/*************************************************************************/ /* mobile_interface.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "mobile_interface.h" #include "core/os/input.h" #include "core/os/os.h" #include "servers/visual/visual_server_global.h" StringName MobileVRInterface::get_name() const { return "Native mobile"; }; Vector3 MobileVRInterface::scale_magneto(const Vector3 &p_magnetometer) { // Our magnetometer doesn't give us nice clean data. // Well it may on Mac OS X because we're getting a calibrated value in the current implementation but Android we're getting raw data. // This is a fairly simple adjustment we can do to correct for the magnetometer data being elliptical Vector3 mag_raw = p_magnetometer; Vector3 mag_scaled = p_magnetometer; // update our variables every x frames if (mag_count > 20) { mag_current_min = mag_next_min; mag_current_max = mag_next_max; mag_count = 0; } else { mag_count++; }; // adjust our min and max if (mag_raw.x > mag_next_max.x) mag_next_max.x = mag_raw.x; if (mag_raw.y > mag_next_max.y) mag_next_max.y = mag_raw.y; if (mag_raw.z > mag_next_max.z) mag_next_max.z = mag_raw.z; if (mag_raw.x < mag_next_min.x) mag_next_min.x = mag_raw.x; if (mag_raw.y < mag_next_min.y) mag_next_min.y = mag_raw.y; if (mag_raw.z < mag_next_min.z) mag_next_min.z = mag_raw.z; // scale our x, y and z if (!(mag_current_max.x - mag_current_min.x)) { mag_raw.x -= (mag_current_min.x + mag_current_max.x) / 2.0; mag_scaled.x = (mag_raw.x - mag_current_min.x) / ((mag_current_max.x - mag_current_min.x) * 2.0 - 1.0); }; if (!(mag_current_max.y - mag_current_min.y)) { mag_raw.y -= (mag_current_min.y + mag_current_max.y) / 2.0; mag_scaled.y = (mag_raw.y - mag_current_min.y) / ((mag_current_max.y - mag_current_min.y) * 2.0 - 1.0); }; if (!(mag_current_max.z - mag_current_min.z)) { mag_raw.z -= (mag_current_min.z + mag_current_max.z) / 2.0; mag_scaled.z = (mag_raw.z - mag_current_min.z) / ((mag_current_max.z - mag_current_min.z) * 2.0 - 1.0); }; return mag_scaled; }; Basis MobileVRInterface::combine_acc_mag(const Vector3 &p_grav, const Vector3 &p_magneto) { // yup, stock standard cross product solution... Vector3 up = -p_grav.normalized(); Vector3 magneto_east = up.cross(p_magneto.normalized()); // or is this west?, but should be horizon aligned now magneto_east.normalize(); Vector3 magneto = up.cross(magneto_east); // and now we have a horizon aligned north magneto.normalize(); // We use our gravity and magnetometer vectors to construct our matrix Basis acc_mag_m3; acc_mag_m3.elements[0] = -magneto_east; acc_mag_m3.elements[1] = up; acc_mag_m3.elements[2] = magneto; return acc_mag_m3; }; void MobileVRInterface::set_position_from_sensors() { _THREAD_SAFE_METHOD_ // this is a helper function that attempts to adjust our transform using our 9dof sensors // 9dof is a misleading marketing term coming from 3 accelerometer axis + 3 gyro axis + 3 magnetometer axis = 9 axis // but in reality this only offers 3 dof (yaw, pitch, roll) orientation uint64_t ticks = OS::get_singleton()->get_ticks_usec(); uint64_t ticks_elapsed = ticks - last_ticks; float delta_time = (double)ticks_elapsed / 1000000.0; // few things we need Input *input = Input::get_singleton(); Vector3 down(0.0, -1.0, 0.0); // Down is Y negative Vector3 north(0.0, 0.0, 1.0); // North is Z positive // make copies of our inputs Vector3 acc = input->get_accelerometer(); Vector3 gyro = input->get_gyroscope(); Vector3 grav = input->get_gravity(); Vector3 magneto = scale_magneto(input->get_magnetometer()); // this may be overkill on iOS because we're already getting a calibrated magnetometer reading if (sensor_first) { sensor_first = false; } else { acc = scrub(acc, last_accerometer_data, 2, 0.2); magneto = scrub(magneto, last_magnetometer_data, 3, 0.3); }; last_accerometer_data = acc; last_magnetometer_data = magneto; if (grav.length() < 0.1) { // not ideal but use our accelerometer, this will contain shakey shakey user behaviour // maybe look into some math but I'm guessing that if this isn't available, its because we lack the gyro sensor to actually work out // what a stable gravity vector is grav = acc; if (grav.length() > 0.1) { has_gyro = true; }; } else { has_gyro = true; }; bool has_magneto = magneto.length() > 0.1; bool has_grav = grav.length() > 0.1; #ifdef ANDROID_ENABLED ///@TODO needs testing, i don't have a gyro, potentially can be removed depending on what comes out of issue #8101 // On Android x and z axis seem inverted gyro.x = -gyro.x; gyro.z = -gyro.z; grav.x = -grav.x; grav.z = -grav.z; magneto.x = -magneto.x; magneto.z = -magneto.z; #endif if (has_gyro) { // start with applying our gyro (do NOT smooth our gyro!) Basis rotate; rotate.rotate(orientation.get_axis(0), gyro.x * delta_time); rotate.rotate(orientation.get_axis(1), gyro.y * delta_time); rotate.rotate(orientation.get_axis(2), gyro.z * delta_time); orientation = rotate * orientation; }; ///@TODO improve this, the magnetometer is very fidgity sometimes flipping the axis for no apparent reason (probably a bug on my part) // if you have a gyro + accelerometer that combo tends to be better then combining all three but without a gyro you need the magnetometer.. if (has_magneto && has_grav && !has_gyro) { // convert to quaternions, easier to smooth those out Quat transform_quat(orientation); Quat acc_mag_quat(combine_acc_mag(grav, magneto)); transform_quat = transform_quat.slerp(acc_mag_quat, 0.1); orientation = Basis(transform_quat); } else if (has_grav) { // use gravity vector to make sure down is down... // transform gravity into our world space grav.normalize(); Vector3 grav_adj = orientation.xform(grav); float dot = grav_adj.dot(down); if ((dot > -1.0) && (dot < 1.0)) { // axis around which we have this rotation Vector3 axis = grav_adj.cross(down); axis.normalize(); Basis drift_compensation(axis, acos(dot) * delta_time * 10); orientation = drift_compensation * orientation; }; }; // JIC orientation.orthonormalize(); last_ticks = ticks; }; void MobileVRInterface::_bind_methods() { ClassDB::bind_method(D_METHOD("set_iod", "iod"), &MobileVRInterface::set_iod); ClassDB::bind_method(D_METHOD("get_iod"), &MobileVRInterface::get_iod); ClassDB::bind_method(D_METHOD("set_display_width", "display_width"), &MobileVRInterface::set_display_width); ClassDB::bind_method(D_METHOD("get_display_width"), &MobileVRInterface::get_display_width); ClassDB::bind_method(D_METHOD("set_display_to_lens", "display_to_lens"), &MobileVRInterface::set_display_to_lens); ClassDB::bind_method(D_METHOD("get_display_to_lens"), &MobileVRInterface::get_display_to_lens); ClassDB::bind_method(D_METHOD("set_oversample", "oversample"), &MobileVRInterface::set_oversample); ClassDB::bind_method(D_METHOD("get_oversample"), &MobileVRInterface::get_oversample); ClassDB::bind_method(D_METHOD("set_k1", "k"), &MobileVRInterface::set_k1); ClassDB::bind_method(D_METHOD("get_k1"), &MobileVRInterface::get_k1); ClassDB::bind_method(D_METHOD("set_k2", "k"), &MobileVRInterface::set_k2); ClassDB::bind_method(D_METHOD("get_k2"), &MobileVRInterface::get_k2); ADD_PROPERTY(PropertyInfo(Variant::REAL, "iod", PROPERTY_HINT_RANGE, "4.0,10.0,0.1"), "set_iod", "get_iod"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "display_width", PROPERTY_HINT_RANGE, "5.0,25.0,0.1"), "set_display_width", "get_display_width"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "display_to_lens", PROPERTY_HINT_RANGE, "5.0,25.0,0.1"), "set_display_to_lens", "get_display_to_lens"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "oversample", PROPERTY_HINT_RANGE, "1.0,2.0,0.1"), "set_oversample", "get_oversample"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "k1", PROPERTY_HINT_RANGE, "0.1,10.0,0.0001"), "set_k1", "get_k1"); ADD_PROPERTY(PropertyInfo(Variant::REAL, "k2", PROPERTY_HINT_RANGE, "0.1,10.0,0.0001"), "set_k2", "get_k2"); } void MobileVRInterface::set_iod(const real_t p_iod) { intraocular_dist = p_iod; }; real_t