/*************************************************************************/ /* editor_import_collada.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "editor_import_collada.h" #include "editor/collada/collada.h" #include "editor/editor_node.h" #include "os/os.h" #include "scene/3d/camera.h" #include "scene/3d/light.h" #include "scene/3d/mesh_instance.h" #include "scene/3d/path.h" #include "scene/3d/skeleton.h" #include "scene/3d/spatial.h" #include "scene/animation/animation_player.h" #include "scene/resources/animation.h" #include "scene/resources/packed_scene.h" #include struct ColladaImport { Collada collada; Spatial *scene; Vector > animations; struct NodeMap { //String path; Spatial *node; int bone; List anim_tracks; NodeMap() { node = NULL; bone = -1; } }; bool found_ambient; Color ambient; bool found_directional; bool force_make_tangents; bool apply_mesh_xform_to_vertices; bool use_mesh_builtin_materials; float bake_fps; Map node_map; //map from collada node to engine node Map node_name_map; //map from collada node to engine node Map > mesh_cache; Map > curve_cache; Map > material_cache; Map skeleton_map; Map > skeleton_bone_map; Set valid_animated_nodes; Vector valid_animated_properties; Map bones_with_animation; Error _populate_skeleton(Skeleton *p_skeleton, Collada::Node *p_node, int &r_bone, int p_parent); Error _create_scene_skeletons(Collada::Node *p_node); Error _create_scene(Collada::Node *p_node, Spatial *p_parent); Error _create_resources(Collada::Node *p_node); Error _create_material(const String &p_target); Error _create_mesh_surfaces(bool p_optimize, Ref &p_mesh, const Map &p_material_map, const Collada::MeshData &meshdata, const Transform &p_local_xform, const Vector &bone_remap, const Collada::SkinControllerData *p_skin_controller, const Collada::MorphControllerData *p_morph_data, Vector > p_morph_meshes = Vector >(), bool p_for_morph = false, bool p_use_mesh_material = false); Error load(const String &p_path, int p_flags, bool p_force_make_tangents = false); void _fix_param_animation_tracks(); void create_animation(int p_clip, bool p_make_tracks_in_all_bones, bool p_import_value_tracks); void create_animations(bool p_make_tracks_in_all_bones, bool p_import_value_tracks); Set tracks_in_clips; Vector missing_textures; void _pre_process_lights(Collada::Node *p_node); ColladaImport() { found_ambient = false; found_directional = false; force_make_tangents = false; apply_mesh_xform_to_vertices = true; bake_fps = 15; } }; Error ColladaImport::_populate_skeleton(Skeleton *p_skeleton, Collada::Node *p_node, int &r_bone, int p_parent) { if (p_node->type != Collada::Node::TYPE_JOINT) return OK; Collada::NodeJoint *joint = static_cast(p_node); print_line("populating joint " + joint->name); p_skeleton->add_bone(p_node->name); if (p_parent >= 0) p_skeleton->set_bone_parent(r_bone, p_parent); NodeMap nm; nm.node = p_skeleton; nm.bone = r_bone; node_map[p_node->id] = nm; node_name_map[p_node->name] = p_node->id; skeleton_bone_map[p_skeleton][joint->sid] = r_bone; if (collada.state.bone_rest_map.has(joint->sid)) { p_skeleton->set_bone_rest(r_bone, collada.fix_transform(collada.state.bone_rest_map[joint->sid])); //should map this bone to something for animation? } else { print_line("no rest: " + joint->sid); WARN_PRINT("Joint has no rest.."); } int id = r_bone++; for (int i = 0; i < p_node->children.size(); i++) { Error err = _populate_skeleton(p_skeleton, p_node->children[i], r_bone, id); if (err) return err; } return OK; } void ColladaImport::_pre_process_lights(Collada::Node *p_node) { if (p_node->type == Collada::Node::TYPE_LIGHT) { Collada::NodeLight *light = static_cast(p_node); if (collada.state.light_data_map.has(light->light)) { Collada::LightData &ld = collada.state.light_data_map[light->light]; if (ld.mode == Collada::LightData::MODE_AMBIENT) { found_ambient = true; ambient = ld.color; } if (ld.mode == Collada::LightData::MODE_DIRECTIONAL) { found_directional = true; } } } for (int i = 0; i < p_node->children.size(); i++) _pre_process_lights(p_node->children[i]); } Error ColladaImport::_create_scene_skeletons(Collada::Node *p_node) { if (p_node->type == Collada::Node::TYPE_SKELETON) { Skeleton *sk = memnew(Skeleton); int bone = 0; for (int i = 0; i < p_node->children.size(); i++) { _populate_skeleton(sk, p_node->children[i], bone, -1); } sk->localize_rests(); //after creating skeleton, rests must be localized...! skeleton_map[p_node] = sk; } for (int i = 0; i < p_node->children.size(); i++) { Error err = _create_scene_skeletons(p_node->children[i]); if (err) return err; } return OK; } Error ColladaImport::_create_scene(Collada::Node *p_node, Spatial *p_parent) { Spatial *node = NULL; switch (p_node->type) { case Collada::Node::TYPE_NODE: { node = memnew(Spatial); } break; case Collada::Node::TYPE_JOINT: { return OK; // do nothing } break; case Collada::Node::TYPE_LIGHT: { //node = memnew( Light) Collada::NodeLight *light = static_cast(p_node); if (collada.state.light_data_map.has(light->light)) { Collada::LightData &ld = collada.state.light_data_map[light->light]; if (ld.mode == Collada::LightData::MODE_AMBIENT) { if (found_directional) return OK; //do nothing not needed if (!bool(GLOBAL_DEF("collada/use_ambient", false))) return OK; //well, it's an ambient light.. Light *l = memnew(DirectionalLight); //l->set_color(Light::COLOR_AMBIENT,ld.color); //l->set_color(Light::COLOR_DIFFUSE,Color(0,0,0)); //l->set_color(Light::COLOR_SPECULAR,Color(0,0,0)); node = l; } else if (ld.mode == Collada::LightData::MODE_DIRECTIONAL) { //well, it's an ambient light.. Light *l = memnew(DirectionalLight); /* if (found_ambient) //use it here l->set_color(Light::COLOR_AMBIENT,ambient); l->set_color(Light::COLOR_DIFFUSE,ld.color); l->set_color(Light::COLOR_SPECULAR,Color(1,1,1)); */ node = l; } else { Light *l; if (ld.mode == Collada::LightData::MODE_OMNI) l = memnew(OmniLight); else { l = memnew(SpotLight); //l->set_parameter(Light::PARAM_SPOT_ANGLE,ld.spot_angle); //l->set_parameter(Light::PARAM_SPOT_ATTENUATION,ld.spot_exp); } // //l->set_color(Light::COLOR_DIFFUSE,ld.color); //l->set_color(Light::COLOR_SPECULAR,Color(1,1,1)); //l->approximate_opengl_attenuation(ld.constant_att,ld.linear_att,ld.quad_att); node = l; } } else { node = memnew(Spatial); } } break; case Collada::Node::TYPE_CAMERA: { Collada::NodeCamera *cam = static_cast(p_node); Camera *camera = memnew(Camera); if (collada.state.camera_data_map.has(cam->camera)) { const Collada::CameraData &cd = collada.state.camera_data_map[cam->camera]; switch (cd.mode) { case Collada::CameraData::MODE_ORTHOGONAL: { if (cd.orthogonal.y_mag) { camera->set_keep_aspect_mode(Camera::KEEP_HEIGHT); camera->set_orthogonal(cd.orthogonal.y_mag * 2.0, cd.z_near, cd.z_far); } else if (!cd.orthogonal.y_mag && cd.orthogonal.x_mag) { camera->set_keep_aspect_mode(Camera::KEEP_WIDTH); camera->set_orthogonal(cd.orthogonal.x_mag * 2.0, cd.z_near, cd.z_far); } } break; case Collada::CameraData::MODE_PERSPECTIVE: { if (cd.perspective.y_fov) { camera->set_perspective(cd.perspective.y_fov, cd.z_near, cd.z_far); } else if (!cd.perspective.y_fov && cd.perspective.x_fov) { camera->set_perspective(cd.perspective.x_fov / cd.aspect, cd.z_near, cd.z_far); } } break; } } node = camera; } break; case Collada::Node::TYPE_GEOMETRY: { Collada::NodeGeometry *ng = static_cast(p_node); if (collada.state.curve_data_map.has(ng->source)) { node = memnew(Path); } else { //mesh since nothing else node = memnew(MeshInstance); Object::cast_to(node)->set_flag(GeometryInstance::FLAG_USE_BAKED_LIGHT, true); } } break; case Collada::Node::TYPE_SKELETON: { ERR_FAIL_COND_V(!skeleton_map.has(p_node), ERR_CANT_CREATE); Skeleton *sk = skeleton_map[p_node]; node = sk; } break; } if (p_node->name != "") node->set_name(p_node->name); NodeMap nm; nm.node = node; node_map[p_node->id] = nm; node_name_map[p_node->name] = p_node->id; Transform xf = p_node->default_transform; xf = collada.fix_transform(xf) * p_node->post_transform; node->set_transform(xf); p_parent->add_child(node); node->set_owner(scene); if (p_node->empty_draw_type != "") { node->set_meta("empty_draw_type", Variant(p_node->empty_draw_type)); } for (int i = 0; i < p_node->children.size(); i++) { Error err = _create_scene(p_node->children[i], node); if (err) return err; } return OK; } Error ColladaImport::_create_material(const String &p_target) { ERR_FAIL_COND_V(material_cache.has(p_target), ERR_ALREADY_EXISTS); ERR_FAIL_COND_V(!collada.state.material_map.has(p_target), ERR_INVALID_PARAMETER); Collada::Material &src_mat = collada.state.material_map[p_target]; ERR_FAIL_COND_V(!collada.state.effect_map.has(src_mat.instance_effect), ERR_INVALID_PARAMETER); Collada::Effect &effect = collada.state.effect_map[src_mat.instance_effect]; Ref material = memnew(SpatialMaterial); if (src_mat.name != "") material->set_name(src_mat.name); else if (effect.name != "") material->set_name(effect.name); // DIFFUSE if (effect.diffuse.texture != "") { String texfile = effect.get_texture_path(effect.diffuse.texture, collada); if (texfile != "") { Ref texture = ResourceLoader::load(texfile, "Texture"); if (texture.is_valid()) { material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, texture); material->set_albedo(Color(1, 1, 1, 1)); //material->set_parameter(SpatialMaterial::PARAM_DIFFUSE,Color(1,1,1,1)); } else { missing_textures.push_back(texfile.get_file()); } } } else { material->set_albedo(effect.diffuse.color); } // SPECULAR if (effect.specular.texture != "") { String texfile = effect.get_texture_path(effect.specular.texture, collada); if (texfile != "") { Ref texture = ResourceLoader::load(texfile, "Texture"); if (texture.is_valid()) { material->set_texture(SpatialMaterial::TEXTURE_METALLIC, texture); material->set_specular(1.0); //material->set_texture(SpatialMaterial::PARAM_SPECULAR,texture); //material->set_parameter(SpatialMaterial::PARAM_SPECULAR,Color(1,1,1,1)); } else { missing_textures.push_back(texfile.get_file()); } } } else { material->set_metallic(effect.specular.color.get_v()); } // EMISSION if (effect.emission.texture != "") { String texfile = effect.get_texture_path(effect.emission.texture, collada); if (texfile != "") { Ref texture = ResourceLoader::load(texfile, "Texture"); if (texture.is_valid()) { material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); material->set_texture(SpatialMaterial::TEXTURE_EMISSION, texture); material->set_emission(Color(1, 1, 1, 1)); //material->set_parameter(SpatialMaterial::PARAM_EMISSION,Color(1,1,1,1)); } else { missing_textures.push_back(texfile.get_file()); } } } else { if (effect.emission.color != Color()) { material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); material->set_emission(effect.emission.color); } } // NORMAL if (effect.bump.texture != "") { String texfile = effect.get_texture_path(effect.bump.texture, collada); if (texfile != "") { Ref texture = ResourceLoader::load(texfile, "Texture"); if (texture.is_valid()) { material->set_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING, true); material->set_texture(SpatialMaterial::TEXTURE_NORMAL, texture); //material->set_emission(Color(1,1,1,1)); //material->set_texture(SpatialMaterial::PARAM_NORMAL,texture); } else { //missing_textures.push_back(texfile.get_file()); } } } float roughness = Math::sqrt(1.0 - ((Math::log(effect.shininess) / Math::log(2.0)) / 8.0)); //not very right.. material->set_roughness(roughness); if (effect.double_sided) { material->set_cull_mode(SpatialMaterial::CULL_DISABLED); } material->set_flag(SpatialMaterial::FLAG_UNSHADED, effect.unshaded); material_cache[p_target] = material; return OK; } static void _generate_normals(const PoolVector &p_indices, const PoolVector &p_vertices, PoolVector &r_normals) { r_normals.resize(p_vertices.size()); PoolVector::Write narrayw = r_normals.write(); int iacount = p_indices.size() / 3; PoolVector::Read index_arrayr = p_indices.read(); PoolVector::Read vertex_arrayr = p_vertices.read(); for (int idx = 0; idx < iacount; idx++) { Vector3 v[3] = { vertex_arrayr[index_arrayr[idx * 3 + 0]], vertex_arrayr[index_arrayr[idx * 3 + 1]], vertex_arrayr[index_arrayr[idx * 3 + 2]] }; Vector3 normal = Plane(v[0], v[1], v[2]).normal; narrayw[index_arrayr[idx * 3 + 0]] += normal; narrayw[index_arrayr[idx * 3 + 1]] += normal; narrayw[index_arrayr[idx * 3 + 2]] += normal; } int vlen = p_vertices.size(); for (int idx = 0; idx < vlen; idx++) { narrayw[idx].normalize(); } } static void _generate_tangents_and_binormals(const PoolVector &p_indices, const PoolVector &p_vertices, const PoolVector &p_uvs, const PoolVector &p_normals, PoolVector &r_tangents) { int vlen = p_vertices.size(); Vector tangents; tangents.resize(vlen); Vector binormals; binormals.resize(vlen); int iacount = p_indices.size() / 3; PoolVector::Read index_arrayr = p_indices.read(); PoolVector::Read vertex_arrayr = p_vertices.read(); PoolVector::Read narrayr = p_normals.read(); PoolVector::Read uvarrayr = p_uvs.read(); for (int idx = 0; idx < iacount; idx++) { Vector3 v1 = vertex_arrayr[index_arrayr[idx * 3 + 0]]; Vector3 v2 = vertex_arrayr[index_arrayr[idx * 3 + 1]]; Vector3 v3 = vertex_arrayr[index_arrayr[idx * 3 + 2]]; Vector3 w1 = uvarrayr[index_arrayr[idx * 3 + 0]]; Vector3 w2 = uvarrayr[index_arrayr[idx * 3 + 1]]; Vector3 w3 = uvarrayr[index_arrayr[idx * 3 + 2]]; real_t x1 = v2.x - v1.x; real_t x2 = v3.x - v1.x; real_t y1 = v2.y - v1.y; real_t y2 = v3.y - v1.y; real_t z1 = v2.z - v1.z; real_t z2 = v3.z - v1.z; real_t s1 = w2.x - w1.x; real_t s2 = w3.x - w1.x; real_t t1 = w2.y - w1.y; real_t t2 = w3.y - w1.y; real_t r = (s1 * t2 - s2 * t1); Vector3 tangent; Vector3 binormal; if (r == 0) { binormal = Vector3(); tangent = Vector3(); } else { tangent = Vector3((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, (t2 * z1 - t1 * z2) * r) .normalized(); binormal = Vector3((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r) .normalized(); } tangents[index_arrayr[idx * 3 + 0]] += tangent; binormals[index_arrayr[idx * 3 + 0]] += binormal; tangents[index_arrayr[idx * 3 + 1]] += tangent; binormals[index_arrayr[idx * 3 + 1]] += binormal; tangents[index_arrayr[idx * 3 + 2]] += tangent; binormals[index_arrayr[idx * 3 + 2]] += binormal; //print_line(itos(idx)+" tangent: "+tangent); //print_line(itos(idx)+" binormal: "+binormal); } r_tangents.resize(vlen * 4); PoolVector::Write tarrayw = r_tangents.write(); for (int idx = 0; idx < vlen; idx++) { Vector3 tangent = tangents[idx]; Vector3 bingen = narrayr[idx].cross(tangent); float dir; if (bingen.dot(binormals[idx]) < 0) dir = -1.0; else dir = +1.0; tarrayw[idx * 4 + 0] = tangent.x; tarrayw[idx * 4 + 1] = tangent.y; tarrayw[idx * 4 + 2] = tangent.z; tarrayw[idx * 4 + 3] = dir; } } Error ColladaImport::_create_mesh_surfaces(bool p_optimize, Ref &p_mesh, const Map &p_material_map, const Collada::MeshData &meshdata, const Transform &p_local_xform, const Vector &bone_remap, const Collada::SkinControllerData *p_skin_controller, const Collada::MorphControllerData *p_morph_data, Vector > p_morph_meshes, bool p_for_morph, bool p_use_mesh_material) { bool local_xform_mirror = p_local_xform.basis.determinant() < 0; if (p_morph_data) { //add morphie target ERR_FAIL_COND_V(!p_morph_data->targets.has("MORPH_TARGET"), ERR_INVALID_DATA); String mt = p_morph_data->targets["MORPH_TARGET"]; ERR_FAIL_COND_V(!p_morph_data->sources.has(mt), ERR_INVALID_DATA); int morph_targets = p_morph_data->sources[mt].sarray.size(); for (int i = 0; i < morph_targets; i++) { String target = p_morph_data->sources[mt].sarray[i]; ERR_FAIL_COND_V(!collada.state.mesh_data_map.has(target), ERR_INVALID_DATA); String name = collada.state.mesh_data_map[target].name; p_mesh->add_blend_shape(name); } if (p_morph_data->mode == "RELATIVE") p_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_RELATIVE); else if (p_morph_data->mode == "NORMALIZED") p_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); } int surface = 0; for (int p_i = 0; p_i < meshdata.primitives.size(); p_i++) { const Collada::MeshData::Primitives &p = meshdata.primitives[p_i]; /* VERTEX SOURCE */ ERR_FAIL_COND_V(!p.sources.has("VERTEX"), ERR_INVALID_DATA); String vertex_src_id = p.sources["VERTEX"].source; int vertex_ofs = p.sources["VERTEX"].offset; ERR_FAIL_COND_V(!meshdata.vertices.has(vertex_src_id), ERR_INVALID_DATA); ERR_FAIL_COND_V(!meshdata.vertices[vertex_src_id].sources.has("POSITION"), ERR_INVALID_DATA); String position_src_id = meshdata.vertices[vertex_src_id].sources["POSITION"]; ERR_FAIL_COND_V(!meshdata.sources.has(position_src_id), ERR_INVALID_DATA); const Collada::MeshData::Source *vertex_src = &meshdata.sources[position_src_id]; /* NORMAL SOURCE */ const Collada::MeshData::Source *normal_src = NULL; int normal_ofs = 0; if (p.sources.has("NORMAL")) { String normal_source_id = p.sources["NORMAL"].source; normal_ofs = p.sources["NORMAL"].offset; ERR_FAIL_COND_V(!meshdata.sources.has(normal_source_id), ERR_INVALID_DATA); normal_src = &meshdata.sources[normal_source_id]; } const Collada::MeshData::Source *binormal_src = NULL; int binormal_ofs = 0; if (p.sources.has("TEXBINORMAL")) { String binormal_source_id = p.sources["TEXBINORMAL"].source; binormal_ofs = p.sources["TEXBINORMAL"].offset; ERR_FAIL_COND_V(!meshdata.sources.has(binormal_source_id), ERR_INVALID_DATA); binormal_src = &meshdata.sources[binormal_source_id]; } const Collada::MeshData::Source *tangent_src = NULL; int tangent_ofs = 0; if (p.sources.has("TEXTANGENT")) { String tangent_source_id = p.sources["TEXTANGENT"].source; tangent_ofs = p.sources["TEXTANGENT"].offset; ERR_FAIL_COND_V(!meshdata.sources.has(tangent_source_id), ERR_INVALID_DATA); tangent_src = &meshdata.sources[tangent_source_id]; } const Collada::MeshData::Source *uv_src = NULL; int uv_ofs = 0; if (p.sources.has("TEXCOORD0")) { String uv_source_id = p.sources["TEXCOORD0"].source; uv_ofs = p.sources["TEXCOORD0"].offset; ERR_FAIL_COND_V(!meshdata.sources.has(uv_source_id), ERR_INVALID_DATA); uv_src = &meshdata.sources[uv_source_id]; } const Collada::MeshData::Source *uv2_src = NULL; int uv2_ofs = 0; if (p.sources.has("TEXCOORD1")) { String uv2_source_id = p.sources["TEXCOORD1"].source; uv2_ofs = p.sources["TEXCOORD1"].offset; ERR_FAIL_COND_V(!meshdata.sources.has(uv2_source_id), ERR_INVALID_DATA); uv2_src = &meshdata.sources[uv2_source_id]; } const Collada::MeshData::Source *color_src = NULL; int color_ofs = 0; if (p.sources.has("COLOR")) { String color_source_id = p.sources["COLOR"].source; color_ofs = p.sources["COLOR"].offset; ERR_FAIL_COND_V(!meshdata.sources.has(color_source_id), ERR_INVALID_DATA); color_src = &meshdata.sources[color_source_id]; } //find largest source.. /************************/ /* ADD WEIGHTS IF EXIST */ /************************/ Map > pre_weights; bool has_weights = false; if (p_skin_controller) { const Collada::SkinControllerData::Source *weight_src = NULL; int weight_ofs = 0; if (p_skin_controller->weights.sources.has("WEIGHT")) { String weight_id = p_skin_controller->weights.sources["WEIGHT"].source; weight_ofs = p_skin_controller->weights.sources["WEIGHT"].offset; if (p_skin_controller->sources.has(weight_id)) { weight_src = &p_skin_controller->sources[weight_id]; } } int joint_ofs = 0; if (p_skin_controller->weights.sources.has("JOINT")) { joint_ofs = p_skin_controller->weights.sources["JOINT"].offset; } //should be OK, given this was pre-checked. int index_ofs = 0; int wstride = p_skin_controller->weights.sources.size(); for (int w_i = 0; w_i < p_skin_controller->weights.sets.size(); w_i++) { int amount = p_skin_controller->weights.sets[w_i]; Vector weights; for (int a_i = 0; a_i < amount; a_i++) { Collada::Vertex::Weight w; int read_from = index_ofs + a_i * wstride; ERR_FAIL_INDEX_V(read_from + wstride - 1, p_skin_controller->weights.indices.size(), ERR_INVALID_DATA); int weight_index = p_skin_controller->weights.indices[read_from + weight_ofs]; ERR_FAIL_INDEX_V(weight_index, weight_src->array.size(), ERR_INVALID_DATA); w.weight = weight_src->array[weight_index]; int bone_index = p_skin_controller->weights.indices[read_from + joint_ofs]; if (bone_index == -1) continue; //ignore this weight (refers to bind shape) ERR_FAIL_INDEX_V(bone_index, bone_remap.size(), ERR_INVALID_DATA); w.bone_idx = bone_remap[bone_index]; weights.push_back(w); } /* FIX WEIGHTS */ weights.sort(); if (weights.size() > 4) { //cap to 4 and make weights add up 1 weights.resize(4); } //make sure weights always add up to 1 float total = 0; for (int i = 0; i < weights.size(); i++) total += weights[i].weight; if (total) for (int i = 0; i < weights.size(); i++) weights[i].weight /= total; if (weights.size() == 0 || total == 0) { //if nothing, add a weight to bone 0 //no weights assigned Collada::Vertex::Weight w; w.bone_idx = 0; w.weight = 1.0; weights.clear(); weights.push_back(w); } pre_weights[w_i] = weights; /* for(Set::Element *E=vertex_map[w_i].front();E;E=E->next()) { int dst = E->get(); ERR_EXPLAIN("invalid vertex index in array"); ERR_FAIL_INDEX_V(dst,vertex_array.size(),ERR_INVALID_DATA); vertex_array[dst].weights=weights; }*/ index_ofs += wstride * amount; } //vertices need to be localized has_weights = true; } Set vertex_set; //vertex set will be the vertices List indices_list; //indices will be the indices //Map > vertex_map; //map vertices (for setting skinning/morph) /**************************/ /* CREATE PRIMITIVE ARRAY */ /**************************/ // The way collada uses indices is more optimal, and friendlier with 3D modelling software, // because it can index everything, not only vertices (similar to how the WII works). // This is, however, more incompatible with standard video cards, so arrays must be converted. // Must convert to GL/DX format. int _prim_ofs = 0; int vertidx = 0; for (int p_i = 0; p_i < p.count; p_i++) { int amount; if (p.polygons.size()) { ERR_FAIL_INDEX_V(p_i, p.polygons.size(), ERR_INVALID_DATA); amount = p.polygons[p_i]; } else { amount = 3; //triangles; } //COLLADA_PRINT("amount: "+itos(amount)); int prev2[2] = { 0, 0 }; for (int j = 0; j < amount; j++) { int src = _prim_ofs; //_prim_ofs+=p.sources.size() ERR_FAIL_INDEX_V(src, p.indices.size(), ERR_INVALID_DATA); Collada::Vertex vertex; if (!p_optimize) vertex.uid = vertidx++; int vertex_index = p.indices[src + vertex_ofs]; //used for index field (later used by controllers) int vertex_pos = (vertex_src->stride ? vertex_src->stride : 3) * vertex_index; ERR_FAIL_INDEX_V(vertex_pos, vertex_src->array.size(), ERR_INVALID_DATA); vertex.vertex = Vector3(vertex_src->array[vertex_pos + 0], vertex_src->array[vertex_pos + 1], vertex_src->array[vertex_pos + 2]); if (pre_weights.has(vertex_index)) { vertex.weights = pre_weights[vertex_index]; } if (normal_src) { int normal_pos = (normal_src->stride ? normal_src->stride : 3) * p.indices[src + normal_ofs]; ERR_FAIL_INDEX_V(normal_pos, normal_src->array.size(), ERR_INVALID_DATA); vertex.normal = Vector3(normal_src->array[normal_pos + 0], normal_src->array[normal_pos + 1], normal_src->array[normal_pos + 2]); vertex.normal.snap(Vector3(0.001, 0.001, 0.001)); if (tangent_src && binormal_src) { int binormal_pos = (binormal_src->stride ? binormal_src->stride : 3) * p.indices[src + binormal_ofs]; ERR_FAIL_INDEX_V(binormal_pos, binormal_src->array.size(), ERR_INVALID_DATA); Vector3 binormal = Vector3(binormal_src->array[binormal_pos + 0], binormal_src->array[binormal_pos + 1], binormal_src->array[binormal_pos + 2]); int tangent_pos = (tangent_src->stride ? tangent_src->stride : 3) * p.indices[src + tangent_ofs]; ERR_FAIL_INDEX_V(tangent_pos, tangent_src->array.size(), ERR_INVALID_DATA); Vector3 tangent = Vector3(tangent_src->array[tangent_pos + 0], tangent_src->array[tangent_pos + 1], tangent_src->array[tangent_pos + 2]); vertex.tangent.normal = tangent; vertex.tangent.d = vertex.normal.cross(tangent).dot(binormal) > 0 ? 1 : -1; } } if (uv_src) { int uv_pos = (uv_src->stride ? uv_src->stride : 2) * p.indices[src + uv_ofs]; ERR_FAIL_INDEX_V(uv_pos, uv_src->array.size(), ERR_INVALID_DATA); vertex.uv = Vector3(uv_src->array[uv_pos + 0], 1.0 - uv_src->array[uv_pos + 1], 0); } if (uv2_src) { int uv2_pos = (uv2_src->stride ? uv2_src->stride : 2) * p.indices[src + uv2_ofs]; ERR_FAIL_INDEX_V(uv2_pos, uv2_src->array.size(), ERR_INVALID_DATA); vertex.uv2 = Vector3(uv2_src->array[uv2_pos + 0], 1.0 - uv2_src->array[uv2_pos + 1], 0); } if (color_src) { int color_pos = (color_src->stride ? color_src->stride : 3) * p.indices[src + color_ofs]; // colors are RGB in collada.. ERR_FAIL_INDEX_V(color_pos, color_src->array.size(), ERR_INVALID_DATA); vertex.color = Color(color_src->array[color_pos + 0], color_src->array[color_pos + 1], color_src->array[color_pos + 2], (color_src->stride > 3) ? color_src->array[color_pos + 3] : 1.0); } #ifndef NO_UP_AXIS_SWAP if (collada.state.up_axis == Vector3::AXIS_Z) { Vector3 bn = vertex.normal.cross(vertex.tangent.normal) * vertex.tangent.d; SWAP(vertex.vertex.z, vertex.vertex.y); vertex.vertex.z = -vertex.vertex.z; SWAP(vertex.normal.z, vertex.normal.y); vertex.normal.z = -vertex.normal.z; SWAP(vertex.tangent.normal.z, vertex.tangent.normal.y); vertex.tangent.normal.z = -vertex.tangent.normal.z; SWAP(bn.z, bn.y); bn.z = -bn.z; vertex.tangent.d = vertex.normal.cross(vertex.tangent.normal).dot(bn) > 0 ? 1 : -1; } #endif vertex.fix_unit_scale(collada); int index = 0; //COLLADA_PRINT("vertex: "+vertex.vertex); if (vertex_set.has(vertex)) { index = vertex_set.find(vertex)->get().idx; } else { index = vertex_set.size(); vertex.idx = index; vertex_set.insert(vertex); } /* if (!vertex_map.has(vertex_index)) vertex_map[vertex_index]=Set(); vertex_map[vertex_index].insert(index); //should be outside..*/ //build triangles if needed if (j == 0) prev2[0] = index; if (j >= 2) { //insert indices in reverse order (collada uses CCW as frontface) if (local_xform_mirror) { indices_list.push_back(prev2[0]); indices_list.push_back(prev2[1]); indices_list.push_back(index); } else { indices_list.push_back(prev2[0]); indices_list.push_back(index); indices_list.push_back(prev2[1]); } } prev2[1] = index; _prim_ofs += p.vertex_size; } } Vector vertex_array; //there we go, vertex array vertex_array.resize(vertex_set.size()); for (Set::Element *F = vertex_set.front(); F; F = F->next()) { vertex_array[F->get().idx] = F->get(); } if (has_weights) { //if skeleton, localize Transform local_xform = p_local_xform; for (int i = 0; i < vertex_array.size(); i++) { vertex_array[i].vertex = local_xform.xform(vertex_array[i].vertex); vertex_array[i].normal = local_xform.basis.xform(vertex_array[i].normal).normalized(); vertex_array[i].tangent.normal = local_xform.basis.xform(vertex_array[i].tangent.normal).normalized(); if (local_xform_mirror) { //i shouldn't do this? wtf? //vertex_array[i].normal*=-1.0; //vertex_array[i].tangent.normal*=-1.0; } } } PoolVector index_array; index_array.resize(indices_list.size()); PoolVector::Write index_arrayw = index_array.write(); int iidx = 0; for (List::Element *F = indices_list.front(); F; F = F->next()) { index_arrayw[iidx++] = F->get(); } index_arrayw = PoolVector::Write(); /*****************/ /* MAKE SURFACES */ /*****************/ { Ref material; //find material Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; { if (p_material_map.has(p.material)) { String target = p_material_map[p.material].target; if (!material_cache.has(target)) { Error err = _create_material(target); if (!err) material = material_cache[target]; } else material = material_cache[target]; } else if (p.material != "") { print_line("Warning, unreferenced material in geometry instance: " + p.material); } } PoolVector final_vertex_array; PoolVector final_normal_array; PoolVector final_tangent_array; PoolVector final_color_array; PoolVector final_uv_array; PoolVector final_uv2_array; PoolVector final_bone_array; PoolVector final_weight_array; uint32_t final_format = 0; //create format final_format = Mesh::ARRAY_FORMAT_VERTEX | Mesh::ARRAY_FORMAT_INDEX; if (normal_src) { final_format |= Mesh::ARRAY_FORMAT_NORMAL; if (uv_src && binormal_src && tangent_src) { final_format |= Mesh::ARRAY_FORMAT_TANGENT; } } if (color_src) final_format |= Mesh::ARRAY_FORMAT_COLOR; if (uv_src) final_format |= Mesh::ARRAY_FORMAT_TEX_UV; if (uv2_src) final_format |= Mesh::ARRAY_FORMAT_TEX_UV2; if (has_weights) { final_format |= Mesh::ARRAY_FORMAT_WEIGHTS; final_format |= Mesh::ARRAY_FORMAT_BONES; } //set arrays int vlen = vertex_array.size(); { //vertices PoolVector varray; varray.resize(vertex_array.size()); PoolVector::Write varrayw = varray.write(); for (int k = 0; k < vlen; k++) varrayw[k] = vertex_array[k].vertex; varrayw = PoolVector::Write(); final_vertex_array = varray; } if (uv_src) { //compute uv first, may be needed for computing tangent/bionrmal PoolVector uvarray; uvarray.resize(vertex_array.size()); PoolVector::Write uvarrayw = uvarray.write(); for (int k = 0; k < vlen; k++) { uvarrayw[k] = vertex_array[k].uv; } uvarrayw = PoolVector::Write(); final_uv_array = uvarray; } if (uv2_src) { //compute uv first, may be needed for computing tangent/bionrmal PoolVector uv2array; uv2array.resize(vertex_array.size()); PoolVector::Write uv2arrayw = uv2array.write(); for (int k = 0; k < vlen; k++) { uv2arrayw[k] = vertex_array[k].uv2; } uv2arrayw = PoolVector::Write(); final_uv2_array = uv2array; } if (normal_src) { PoolVector narray; narray.resize(vertex_array.size()); PoolVector::Write narrayw = narray.write(); for (int k = 0; k < vlen; k++) { narrayw[k] = vertex_array[k].normal; } narrayw = PoolVector::Write(); final_normal_array = narray; /* PoolVector altnaray; _generate_normals(index_array,final_vertex_array,altnaray); for(int i=0;iis_stdout_verbose()) print_line("Collada: Triangle mesh lacks normals, so normals were generated."); final_format |= Mesh::ARRAY_FORMAT_NORMAL; } if (final_normal_array.size() && uv_src && binormal_src && tangent_src && !force_make_tangents) { PoolVector tarray; tarray.resize(vertex_array.size() * 4); PoolVector::Write tarrayw = tarray.write(); for (int k = 0; k < vlen; k++) { tarrayw[k * 4 + 