_TYPE_SAMPLER: { size_t count = uniform.ids.size(); id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { objects[j] = rid::get(uniform.ids[j].id); } [enc setSamplerStates:objects withRange:NSMakeRange(bi->index, count)]; } break; case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE: { size_t count = uniform.ids.size() / 2; id __unsafe_unretained *textures = ALLOCA_ARRAY(id __unsafe_unretained, count); id __unsafe_unretained *samplers = ALLOCA_ARRAY(id __unsafe_unretained, count); for (uint32_t j = 0; j < count; j += 1) { id sampler = rid::get(uniform.ids[j * 2 + 0]); id texture = rid::get(uniform.ids[j * 2 + 1]); samplers[j] = sampler; textures[j] = texture; add_usage(texture, stage, bi->usage); } BindingInfo *sbi = ui.bindings_secondary.getptr(stage); if (sbi) { [enc setSamplerStates:samplers withRange:NSMakeRange(sbi->index, count)]; } [enc setTextures:textures withRange:NSMakeRange(bi->index, count)]; } break; case RDD::UNIFORM_TYPE_TEXTURE: { size_t count = uniform.ids.size(); if (count == 1) { id obj = rid::get(uniform.ids[0]); [enc setTexture:obj atIndex:bi->index]; add_usage(obj, stage, bi->usage); } else { id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { id obj = rid::get(uniform.ids[j]); objects[j] = obj; add_usage(obj, stage, bi->usage); } [enc setTextures:objects withRange:NSMakeRange(bi->index, count)]; } } break; case RDD::UNIFORM_TYPE_IMAGE: { size_t count = uniform.ids.size(); if (count == 1) { id obj = rid::get(uniform.ids[0]); [enc setTexture:obj atIndex:bi->index]; add_usage(obj, stage, bi->usage); BindingInfo *sbi = ui.bindings_secondary.getptr(stage); if (sbi) { id tex = obj.parentTexture ? obj.parentTexture : obj; id buf = tex.buffer; if (buf) { [enc setBuffer:buf offset:tex.bufferOffset atIndex:sbi->index]; } } } else { id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { id obj = rid::get(uniform.ids[j]); objects[j] = obj; add_usage(obj, stage, bi->usage); } [enc setTextures:objects withRange:NSMakeRange(bi->index, count)]; } } break; case RDD::UNIFORM_TYPE_TEXTURE_BUFFER: { ERR_PRINT("not implemented: UNIFORM_TYPE_TEXTURE_BUFFER"); } break; case RDD::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER: { ERR_PRINT("not implemented: UNIFORM_TYPE_SAMPLER_WITH_TEXTURE_BUFFER"); } break; case RDD::UNIFORM_TYPE_IMAGE_BUFFER: { CRASH_NOW_MSG("not implemented: UNIFORM_TYPE_IMAGE_BUFFER"); } break; case RDD::UNIFORM_TYPE_UNIFORM_BUFFER: { id buffer = rid::get(uniform.ids[0]); [enc setBuffer:buffer offset:0 atIndex:bi->index]; add_usage(buffer, stage, bi->usage); } break; case RDD::UNIFORM_TYPE_STORAGE_BUFFER: { id buffer = rid::get(uniform.ids[0]); [enc setBuffer:buffer offset:0 atIndex:bi->index]; add_usage(buffer, stage, bi->usage); } break; case RDD::UNIFORM_TYPE_INPUT_ATTACHMENT: { size_t count = uniform.ids.size(); if (count == 1) { id obj = rid::get(uniform.ids[0]); [enc setTexture:obj atIndex:bi->index]; add_usage(obj, stage, bi->usage); } else { id __unsafe_unretained *objects = ALLOCA_ARRAY(id __unsafe_unretained, count); for (size_t j = 0; j < count; j += 1) { id obj = rid::get(uniform.ids[j]); objects[j] = obj; add_usage(obj, stage, bi->usage); } [enc setTextures:objects withRange:NSMakeRange(bi->index, count)]; } } break; default: { DEV_ASSERT(false); } } } } } BoundUniformSet bs = { .buffer = enc_buffer, .bound_resources = bound_resources }; bound_uniforms.insert(p_shader, bs); return bound_uniforms.get(p_shader); } MTLFmtCaps MDSubpass::getRequiredFmtCapsForAttachmentAt(uint32_t