MobileVRInterface::get_iod() const { return intraocular_dist; }; void MobileVRInterface::set_display_width(const real_t p_display_width) { display_width = p_display_width; }; real_t MobileVRInterface::get_display_width() const { return display_width; }; void MobileVRInterface::set_display_to_lens(const real_t p_display_to_lens) { display_to_lens = p_display_to_lens; }; real_t MobileVRInterface::get_display_to_lens() const { return display_to_lens; }; void MobileVRInterface::set_oversample(const real_t p_oversample) { oversample = p_oversample; }; real_t MobileVRInterface::get_oversample() const { return oversample; }; void MobileVRInterface::set_k1(const real_t p_k1) { k1 = p_k1; }; real_t MobileVRInterface::get_k1() const { return k1; }; void MobileVRInterface::set_k2(const real_t p_k2) { k2 = p_k2; }; real_t MobileVRInterface::get_k2() const { return k2; }; bool MobileVRInterface::is_installed() { // we don't have any middle ware here, if we have our interface, we can use it return true; }; bool MobileVRInterface::hmd_is_present() { // our device is our HMD return true; }; bool MobileVRInterface::supports_hmd() { // our device is our HMD return true; }; bool MobileVRInterface::is_stereo() { // needs stereo... return true; }; bool MobileVRInterface::is_initialized() { return (initialized); }; bool MobileVRInterface::initialize() { ARVRServer *arvr_server = ARVRServer::get_singleton(); ERR_FAIL_NULL_V(arvr_server, false); if (!initialized) { // reset our sensor data and orientation mag_count = 0; has_gyro = false; sensor_first = true; mag_next_min = Vector3(10000, 10000, 10000); mag_next_max = Vector3(-10000, -10000, -10000); mag_current_min = Vector3(0, 0, 0); mag_current_max = Vector3(0, 0, 0); // reset our orientation orientation = Basis(); // make this our primary interface arvr_server->set_primary_interface(this); last_ticks = OS::get_singleton()->get_ticks_usec(); ; initialized = true; }; return true; }; void MobileVRInterface::uninitialize() { if (initialized) { ARVRServer *arvr_server = ARVRServer::get_singleton(); if (arvr_server != NULL) { // no longer our primary interface arvr_server->clear_primary_interface_if(this); } initialized = false; }; }; Size2 MobileVRInterface::get_recommended_render_targetsize() { _THREAD_SAFE_METHOD_ // we use half our window size Size2 target_size = OS::get_singleton()->get_window_size(); target_size.x *= 0.5 * oversample; target_size.y *= oversample; return target_size; }; Transform MobileVRInterface::get_transform_for_eye(ARVRInterface::Eyes p_eye, const Transform &p_cam_transform) { _THREAD_SAFE_METHOD_ Transform transform_for_eye; ARVRServer *arvr_server = ARVRServer::get_singleton(); ERR_FAIL_NULL_V(arvr_server, transform_for_eye); if (initialized) { float world_scale = arvr_server->get_world_scale(); // we don't need to check for the existance of our HMD, doesn't effect our values... // note * 0.01 to convert cm to m and * 0.5 as we're moving half in each direction... if (p_eye == ARVRInterface::EYE_LEFT) { transform_for_eye.origin.x = -(intraocular_dist * 0.01 * 0.5 * world_scale); } else if (p_eye == ARVRInterface::EYE_RIGHT) { transform_for_eye.origin.x = intraocular_dist * 0.01 * 0.5 * world_scale; } else { // for mono we don't reposition, we want our center position. }; // just scale our origin point of our transform Transform hmd_transform; hmd_transform.basis = orientation; hmd_transform.origin = Vector3(0.0, eye_height * world_scale, 0.0); transform_for_eye = p_cam_transform * (arvr_server->get_reference_frame()) * hmd_transform * transform_for_eye; } else { // huh? well just return what we got.... transform_for_eye = p_cam_transform; }; return transform_for_eye; }; CameraMatrix MobileVRInterface::get_projection_for_eye(ARVRInterface::Eyes p_eye, real_t p_aspect, real_t p_z_near, real_t p_z_far) { _THREAD_SAFE_METHOD_ CameraMatrix eye; if (p_eye == ARVRInterface::EYE_MONO) { ///@TODO for now hardcode some of this, what is really needed here is that this needs to be in sync with the real cameras properties // which probably means implementing a specific class for iOS and Android. For now this is purely here as an example. // Note also that if you use a normal viewport with AR/VR turned off you can still use the tracker output of this interface // to position a stock standard Godot camera and have control over this. // This will make more sense when we implement ARkit on iOS (probably a separate interface). eye.set_perspective(60.0, p_aspect, p_z_near, p_z_far, false); } else { eye.set_for_hmd(p_eye == ARVRInterface::EYE_LEFT ? 