0] = vertex_array[k].tangent.normal.x; tarrayw[k * 4 + 1] = vertex_array[k].tangent.normal.y; tarrayw[k * 4 + 2] = vertex_array[k].tangent.normal.z; tarrayw[k * 4 + 3] = vertex_array[k].tangent.d; } tarrayw = PoolVector::Write(); final_tangent_array = tarray; } else if (final_normal_array.size() && primitive == Mesh::PRIMITIVE_TRIANGLES && final_uv_array.size() && (force_make_tangents || (material.is_valid()))) { //if this uses triangles, there are uvs and the material is using a normalmap, generate tangents and binormals, because they WILL be needed //generate binormals/tangents _generate_tangents_and_binormals(index_array, final_vertex_array, final_uv_array, final_normal_array, final_tangent_array); final_format |= Mesh::ARRAY_FORMAT_TANGENT; if (OS::get_singleton()->is_stdout_verbose()) print_line("Collada: Triangle mesh lacks tangents (And normalmap was used), so tangents were generated."); } if (color_src) { PoolVector colorarray; colorarray.resize(vertex_array.size()); PoolVector::Write colorarrayw = colorarray.write(); for (int k = 0; k < vlen; k++) { colorarrayw[k] = vertex_array[k].color; } colorarrayw = PoolVector::Write(); final_color_array = colorarray; } if (has_weights) { PoolVector weightarray; PoolVector bonearray; weightarray.resize(vertex_array.size() * 4); PoolVector::Write weightarrayw = weightarray.write(); bonearray.resize(vertex_array.size() * 4); PoolVector::Write bonearrayw = bonearray.write(); for (int k = 0; k < vlen; k++) { float sum = 0; for (int l = 0; l < VS::ARRAY_WEIGHTS_SIZE; l++) { if (l < vertex_array[k].weights.size()) { weightarrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = vertex_array[k].weights[l].weight; sum += weightarrayw[k * VS::ARRAY_WEIGHTS_SIZE + l]; bonearrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = int(vertex_array[k].weights[l].bone_idx); //COLLADA_PRINT(itos(k)+": "+rtos(bonearrayw[k*VS::ARRAY_WEIGHTS_SIZE+l])+":"+rtos(weightarray[k*VS::ARRAY_WEIGHTS_SIZE+l])); } else { weightarrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = 0; bonearrayw[k * VS::ARRAY_WEIGHTS_SIZE + l] = 0; } } /* if (sum<0.8) COLLADA_PRINT("ERROR SUMMING INDEX "+itos(k)+" had weights: "+itos(vertex_array[k].weights.size())); */ } weightarrayw = PoolVector::Write(); bonearrayw = PoolVector::Write(); final_weight_array = weightarray; final_bone_array = bonearray; } //////////////////////////// // FINALLY CREATE SUFRACE // //////////////////////////// Array d; d.resize(VS::ARRAY_MAX); d[Mesh::ARRAY_INDEX] = index_array; d[Mesh::ARRAY_VERTEX] = final_vertex_array; if (final_normal_array.size()) d[Mesh::ARRAY_NORMAL] = final_normal_array; if (final_tangent_array.size()) d[Mesh::ARRAY_TANGENT] = final_tangent_array; if (final_uv_array.size()) d[Mesh::ARRAY_TEX_UV] = final_uv_array; if (final_uv2_array.size()) d[Mesh::ARRAY_TEX_UV2] = final_uv2_array; if (final_color_array.size()) d[Mesh::ARRAY_COLOR] = final_color_array; if (final_weight_array.size()) d[Mesh::ARRAY_WEIGHTS] = final_weight_array; if (final_bone_array.size()) d[Mesh::ARRAY_BONES] = final_bone_array; Array mr; //////////////////////////// // THEN THE MORPH TARGETS // //////////////////////////// #if 0 if (p_morph_data) { //add morphie target ERR_FAIL_COND_V( !p_morph_data->targets.has("MORPH_TARGET"), ERR_INVALID_DATA ); String mt = p_morph_data->targets["MORPH_TARGET"]; ERR_FAIL_COND_V( !p_morph_data->sources.has(mt), ERR_INVALID_DATA); int morph_targets = p_morph_data->sources[mt].sarray.size(); mr.resize(morph_targets); for(int j=0;jsources[mt].sarray[j]; ERR_FAIL_COND_V( !collada.state.mesh_data_map.has(target), ERR_INVALID_DATA ); String name = collada.state.mesh_data_map[target].name; Collada::MeshData &md = collada.state.mesh_data_map[target]; // collada in itself supports morphing everything. However, the spec is unclear and no examples or exporters that // morph anything but "POSITIONS" seem to exit. Because of this, normals and binormals/tangents have to be regenerated here, // which may result in inaccurate (but most of the time good enough) results. PoolVector vertices; vertices.resize(vlen); ERR_FAIL_COND_V( md.vertices.size() != 1, ERR_INVALID_DATA); String vertex_src_id=md.vertices.front()->key(); ERR_FAIL_COND_V(!md.vertices[vertex_src_id].sources.has("POSITION"),ERR_INVALID_DATA); String position_src_id = md.vertices[vertex_src_id].sources["POSITION"]; ERR_FAIL_COND_V(!md.sources.has(position_src_id),ERR_INVALID_DATA); const Collada::MeshData::Source *m=&md.sources[position_src_id]; ERR_FAIL_COND_V( m->array.size() != vertex_src->array.size(), ERR_INVALID_DATA); int stride=m->stride; if (stride==0) stride=3; //read vertices from morph target PoolVector::Write vertw = vertices.write(); for(int m_i=0;m_iarray.size()/stride;m_i++) { int pos = m_i*stride; Vector3 vtx( m->array[pos+0], m->array[pos+1], m->array[pos+2] ); #ifndef NO_UP_AXIS_SWAP if (collada.state.up_axis==Vector3::AXIS_Z) { SWAP( vtx.z, vtx.y ); vtx.z = -vtx.z; } #endif Collada::Vertex vertex; vertex.vertex=vtx; vertex.fix_unit_scale(collada); vtx=vertex.vertex; vtx = p_local_xform.xform(vtx); if (vertex_map.has(m_i)) { //vertex may no longer be here, don't bother converting for (Set ::Element *E=vertex_map[m_i].front() ; E; E=E->next() ) { vertw[E->get()]=vtx; } } } //vertices are in place, now generate everything else vertw = PoolVector::Write(); PoolVector normals; PoolVector tangents; print_line("vertex source id: "+vertex_src_id); if(md.vertices[vertex_src_id].sources.has("NORMAL")){ //has normals normals.resize(vlen); //std::cout << "has normals" << std::endl; String normal_src_id = md.vertices[vertex_src_id].sources["NORMAL"]; //std::cout << "normals source: "<< normal_src_id.utf8().get_data() <array.size() != vertex_src->array.size(), ERR_INVALID_DATA); int stride=m->stride; if (stride==0) stride=3; //read normals from morph target PoolVector::Write vertw = normals.write(); for(int m_i=0;m_iarray.size()/stride;m_i++) { int pos = m_i*stride; Vector3 vtx( m->array[pos+0], m->array[pos+1], m->array[pos+2] ); #ifndef NO_UP_AXIS_SWAP if (collada.state.up_axis==Vector3::AXIS_Z) { SWAP( vtx.z, vtx.y ); vtx.z = -vtx.z; } #endif Collada::Vertex vertex; vertex.vertex=vtx; vertex.fix_unit_scale(collada); vtx=vertex.vertex; vtx = p_local_xform.xform(vtx); if (vertex_map.has(m_i)) { //vertex may no longer be here, don't bother converting for (Set ::Element *E=vertex_map[m_i].front() ; E; E=E->next() ) { vertw[E->get()]=vtx; } } } print_line("using built-in normals"); }else{ print_line("generating normals"); _generate_normals(index_array,vertices,normals);//no normals } if (final_tangent_array.size() && final_uv_array.size()) { _generate_tangents_and_binormals(index_array,vertices,final_uv_array,normals,tangents); } mrt[Mesh::ARRAY_VERTEX]=vertices; mrt[Mesh::ARRAY_NORMAL]=normals; if (tangents.size()) mrt[Mesh::ARRAY_TANGENT]=tangents; if (final_uv_array.size()) mrt[Mesh::ARRAY_TEX_UV]=final_uv_array; if (final_uv2_array.size()) mrt[Mesh::ARRAY_TEX_UV2]=final_uv2_array; if (final_color_array.size()) mrt[Mesh::ARRAY_COLOR]=final_color_array; mr[j]=mrt; } } #endif for (int mi = 0; mi < p_morph_meshes.size(); mi++) { //print_line("want surface "+itos(mi)+" has "+itos(p_morph_meshes[mi]->get_surface_count())); Array a = p_morph_meshes[mi]->surface_get_arrays(surface); //add valid weight and bone arrays if they exist, TODO check if they are unique to shape (generally not) if (final_weight_array.size()) a[Mesh::ARRAY_WEIGHTS] = final_weight_array; if (final_bone_array.size()) a[Mesh::ARRAY_BONES] = final_bone_array; a[Mesh::ARRAY_INDEX] = Variant(); //a.resize(Mesh::ARRAY_MAX); //no need for index mr.push_back(a); } p_mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, d, mr, p_for_morph ? 