p_index) const { MTLFmtCaps caps = kMTLFmtCapsNone; for (RDD::AttachmentReference const &ar : input_references) { if (ar.attachment == p_index) { flags::set(caps, kMTLFmtCapsRead); break; } } for (RDD::AttachmentReference const &ar : color_references) { if (ar.attachment == p_index) { flags::set(caps, kMTLFmtCapsColorAtt); break; } } for (RDD::AttachmentReference const &ar : resolve_references) { if (ar.attachment == p_index) { flags::set(caps, kMTLFmtCapsResolve); break; } } if (depth_stencil_reference.attachment == p_index) { flags::set(caps, kMTLFmtCapsDSAtt); } return caps; } void MDAttachment::linkToSubpass(const MDRenderPass &p_pass) { firstUseSubpassIndex = UINT32_MAX; lastUseSubpassIndex = 0; for (MDSubpass const &subpass : p_pass.subpasses) { MTLFmtCaps reqCaps = subpass.getRequiredFmtCapsForAttachmentAt(index); if (reqCaps) { firstUseSubpassIndex = MIN(subpass.subpass_index, firstUseSubpassIndex); lastUseSubpassIndex = MAX(subpass.subpass_index, lastUseSubpassIndex); } } } MTLStoreAction MDAttachment::getMTLStoreAction(MDSubpass const &p_subpass, bool p_is_rendering_entire_area, bool p_has_resolve, bool p_can_resolve, bool p_is_stencil) const { if (!p_is_rendering_entire_area || !isLastUseOf(p_subpass)) { return p_has_resolve && p_can_resolve ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore; } switch (p_is_stencil ? stencilStoreAction : storeAction) { case MTLStoreActionStore: return p_has_resolve && p_can_resolve ? MTLStoreActionStoreAndMultisampleResolve : MTLStoreActionStore; case MTLStoreActionDontCare: return p_has_resolve ? (p_can_resolve ? MTLStoreActionMultisampleResolve : MTLStoreActionStore) : MTLStoreActionDontCare; default: return MTLStoreActionStore; } } bool MDAttachment::configureDescriptor(MTLRenderPassAttachmentDescriptor *p_desc, PixelFormats &p_pf, MDSubpass const &p_subpass, id p_attachment, bool p_is_rendering_entire_area, bool p_has_resolve, bool p_can_resolve, bool p_is_stencil) const { p_desc.texture = p_attachment; MTLLoadAction load; if (!p_is_rendering_entire_area || !isFirstUseOf(p_subpass)) { load = MTLLoadActionLoad; } else { load = p_is_stencil ? stencilLoadAction : loadAction; } p_desc.loadAction = load; MTLPixelFormat mtlFmt = p_attachment.pixelFormat; bool isDepthFormat = p_pf.isDepthFormat(mtlFmt); bool isStencilFormat = p_pf.isStencilFormat(mtlFmt); if (isStencilFormat && !p_is_stencil && !isDepthFormat) { p_desc.storeAction = MTLStoreActionDontCare; } else { p_desc.storeAction = getMTLStoreAction(p_subpass, p_is_rendering_entire_area, p_has_resolve, p_can_resolve, p_is_stencil); } return load == MTLLoadActionClear; } bool MDAttachment::shouldClear(const MDSubpass &p_subpass, bool p_is_stencil) const { // If the subpass is not the first subpass to use this attachment, don't clear this attachment. if (p_subpass.subpass_index != firstUseSubpassIndex) { return false; } return (p_is_stencil ? stencilLoadAction : loadAction) == MTLLoadActionClear; } MDRenderPass::MDRenderPass(Vector &p_attachments, Vector &p_subpasses) : attachments(p_attachments), subpasses(p_subpasses) { for (MDAttachment &att : attachments) { att.linkToSubpass(*this); } } #pragma mark - Resource Factory id MDResourceFactory::new_func(NSString *p_source, NSString *p_name, NSError **p_error) { @autoreleasepool { NSError *err = nil; MTLCompileOptions *options = [MTLCompileOptions new]; id device = device_driver->get_device(); id mtlLib = [device newLibraryWithSource:p_source