1 : 2, p_aspect, intraocular_dist, display_width, display_to_lens, oversample, p_z_near, p_z_far); }; return eye; }; void MobileVRInterface::commit_for_eye(ARVRInterface::Eyes p_eye, RID p_render_target, const Rect2 &p_screen_rect) { _THREAD_SAFE_METHOD_ // We must have a valid render target ERR_FAIL_COND(!p_render_target.is_valid()); // Because we are rendering to our device we must use our main viewport! ERR_FAIL_COND(p_screen_rect == Rect2()); float offset_x = 0.0; float aspect_ratio = 0.5 * p_screen_rect.size.x / p_screen_rect.size.y; Vector2 eye_center; if (p_eye == ARVRInterface::EYE_LEFT) { offset_x = -1.0; eye_center.x = ((-intraocular_dist / 2.0) + (display_width / 4.0)) / (display_width / 2.0); } else if (p_eye == ARVRInterface::EYE_RIGHT) { eye_center.x = ((intraocular_dist / 2.0) - (display_width / 4.0)) / (display_width / 2.0); } // unset our render target so we are outputting to our main screen by making RasterizerStorageGLES3::system_fbo our current FBO VSG::rasterizer->set_current_render_target(RID()); // now output to screen // VSG::rasterizer->blit_render_target_to_screen(p_render_target, screen_rect, 0); // get our render target RID eye_texture = VSG::storage->render_target_get_texture(p_render_target); uint32_t texid = VS::get_singleton()->texture_get_texid(eye_texture); glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_2D, texid); lens_shader.bind(); lens_shader.set_uniform(LensDistortedShaderGLES3::OFFSET_X, offset_x); lens_shader.set_uniform(LensDistortedShaderGLES3::K1, k1); lens_shader.set_uniform(LensDistortedShaderGLES3::K2, k2); lens_shader.set_uniform(LensDistortedShaderGLES3::EYE_CENTER, eye_center); lens_shader.set_uniform(LensDistortedShaderGLES3::UPSCALE, oversample); lens_shader.set_uniform(LensDistortedShaderGLES3::ASPECT_RATIO, aspect_ratio); glBindVertexArray(half_screen_array); glDrawArrays(GL_TRIANGLE_FAN, 0, 4); glBindVertexArray(0); }; void MobileVRInterface::process() { _THREAD_SAFE_METHOD_ if (initialized) { set_position_from_sensors(); }; }; MobileVRInterface::MobileVRInterface() { initialized = false; // Just set some defaults for these. At some point we need to look at adding a lookup table for common device + headset combos and/or support reading cardboard QR codes eye_height = 1.85; intraocular_dist = 6.0; display_width = 13.0; display_to_lens = 4.0; oversample = 1.5; k1 = 0.22; k2 = 0.23; last_ticks = 0; // create our shader stuff lens_shader.init(); { glGenBuffers(1, &half_screen_quad); glBindBuffer(GL_ARRAY_BUFFER, half_screen_quad); { const float qv[16] = { 0, -1, -1, -1, 0, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, }; glBufferData(GL_ARRAY_BUFFER, sizeof(float) * 16, qv, GL_STATIC_DRAW); } glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind glGenVertexArrays(1, &half_screen_array); glBindVertexArray(half_screen_array); glBindBuffer(GL_ARRAY_BUFFER, half_screen_quad); glVertexAttribPointer(VS::ARRAY_VERTEX, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, 0); glEnableVertexAttribArray(0); glVertexAttribPointer(VS::ARRAY_TEX_UV, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 4, ((uint8_t *)NULL) + 8); glEnableVertexAttribArray(4); glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); //unbind } }; MobileVRInterface::~MobileVRInterface() { // and make sure we cleanup if we haven't already if (is_initialized()) { uninitialize(); }; };