0 : Mesh::ARRAY_COMPRESS_DEFAULT); if (material.is_valid()) { if (p_use_mesh_material) { p_mesh->surface_set_material(surface, material); } p_mesh->surface_set_name(surface, material->get_name()); } } /*****************/ /* FIND MATERIAL */ /*****************/ surface++; } return OK; } Error ColladaImport::_create_resources(Collada::Node *p_node) { if (p_node->type == Collada::Node::TYPE_GEOMETRY && node_map.has(p_node->id)) { Spatial *node = node_map[p_node->id].node; Collada::NodeGeometry *ng = static_cast(p_node); if (Object::cast_to(node)) { Path *path = Object::cast_to(node); String curve = ng->source; if (curve_cache.has(ng->source)) { path->set_curve(curve_cache[ng->source]); } else { Ref c = memnew(Curve3D); const Collada::CurveData &cd = collada.state.curve_data_map[ng->source]; ERR_FAIL_COND_V(!cd.control_vertices.has("POSITION"), ERR_INVALID_DATA); ERR_FAIL_COND_V(!cd.control_vertices.has("IN_TANGENT"), ERR_INVALID_DATA); ERR_FAIL_COND_V(!cd.control_vertices.has("OUT_TANGENT"), ERR_INVALID_DATA); ERR_FAIL_COND_V(!cd.control_vertices.has("INTERPOLATION"), ERR_INVALID_DATA); ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["POSITION"]), ERR_INVALID_DATA); const Collada::CurveData::Source &vertices = cd.sources[cd.control_vertices["POSITION"]]; ERR_FAIL_COND_V(vertices.stride != 3, ERR_INVALID_DATA); ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["IN_TANGENT"]), ERR_INVALID_DATA); const Collada::CurveData::Source &in_tangents = cd.sources[cd.control_vertices["IN_TANGENT"]]; ERR_FAIL_COND_V(in_tangents.stride != 3, ERR_INVALID_DATA); ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["OUT_TANGENT"]), ERR_INVALID_DATA); const Collada::CurveData::Source &out_tangents = cd.sources[cd.control_vertices["OUT_TANGENT"]]; ERR_FAIL_COND_V(out_tangents.stride != 3, ERR_INVALID_DATA); ERR_FAIL_COND_V(!cd.sources.has(cd.control_vertices["INTERPOLATION"]), ERR_INVALID_DATA); const Collada::CurveData::Source &interps = cd.sources[cd.control_vertices["INTERPOLATION"]]; ERR_FAIL_COND_V(interps.stride != 1, ERR_INVALID_DATA); const Collada::CurveData::Source *tilts = NULL; if (cd.control_vertices.has("TILT") && cd.sources.has(cd.control_vertices["TILT"])) tilts = &cd.sources[cd.control_vertices["TILT"]]; if (tilts) { print_line("FOUND TILTS!!!"); } int pc = vertices.array.size() / 3; for (int i = 0; i < pc; i++) { Vector3 pos(vertices.array[i * 3 + 0], vertices.array[i * 3 + 1], vertices.array[i * 3 + 2]); Vector3 in(in_tangents.array[i * 3 + 0], in_tangents.array[i * 3 + 1], in_tangents.array[i * 3 + 2]); Vector3 out(out_tangents.array[i * 3 + 0], out_tangents.array[i * 3 + 1], out_tangents.array[i * 3 + 2]); #ifndef NO_UP_AXIS_SWAP if (collada.state.up_axis == Vector3::AXIS_Z) { SWAP(pos.y, pos.z); pos.z = -pos.z; SWAP(in.y, in.z); in.z = -in.z; SWAP(out.y, out.z); out.z = -out.z; } #endif pos *= collada.state.unit_scale; in *= collada.state.unit_scale; out *= collada.state.unit_scale; c->add_point(pos, in - pos, out - pos); if (tilts) c->set_point_tilt(i, tilts->array[i]); } curve_cache[ng->source] = c; path->set_curve(c); } } if (Object::cast_to(node)) { Collada::NodeGeometry *ng = static_cast(p_node); MeshInstance *mi = Object::cast_to(node); ERR_FAIL_COND_V(!mi, ERR_BUG); Collada::SkinControllerData *skin = NULL; Collada::MorphControllerData *morph = NULL; String meshid; Transform apply_xform; Vector bone_remap; Vector > morphs; print_line("mesh: " + String(mi->get_name())); if (ng->controller) { print_line("has controller"); String ngsource = ng->source; if (collada.state.skin_controller_data_map.has(ngsource)) { ERR_FAIL_COND_V(!collada.state.skin_controller_data_map.has(ngsource), ERR_INVALID_DATA); skin = &collada.state.skin_controller_data_map[ngsource]; Vector skeletons = ng->skeletons; ERR_FAIL_COND_V(skeletons.empty(), ERR_INVALID_DATA); String skname = skeletons[0]; if (!node_map.has(skname)) { print_line("no node for skeleton " + skname); } ERR_FAIL_COND_V(!node_map.has(skname), ERR_INVALID_DATA); NodeMap nmsk = node_map[skname]; Skeleton *sk = Object::cast_to(nmsk.node); ERR_FAIL_COND_V(!sk, ERR_INVALID_DATA); ERR_FAIL_COND_V(!skeleton_bone_map.has(sk), ERR_INVALID_DATA); Map &bone_remap_map = skeleton_bone_map[sk]; meshid = skin->base; if (collada.state.morph_controller_data_map.has(meshid)) { //it's a morph!! morph = &collada.state.morph_controller_data_map[meshid]; ngsource = meshid; meshid = morph->mesh; } else { ngsource = ""; } if (apply_mesh_xform_to_vertices) { apply_xform = collada.fix_transform(p_node->default_transform); node->set_transform(Transform()); } else { apply_xform = Transform(); } ERR_FAIL_COND_V(!skin->weights.sources.has("JOINT"), ERR_INVALID_DATA); String joint_id = skin->weights.sources["JOINT"].source; ERR_FAIL_COND_V(!skin->sources.has(joint_id), ERR_INVALID_DATA); Collada::SkinControllerData::Source *joint_src = &skin->sources[joint_id]; bone_remap.resize(joint_src->sarray.size()); for (int i = 0; i < bone_remap.size(); i++) { String str = joint_src->sarray[i]; if (!bone_remap_map.has(str)) { print_line("bone not found for remap: " + str); print_line("in skeleton: " + skname); } ERR_FAIL_COND_V(!bone_remap_map.has(str), ERR_INVALID_DATA); bone_remap[i] = bone_remap_map[str]; } } if (collada.state.morph_controller_data_map.has(ngsource)) { print_line("is morph " + ngsource); //it's a morph!! morph = &collada.state.morph_controller_data_map[ngsource]; meshid = morph->mesh; printf("KKmorph: %p\n", morph); print_line("morph mshid: " + meshid); Vector targets; morph->targets.has("MORPH_TARGET"); String target = morph->targets["MORPH_TARGET"]; bool valid = false; if (morph->sources.has(target)) { valid = true; Vector names = morph->sources[target].sarray; for (int i = 0; i < names.size(); i++) { String meshid = names[i]; if (collada.state.mesh_data_map.has(meshid)) { Ref mesh = Ref(memnew(ArrayMesh)); const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid]; Error err = _create_mesh_surfaces(false, mesh, ng->material_map, meshdata, apply_xform, bone_remap, skin, NULL, Vector >(), true); ERR_FAIL_COND_V(err, err); morphs.push_back(mesh); } else { valid = false; } } } if (!valid) morphs.clear(); ngsource = ""; } if (ngsource != "") { ERR_EXPLAIN("Controller Instance Source '" + ngsource + "' is neither skin or morph!"); ERR_FAIL_V(ERR_INVALID_DATA); } } else { meshid = ng->source; } Ref mesh; if (mesh_cache.has(meshid)) { mesh = mesh_cache[meshid]; } else { if (collada.state.mesh_data_map.has(meshid)) { //bleh, must ignore invalid ERR_FAIL_COND_V(!collada.state.mesh_data_map.has(meshid), ERR_INVALID_DATA); mesh = Ref(memnew(ArrayMesh)); const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid]; mesh->set_name(meshdata.name); Error err = _create_mesh_surfaces(morphs.size() == 0, mesh, ng->material_map, meshdata, apply_xform, bone_remap, skin, morph, morphs, false, use_mesh_builtin_materials); ERR_FAIL_COND_V(err, err); mesh_cache[meshid] = mesh; } else { print_line("Warning, will not import geometry: " + meshid); } } if (!mesh.is_null()) { mi->set_mesh(mesh); if (!use_mesh_builtin_materials) { const Collada::MeshData &meshdata = collada.state.mesh_data_map[meshid]; for (int i = 0; i < meshdata.primitives.size(); i++) { String matname = meshdata.primitives[i].material; if (ng->material_map.has(matname)) { String