options:options error:&err]; if (err) { if (p_error != nil) { *p_error = err; } } return [mtlLib newFunctionWithName:p_name]; } } id MDResourceFactory::new_clear_vert_func(ClearAttKey &p_key) { @autoreleasepool { NSString *msl = [NSString stringWithFormat:@R"( #include using namespace metal; typedef struct { float4 a_position [[attribute(0)]]; } AttributesPos; typedef struct { float4 colors[9]; } ClearColorsIn; typedef struct { float4 v_position [[position]]; uint layer; } VaryingsPos; vertex VaryingsPos vertClear(AttributesPos attributes [[stage_in]], constant ClearColorsIn& ccIn [[buffer(0)]]) { VaryingsPos varyings; varyings.v_position = float4(attributes.a_position.x, -attributes.a_position.y, ccIn.colors[%d].r, 1.0); varyings.layer = uint(attributes.a_position.w); return varyings; } )", ClearAttKey::DEPTH_INDEX]; return new_func(msl, @"vertClear", nil); } } id MDResourceFactory::new_clear_frag_func(ClearAttKey &p_key) { @autoreleasepool { NSMutableString *msl = [NSMutableString stringWithCapacity:2048]; [msl appendFormat:@R"( #include using namespace metal; typedef struct { float4 v_position [[position]]; } VaryingsPos; typedef struct { float4 colors[9]; } ClearColorsIn; typedef struct { )"]; for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) { if (p_key.is_enabled(caIdx)) { NSString *typeStr = get_format_type_string((MTLPixelFormat)p_key.pixel_formats[caIdx]); [msl appendFormat:@" %@4 color%u [[color(%u)]];\n", typeStr, caIdx, caIdx]; } } [msl appendFormat:@R"(} ClearColorsOut; fragment ClearColorsOut fragClear(VaryingsPos varyings [[stage_in]], constant ClearColorsIn& ccIn [[buffer(0)]]) { ClearColorsOut ccOut; )"]; for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) { if (p_key.is_enabled(caIdx)) { NSString *typeStr = get_format_type_string((MTLPixelFormat)p_key.pixel_formats[caIdx]); [msl appendFormat:@" ccOut.color%u = %@4(ccIn.colors[%u]);\n", caIdx, typeStr, caIdx]; } } [msl appendString:@R"( return ccOut; })"]; return new_func(msl, @"fragClear", nil); } } NSString *MDResourceFactory::get_format_type_string(MTLPixelFormat p_fmt) { switch (device_driver->get_pixel_formats().getFormatType(p_fmt)) { case MTLFormatType::ColorInt8: case MTLFormatType::ColorInt16: return @"short"; case MTLFormatType::ColorUInt8: case MTLFormatType::ColorUInt16: return @"ushort"; case MTLFormatType::ColorInt32: return @"int"; case MTLFormatType::ColorUInt32: return @"uint"; case MTLFormatType::ColorHalf: return @"half"; case MTLFormatType::ColorFloat: case MTLFormatType::DepthStencil: case MTLFormatType::Compressed: return @"float"; case MTLFormatType::None: return @"unexpected_MTLPixelFormatInvalid"; } } id MDResourceFactory::new_depth_stencil_state(bool p_use_depth, bool p_use_stencil) { MTLDepthStencilDescriptor *dsDesc = [MTLDepthStencilDescriptor new]; dsDesc.depthCompareFunction = MTLCompareFunctionAlways; dsDesc.depthWriteEnabled = p_use_depth; if (p_use_stencil) { MTLStencilDescriptor *sDesc = [MTLStencilDescriptor new]; sDesc.stencilCompareFunction = MTLCompareFunctionAlways; sDesc.stencilFailureOperation = MTLStencilOperationReplace; sDesc.depthFailureOperation = MTLStencilOperationReplace; sDesc.depthStencilPassOperation = MTLStencilOperationReplace; dsDesc.frontFaceStencil = sDesc; dsDesc.backFaceStencil = sDesc; } else { dsDesc.frontFaceStencil = nil; dsDesc.backFaceStencil = nil; } return [device_driver->get_device() newDepthStencilStateWithDescriptor:dsDesc]; } id MDResourceFactory::new_clear_pipeline_state(ClearAttKey &p_key, NSError **p_error) { PixelFormats &pixFmts = device_driver->get_pixel_formats(); id vtxFunc = new_clear_vert_func(p_key); id fragFunc = new_clear_frag_func(p_key); MTLRenderPipelineDescriptor *plDesc = [MTLRenderPipelineDescriptor new]; plDesc.label = @"ClearRenderAttachments"; plDesc.vertexFunction = vtxFunc; plDesc.fragmentFunction = fragFunc; plDesc.rasterSampleCount = p_key.sample_count; plDesc.inputPrimitiveTopology = MTLPrimitiveTopologyClassTriangle; for (uint32_t caIdx = 0; caIdx < ClearAttKey::COLOR_COUNT; caIdx++) { MTLRenderPipelineColorAttachmentDescriptor *colorDesc = plDesc.colorAttachments[caIdx]; colorDesc.pixelFormat = (MTLPixelFormat)p_key.pixel_formats[caIdx]; colorDesc.writeMask = p_key.is_enabled(caIdx) ? MTLColorWriteMaskAll : MTLColorWriteMaskNone; } MTLPixelFormat mtlDepthFormat = p_key.depth_format(); if (pixFmts.isDepthFormat(mtlDepthFormat)) { plDesc.depthAttachmentPixelFormat = mtlDepthFormat; } MTLPixelFormat mtlStencilFormat = p_key.stencil_format(); if (pixFmts.isStencilFormat(mtlStencilFormat)) { plDesc.stencilAttachmentPixelFormat = mtlStencilFormat; } MTLVertexDescriptor *vtxDesc = plDesc.vertexDescriptor; // Vertex attribute descriptors. MTLVertexAttributeDescriptorArray *vaDescArray = vtxDesc.attributes; MTLVertexAttributeDescriptor *vaDesc; NSUInteger vtxBuffIdx = device_driver->get_metal_buffer_index_for_vertex_attribute_binding(VERT_CONTENT_BUFFER_INDEX); NSUInteger vtxStride = 0; // Vertex location. vaDesc = vaDescArray[0]; vaDesc.format = MTLVertexFormatFloat4; vaDesc.bufferIndex = vtxBuffIdx; vaDesc.offset = vtxStride; vtxStride += sizeof(simd::float4); // Vertex attribute buffer. MTLVertexBufferLayoutDescriptorArray *vbDescArray = vtxDesc.layouts; MTLVertexBufferLayoutDescriptor *vbDesc = vbDescArray[vtxBuffIdx]; vbDesc.stepFunction = MTLVertexStepFunctionPerVertex; vbDesc.stepRate = 1; vbDesc.stride = vtxStride; return [device_driver->get_device() newRenderPipelineStateWithDescriptor:plDesc error:p_error]; } id MDResourceCache::get_clear_render_pipeline_state(ClearAttKey &p_key, NSError **p_error) { HashMap::ConstIterator it = clear_states.find(p_key); if (it != clear_states.end()) { return it->value; } id state = resource_factory->new_clear_pipeline_state(p_key, p_error); clear_states[p_key] = state; return state; } id MDResourceCache::get_depth_stencil_state(bool p_use_depth, bool p_use_stencil) { id __strong *val; if (p_use_depth && p_use_stencil) { val = &clear_depth_stencil_state.all; } else if (p_use_depth) { val = &clear_depth_stencil_state.depth_only; } else if (p_use_stencil) { val = &clear_depth_stencil_state.stencil_only; } else { val = &clear_depth_stencil_state.none; } DEV_ASSERT(val != nullptr); if (*val == nil) { *val = resource_factory->new_depth_stencil_state(p_use_depth, p_use_stencil); } return *val; } static const char *SHADER_STAGE_NAMES[] = { [RD::SHADER_STAGE_VERTEX] = "vert", [RD::SHADER_STAGE_FRAGMENT] = "frag", [RD::SHADER_STAGE_TESSELATION_CONTROL] = "tess_ctrl", [RD::SHADER_STAGE_TESSELATION_EVALUATION] = "tess_eval", [RD::SHADER_STAGE_COMPUTE] = "comp", }; void ShaderCacheEntry::notify_free() const { owner.shader_cache_free_entry(key); } @interface MDLibrary () - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry; @end /// Loads the MTLLibrary when the library is first accessed. @interface MDLazyLibrary : MDLibrary { id _library; NSError *_error; std::shared_mutex _mu; bool _loaded; id _device; NSString *_source; MTLCompileOptions *_options; } - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options; @end /// Loads the MTLLibrary immediately on initialization, using an asynchronous API. @interface MDImmediateLibrary : MDLibrary { id _library; NSError *_error; std::mutex _cv_mutex; std::condition_variable _cv; std::atomic _complete; bool _ready; } - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options; @end @implementation MDLibrary + (instancetype)newLibraryWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options strategy:(ShaderLoadStrategy)strategy { switch (strategy) { case ShaderLoadStrategy::DEFAULT: [[fallthrough]]; default: return [[MDImmediateLibrary alloc] initWithCacheEntry:entry device:device source:source options:options]; case ShaderLoadStrategy::LAZY: return [[MDLazyLibrary alloc] initWithCacheEntry:entry device:device source:source options:options]; } } - (id)library { CRASH_NOW_MSG("Not implemented"); return nil; } - (NSError *)error { CRASH_NOW_MSG("Not implemented"); return nil; } - (void)setLabel:(NSString *)label { } - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry { self = [super init]; _entry = entry; _entry->library = self; return self; } - (void)dealloc { _entry->notify_free(); } @end @implementation MDImmediateLibrary - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options { self = [super initWithCacheEntry:entry]; _complete = false; _ready = false; __block os_signpost_id_t compile_id = (os_signpost_id_t)(uintptr_t)self; os_signpost_interval_begin(LOG_INTERVALS, compile_id, "shader_compile", "shader_name=%{public}s stage=%{public}s hash=%X", entry->name.get_data(), SHADER_STAGE_NAMES[entry->stage], entry->key.short_sha()); [device newLibraryWithSource:source options:options completionHandler:^(id library, NSError *error) { os_signpost_interval_end(LOG_INTERVALS, compile_id, "shader_compile"); self->_library = library; self->_error = error; if (error) { ERR_PRINT(String(U"Error compiling shader %s: %s").format(entry->name.get_data(), error.localizedDescription.UTF8String)); } { std::lock_guard lock(self->_cv_mutex); _ready = true; } _cv.notify_all(); _complete = true; }]; return self; } - (id)library { if (!_complete) { std::unique_lock lock(_cv_mutex); _cv.wait(lock, [&] { return _ready; }); } return _library; } - (NSError *)error { if (!_complete) { std::unique_lock lock(_cv_mutex); _cv.wait(lock, [&] { return _ready; }); } return _error; } @end @implementation MDLazyLibrary - (instancetype)initWithCacheEntry:(ShaderCacheEntry *)entry device:(id)device source:(NSString *)source options:(MTLCompileOptions *)options { self = [super initWithCacheEntry:entry]; _device = device; _source = source; _options = options; return self; } - (void)load { { std::shared_lock lock(_mu); if (_loaded) { return; } } std::unique_lock lock(_mu); if (_loaded) { return; } __block os_signpost_id_t compile_id = (os_signpost_id_t)(uintptr_t)self; os_signpost_interval_begin(LOG_INTERVALS, compile_id, "shader_compile", "shader_name=%{public}s stage=%{public}s hash=%X", _entry->name.get_data(), SHADER_STAGE_NAMES[_entry->stage], _entry->key.short_sha()); NSError *error; _library = [_device newLibraryWithSource:_source options:_options error:&error]; os_signpost_interval_end(LOG_INTERVALS, compile_id, "shader_compile"); _device = nil; _source = nil; _options = nil; _loaded = true; } - (id)library { [self load]; return _library; } - (NSError *)error { [self load]; return _error; } @end