target = ng->material_map[matname].target; Ref material; if (!material_cache.has(target)) { Error err = _create_material(target); if (!err) material = material_cache[target]; } else material = material_cache[target]; mi->set_surface_material(i, material); } else if (matname != "") { print_line("Warning, unreferenced material in geometry instance: " + matname); } } } } } } for (int i = 0; i < p_node->children.size(); i++) { Error err = _create_resources(p_node->children[i]); if (err) return err; } return OK; } Error ColladaImport::load(const String &p_path, int p_flags, bool p_force_make_tangents) { Error err = collada.load(p_path, p_flags); ERR_FAIL_COND_V(err, err); force_make_tangents = p_force_make_tangents; ERR_FAIL_COND_V(!collada.state.visual_scene_map.has(collada.state.root_visual_scene), ERR_INVALID_DATA); Collada::VisualScene &vs = collada.state.visual_scene_map[collada.state.root_visual_scene]; scene = memnew(Spatial); // root //determine what's going on with the lights for (int i = 0; i < vs.root_nodes.size(); i++) { _pre_process_lights(vs.root_nodes[i]); } //import scene for (int i = 0; i < vs.root_nodes.size(); i++) { Error err = _create_scene_skeletons(vs.root_nodes[i]); if (err != OK) { memdelete(scene); ERR_FAIL_COND_V(err, err); } } for (int i = 0; i < vs.root_nodes.size(); i++) { Error err = _create_scene(vs.root_nodes[i], scene); if (err != OK) { memdelete(scene); ERR_FAIL_COND_V(err, err); } Error err2 = _create_resources(vs.root_nodes[i]); if (err2 != OK) { memdelete(scene); ERR_FAIL_COND_V(err2, err2); } } //optatively, set unit scale in the root scene->set_transform(collada.get_root_transform()); return OK; } void ColladaImport::_fix_param_animation_tracks() { for (Map::Element *E = collada.state.scene_map.front(); E; E = E->next()) { Collada::Node *n = E->get(); switch (n->type) { case Collada::Node::TYPE_NODE: { // ? do nothing } break; case Collada::Node::TYPE_JOINT: { } break; case Collada::Node::TYPE_SKELETON: { } break; case Collada::Node::TYPE_LIGHT: { } break; case Collada::Node::TYPE_CAMERA: { } break; case Collada::Node::TYPE_GEOMETRY: { Collada::NodeGeometry *ng = static_cast(n); // test source(s) String source = ng->source; while (source != "") { if (collada.state.skin_controller_data_map.has(source)) { const Collada::SkinControllerData &skin = collada.state.skin_controller_data_map[source]; //nothing to animate here i think source = skin.base; } else if (collada.state.morph_controller_data_map.has(source)) { const Collada::MorphControllerData &morph = collada.state.morph_controller_data_map[source]; if (morph.targets.has("MORPH_WEIGHT") && morph.targets.has("MORPH_TARGET")) { String weights = morph.targets["MORPH_WEIGHT"]; String targets = morph.targets["MORPH_TARGET"]; //fails here if (morph.sources.has(targets) && morph.sources.has(weights)) { const Collada::MorphControllerData::Source &weight_src = morph.sources[weights]; const Collada::MorphControllerData::Source &target_src = morph.sources[targets]; ERR_FAIL_COND(weight_src.array.size() != target_src.sarray.size()); for (int i = 0; i < weight_src.array.size(); i++) { String track_name = weights + "(" + itos(i) + ")"; String mesh_name = target_src.sarray[i]; if (collada.state.mesh_name_map.has(mesh_name) && collada.state.referenced_tracks.has(track_name)) { const Vector &rt = collada.state.referenced_tracks[track_name]; for (int rti = 0; rti < rt.size(); rti++) { Collada::AnimationTrack *at = &collada.state.animation_tracks[rt[rti]]; at->target = E->key(); at->param = "morph/" + collada.state.mesh_name_map[mesh_name]; at->property = true; //at->param } } } } } source = morph.mesh; } else { source = ""; // for now nothing else supported } } } break; } } } void ColladaImport::create_animations(bool p_make_tracks_in_all_bones, bool p_import_value_tracks) { _fix_param_animation_tracks(); for (int i = 0; i < collada.state.animation_clips.size(); i++) { for (int j = 0; j < collada.state.animation_clips[i].tracks.size(); j++) tracks_in_clips.insert(collada.state.animation_clips[i].tracks[j]); } for (int i = 0; i < collada.state.animation_tracks.size(); i++) { Collada::AnimationTrack &at = collada.state.animation_tracks[i]; //print_line("CHANNEL: "+at.target+" PARAM: "+at.param); String node; if (!node_map.has(at.target)) { if (node_name_map.has(at.target)) { node = node_name_map[at.target]; } else { print_line("Couldnt find node: " + at.target); continue; } } else { node = at.target; } if (at.property) { valid_animated_properties.push_back(i); } else { node_map[node].anim_tracks.push_back(i); valid_animated_nodes.insert(node); } } create_animation(-1, p_make_tracks_in_all_bones, p_import_value_tracks); //print_line("clipcount: "+itos(collada.state.animation_clips.size())); for (int i = 0; i < collada.state.animation_clips.size(); i++) create_animation(i, p_make_tracks_in_all_bones, p_import_value_tracks); } void ColladaImport::create_animation(int p_clip, bool p_make_tracks_in_all_bones, bool p_import_value_tracks) { Ref animation = Ref(memnew(Animation)); if (p_clip == -1) { //print_line("default"); animation->set_name("default"); } else { //print_line("clip name: "+collada.state.animation_clips[p_clip].name); animation->set_name(collada.state.animation_clips[p_clip].name); } for (Map::Element *E = node_map.front(); E; E = E->next()) { if (E->get().bone < 0) continue; bones_with_animation[E->key()] = false; } //store and validate tracks if (p_clip == -1) { //main anim } Set track_filter; if (p_clip == -1) { for (int i = 0; i < collada.state.animation_clips.size(); i++) { int tc = collada.state.animation_clips[i].tracks.size(); for (int j = 0; j < tc; j++) { String n = collada.state.animation_clips[i].tracks[j]; if (collada.state.by_id_tracks.has(n)) { const Vector &ti = collada.state.by_id_tracks[n]; for (int k = 0; k < ti.size(); k++) { track_filter.insert(ti[k]); } } } } } else { int tc = collada.state.animation_clips[p_clip].tracks.size(); for (int j = 0; j < tc; j++) { String n = collada.state.animation_clips[p_clip].tracks[j]; if (collada.state.by_id_tracks.has(n)) { const Vector &ti = collada.state.by_id_tracks[n]; for (int k = 0; k < ti.size(); k++) { track_filter.insert(ti[k]); } } } } //animation->set_loop(true); //create animation tracks Vector base_snapshots; float f = 0; float snapshot_interval = 1.0 / bake_fps; //should be customizable somewhere... float anim_length = collada.state.animation_length; if (p_clip >= 0 && collada.state.animation_clips[p_clip].end) anim_length = collada.state.animation_clips[p_clip].end; while (f < anim_length) { base_snapshots.push_back(f); f += snapshot_interval; if (f >= anim_length) { base_snapshots.push_back(anim_length); } } //print_line("anim len: "+rtos(anim_length)); animation->set_length(anim_length); bool tracks_found = false; for (Set::Element *E = valid_animated_nodes.front(); E; E = E->next()) { // take snapshots if (!collada.state.scene_map.has(E->get())) { continue; } NodeMap &nm = node_map[E->get()]; String path = scene->get_path_to(nm.node); if (nm.bone >= 0) { Skeleton *sk = static_cast(nm.node); String name = sk->get_bone_name(nm.bone); path = path + ":" + name; } bool found_anim = false; Collada::Node *cn = collada.state.scene_map[E->get()]; if (cn->ignore_anim) { continue; } animation->add_track(Animation::TYPE_TRANSFORM); int track = animation->get_track_count() - 1; animation->track_set_path(track, path); animation->track_set_imported(track, true); //helps merging later Vector snapshots = base_snapshots; if (nm.anim_tracks.size() == 1) { //use snapshot keys from anim track instead, because this was most likely exported baked Collada::AnimationTrack &at = collada.state.animation_tracks[nm.anim_tracks.front()->get()]; snapshots.clear(); for (int i = 0; i < at.keys.size(); i++) snapshots.push_back(at.keys[i].time); } for (int i = 0; i < snapshots.size(); i++) { for (List::Element *ET = nm.anim_tracks.front(); ET; ET = ET->next()) { //apply tracks if (p_clip == -1) { if (track_filter.has(ET->get())) { continue; } } else { if (!track_filter.has(ET->get())) continue; } found_anim = true; Collada::AnimationTrack &at = collada.state.animation_tracks[ET->get()]; int xform_idx = -1; for (int j = 0; j < cn->xform_list.size(); j++) { if (cn->xform_list[j].id == at.param) { xform_idx = j; break; } } if (xform_idx == -1) { print_line("couldnt find matching node " + at.target + " xform for track " + at.param); continue; } ERR_CONTINUE(xform_idx == -1); Vector data = at.get_value_at_time(snapshots[i]); ERR_CONTINUE(data.empty()); Collada::Node::XForm &xf = cn->xform_list[xform_idx]; if (at.component == "ANGLE") { ERR_CONTINUE(data.size() != 1); ERR_CONTINUE(xf.op != Collada::Node::XForm::OP_ROTATE); ERR_CONTINUE(xf.data.size() < 4); xf.data[3] = data[0]; } else if (at.component == "X" || at.component == "Y" || at.component == "Z") { int cn = at.component[0] - 'X'; ERR_CONTINUE(cn >= xf.data.size()); ERR_CONTINUE(data.size() > 1); xf.data[cn] = data[0]; } else if (data.size() == xf.data.size()) { xf.data = data; } else { if (data.size() != xf.data.size()) { print_line("component " + at.component + " datasize " + itos(data.size()) + " xfdatasize " + itos(xf.data.size())); } ERR_CONTINUE(data.size() != xf.data.size()); } } Transform xform = cn->compute_transform(collada); xform = collada.fix_transform(xform) * cn->post_transform; if (nm.bone >= 0) { //make bone transform relative to rest (in case of skeleton) Skeleton *sk = Object::cast_to(nm.node); if (sk) { xform = sk->get_bone_rest(nm.bone).affine_inverse() * xform; } else { ERR_PRINT("INVALID SKELETON!!!!"); } } Quat q = xform.basis; q.normalize(); Vector3 s = xform.basis.get_scale(); Vector3 l = xform.origin; animation->transform_track_insert_key(track, snapshots[i], l, q, s); } if (nm.bone >= 0) { if (found_anim) bones_with_animation[E->get()] = true; } if (found_anim) tracks_found = true; else { animation->remove_track(track); } } if (p_make_tracks_in_all_bones) { //some bones may lack animation, but since we don't store pose as a property, we must add keyframes! for (Map::Element *E = bones_with_animation.front(); E; E = E->next()) { if (E->get()) continue; //print_line("BONE LACKS ANIM: "+E->key()); NodeMap &nm = node_map[E->key()]; String path = scene->get_path_to(nm.node); ERR_CONTINUE(nm.bone < 0); Skeleton *sk = static_cast(nm.node); String name = sk->get_bone_name(nm.bone); path = path + ":" + name; Collada::Node *cn = collada.state.scene_map[E->key()]; if (cn->ignore_anim) { print_line("warning, ignoring animation on node: " + path); continue; } animation->add_track(Animation::TYPE_TRANSFORM); int track = animation->get_track_count() - 1; animation->track_set_path(track, path); animation->track_set_imported(track, true); //helps merging later Transform xform = cn->compute_transform(collada); xform = collada.fix_transform(xform) * cn->post_transform; xform = sk->get_bone_rest(nm.bone).affine_inverse() * xform; Quat q = xform.basis; q.normalize(); Vector3 s = xform.basis.get_scale(); Vector3 l = xform.origin; animation->transform_track_insert_key(track, 0, l, q, s); tracks_found = true; } } if (p_import_value_tracks) { for (int i = 0; i < valid_animated_properties.size(); i++) { int ti = valid_animated_properties[i]; if (p_clip == -1) { if (track_filter.has(ti)) continue; } else { if (!track_filter.has(ti)) continue; } Collada::AnimationTrack &at = collada.state.animation_tracks[ti]; // take snapshots if (!collada.state.scene_map.has(at.target)) continue; NodeMap &nm = node_map[at.target]; String path = scene->get_path_to(nm.node); animation->add_track(Animation::TYPE_VALUE); int track = animation->get_track_count() - 1; path = path + ":" + at.param; animation->track_set_path(track, path); animation->track_set_imported(track, true); //helps merging later for (int i = 0; i < at.keys.size(); i++) { float time = at.keys[i].time; Variant value; Vector data = at.keys[i].data; if (data.size() == 1) { //push a float value = data[0]; } else if (data.size() == 16) { //matrix print_line("value keys for matrices not supported"); } else { print_line("don't know what to do with this amount of value keys: " + itos(data.size())); } animation->track_insert_key(track, time, value); } tracks_found = true; } } if (tracks_found) { animations.push_back(animation); } } /*********************************************************************************/ /*************************************** SCENE ***********************************/ /*********************************************************************************/ #define DEBUG_ANIMATION uint32_t EditorSceneImporterCollada::get_import_flags() const { return IMPORT_SCENE | IMPORT_ANIMATION; } void EditorSceneImporterCollada::get_extensions(List *r_extensions) const { r_extensions->push_back("dae"); } Node *EditorSceneImporterCollada::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List *r_missing_deps, Error *r_err) { ColladaImport state; uint32_t flags = Collada::IMPORT_FLAG_SCENE; if (p_flags & IMPORT_ANIMATION) flags |= Collada::IMPORT_FLAG_ANIMATION; state.use_mesh_builtin_materials = !(p_flags & IMPORT_MATERIALS_IN_INSTANCES); state.bake_fps = p_bake_fps; Error err = state.load(p_path, flags, p_flags & EditorSceneImporter::IMPORT_GENERATE_TANGENT_ARRAYS); ERR_FAIL_COND_V(err != OK, NULL); if (state.missing_textures.size()) { /* for(int i=0;ipush_back(state.missing_textures[i]); } } } if (p_flags & IMPORT_ANIMATION) { state.create_animations(p_flags & IMPORT_ANIMATION_FORCE_ALL_TRACKS_IN_ALL_CLIPS, p_flags & EditorSceneImporter::IMPORT_ANIMATION_KEEP_VALUE_TRACKS); AnimationPlayer *ap = memnew(AnimationPlayer); for (int i = 0; i < state.animations.size(); i++) { String name; if (state.animations[i]->get_name() == "") name = "default"; else name = state.animations[i]->get_name(); if (p_flags & IMPORT_ANIMATION_DETECT_LOOP) { if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) { state.animations[i]->set_loop(true); } } ap->add_animation(name, state.animations[i]); } state.scene->add_child(ap); ap->set_owner(state.scene); } return state.scene; } Ref EditorSceneImporterCollada::import_animation(const String &p_path, uint32_t p_flags) { ColladaImport state; state.use_mesh_builtin_materials = false; Error err = state.load(p_path, Collada::IMPORT_FLAG_ANIMATION, p_flags & EditorSceneImporter::IMPORT_GENERATE_TANGENT_ARRAYS); ERR_FAIL_COND_V(err != OK, RES()); state.create_animations(p_flags & EditorSceneImporter::IMPORT_ANIMATION_FORCE_ALL_TRACKS_IN_ALL_CLIPS, p_flags & EditorSceneImporter::IMPORT_ANIMATION_KEEP_VALUE_TRACKS); if (state.scene) memdelete(state.scene); if (state.animations.size() == 0) return Ref(); Ref anim = state.animations[0]; print_line("Anim Load OK"); String base = p_path.get_basename().to_lower(); if (p_flags & IMPORT_ANIMATION_DETECT_LOOP) { if (base.begins_with("loop") || base.ends_with("loop") || base.begins_with("cycle") || base.ends_with("cycle")) { anim->set_loop(true); } } return anim; } EditorSceneImporterCollada::EditorSceneImporterCollada() { }